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Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate
impedance sensing for classification of cancerous and normal cells
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The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal
measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human
breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular
micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated
condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the
fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the
signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified
in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power
dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial
study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze
real-time bioimpedance signal for distinguishing cancer and normal cells.
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I. INTRODUCTION

In vitro real-time and continuous monitoring of cell
growth, proliferation, and cell viability is crucial to biological
research to understand the complicated pathways regulating
proliferation and viability, and to develop agents that modulate
these processes. In addition, a detail kinetic behavior of cells
provides important information about the biological state of
the cell, revealing, for example, enhanced cell growth, cell
quiescence, morphological changes, or cell death, especially
in the field of cancer biology. It has been well established
that the growth kinetics of cancer cells is distinguishably
different from that of normal cells [1]. Traditionally, the
cell growth and proliferation are observed through in vitro
cell culture system using different microscopic techniques.
Nevertheless, it has been still a challenge to monitor real-
time cellular behavior through available techniques. Recently,
electric cell-substrate impedance sensing (ECIS) based on
impedance spectroscopy has been widely used to continu-
ously monitor cell culture and growth dynamics [2,3]. ECIS
has been mostly exploited for electrical characterization of
growing cells along with quantitative information about cell
adhesion [3], growth kinetics [4], migration [5], apoptosis [6],
and morphological changes, etc. ECIS has been successfully
demonstrated to characterize cancer and normal cells through
the measurement of overall impedance of a cell layer at various
frequencies at a particular time instance and by subsequent
modeling of electrical equivalent circuit. It has been found
that monitoring of real-time growth dynamics at in vitro
model is worthwhile for understanding of complex behavior
of cancer cells in comparison to normal cells like dynamic
cell viability, migration, and invasion [7,8]. Since ECIS can
monitor cell growth, spreading during cell culture in terms
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of bioimpedance value, which varies with cell types, it will
be more advantageous to establish the distinguishing features
by considering the entire growth kinetics of cell cycle. It
has been observed that real-time impedance measurement
signals are always associated with fluctuations. Impedance
variations in cell-cell and cell-substrate gap associated with
cellular level interaction and their signal transduction appears
as the fluctuations in the recorded bioimpedance data. Some
groups [9–12] have reported that these impedance fluctuations
are directly correlated with cellular micromotions, which
differ for cancerous and normal cells. Micromotions are the
result of micromovements in the cell membrane protrusions
mainly required during cell migration and invasion but are
also produced during other vital processes, like cell division.
The present study assumed the micromotions stemmed from
dynamic structural rearrangement of filopodia, lamellipodia,
or membrane ruffles in micrometer scale. Cellular extensions
like filopodia and lamellipodia are required for sensing
the chemoattractant in cellular environment, cell adhesion,
detachment, and cell-cell communication [13]. Elongation,
retraction, and dynamic changes in these structures are also
required for cellular migration, invasion, and interaction with
matrix [14,15]. Through this extension the cell attaches to
the matrix surface followed by the contraction of the whole
cell body and leaving the earlier attachments. The movement
through pseudopods (lamellopodia, filipodia, and podosomes
being its different types) is actually mediated by the network
of actins (i.e., cytoskeleton), which periodically contracts and
relaxes to mediate movement in a particular direction by
intricate and defined cellular signaling [16]. These protrusive
and chemotactic movements are moreover found during in
vivo cell migration and more importantly during invasion
of cancer cells through blood capillaries to undergo distant
metastasis, whereby cancer spreads and disseminates through-
out the body [17]. This rearrangement of cell membrane
protrusions results in oscillation of membrane structure, which

1539-3755/2015/92(6)/062702(9) 062702-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062702


DEBANJAN DAS et al. PHYSICAL REVIEW E 92, 062702 (2015)

is required for cellular migration, invasion, and interaction
with matrix and other cells [14,18]. Although in the structural
rearrangement event the amplitude of micromotion is at the
micron level, the reorientation of the cellular structure occurs at
μm/min velocity [19,20]. Therefore, the study of micromotion
is an important aspect in cancer biology as it provides the
information about cell motility and its response to various
external stimuli. Cancer cells have a unique kind of intercel-
lular and intracellular interactions due to their uncontrolled
and unregulated division and associated metabolic processes.
This leads to their differences in motility as well as in their
response to external chemical signals leading to difference
in their micromotions with noncancerous cells. Thus, the
analysis of micromotion reflected on bioimpedance fluctuation
could be an important characteristic to study the growth
kinetics of cancer and normal cells. Numerous techniques
have been explored to study these bioimpedance fluctuations
for understanding the cellular property. For example, D.C.
Lovelady et al. had established a statistical technique to
study the electrical noise in bioimpedance signal in order
to distinguish cancer cells from normal cells [10]. They
have used Hurst exponent and detrended fluctuation analysis
(DFA) to study the long-term correlation of noisy signal.
Marimuthu et al. [12] demonstrated a correlation between
oscillatory motion of cells with the impedance change through
FFT analysis. Tarantola et al. [21] used Fourier transform to
analyze the dynamics of human cancer cell lines monitored by
electrical and acoustic fluctuation analysis. Short-time Fourier
transform (STFT) is used by Wang et al. [22] to distinguish
three different normal cells. However, Fourier transform is not
effective for nonstationary type bioimpedance signal, since
the moment it transforms the signal into frequency domain
the time information is lost. Although the STFT overcomes
the time location problem to a large extent, it does not
provide multiple resolution in time and frequency, which
is an important characteristic for analyzing transient signals
containing both high- and low-frequency components. Wavelet
analysis overcomes the limitations of Fourier transform and
STFT method by employing the analyzing functions that are
available locally both in time and frequency domain. Yi-Ting
Lai et al. used Hilbert-Huang transform (HHT) [23] to study
the cytotoxicity effect on cell micromotion of endothelial cells.
Recently, Chen et al. group [24] has applied wavelet transform
to quantify the fluctuations associated with fibroblast cell (3T3)
micromotions. Although wavelet has been widely applied on
different biological signals (mostly ECG and EEG signal), its
application to the bioimpedance signal for classification of
cells is largely unexplored area. To the authors knowledge,
until now there has been no study of wavelet-based character-
ization of micromotion of cancer cells. The wavelet transform
can decipher the detail information through layer-by-layer
filtering of high-frequency and low-frequency components of
the signal. Thus, the wavelet transform can be described as
a mathematical microscope, allowing one to provide detailed
information of the signal with multiscale observational facility.
The main advantage of wavelets, like in doing multiscale
analysis or choosing different kinds of wavelets for different
analyses, suggests that it could be very well suited for the study
of bioimpedance signal.

In this work, real-time impedance during cell culture
of human breast cancer cells (MCF-7 and MDA-MB-231)
and human epithelial normal cells (HaCaT) was measured
using ECIS-based technique. Subsequently, discrete wavelet
transform (DWT)-based data analysis technique has been es-
tablished first time to investigate the time-series bioimpedance
data. The proposed technique was demonstrated to distinguish
cancerous cells from normal cells. DWT has been applied on
the temporal impedance data to decompose the signal into
high-pass and low-pass filter outputs called approximation
and detail, respectively, in four levels. The high-frequency
component is directly related with the micromotion of the cells.
In the present study, three novel parameters, “cellular energy,”
“cellular power,” and “cellular moments” have been introduced
to characterize the detail and approximate signals. The
different biological activities during cell growth, confluence,
and death phase of cells can be mapped with these parameters.
In the growing and confluence phase, cells start to migrate,
interact with neighbor cells, respectively, via movement of
lamellipodia and filopodia, which involve dynamic changes
in the structure of actin filaments. This requires presence of
substantial amount of energy inside the cells to induce and
retract the cellular protrusions. Thus, the enhanced capability
of cell-cell interactions and migrations properties of cells can
be correlated with the kinetic energy of the cells to have more
filament movement involved in cell micromotions, resulting
in impedance fluctuations. Further, rate of work done to move
the filament can be correlated with total power loss during a
full cycle of filament movement. Here, the energy and power
dissipation due to cellular movement of the detail signal at four
decomposition levels are calculated and defined as “cellular
energy” and “cellular power,” respectively. These provide a
quantitative measures of cellular micromotions. Furthermore,
first-, second-, and third-order moments defined as “cellular
moments” of the approximate signals were computed. The
present study demonstrates an alternate technique to classify
cancer and normal cells by monitoring and analyzing real-time
bioimpedance data and intends to measure overall dynam-
ics of cellular projections like lamellipodia and filopodia
without directly measuring their differences in morphology
and migration. Here, it has been found that cellular-energy,
cellular-power, and cellular-moments associated with micro-
motions differ significantly for cancerous and normal cells and,
subsequently, these parameters are established as signature for
classification of cancerous and normal cells.

II. MATERIALS AND METHOD

A. Cell line and cell culture on ECIS device

Normal human epithelial cells (HaCaT cells) and two types
of human breast cancer cells (MCF-7 and MDA-MB-231) were
cultured in culture medium composed of Dulbecco’s modified
Eagle’s medium (DMEM) containing 10% fetal bovine serum
(FBS), 1% penicillin, and 100 μg/ml streptomycin and
maintained in a humidified incubator at 37◦C and 5% CO2.
Once confluence was achieved, cells were removed from flask
surface by trypsinizing the cells with 0.05% trypsin/EDTA.
Subsequently, cells were resuspended in fresh DMEM medium
and 400 μl of cell suspension was added to ECIS well. The
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device was placed in that same incubator and connected to an
impedance analyzer to measure the impedance value.

B. Impedance measurement

An ECIS-8W1E DD (Applied BioPhysics, USA) cell
culture well was used to measure the bioimpedance. At first,
the ECIS culture wells were sterilized by UV treatment and
cells were seeded inside the well. The ECIS device consists of
eight separate mini-culture wells having an individual working
electrode (WE) and common counter electrode (CE). The top
surface of each working electrode was coated with a thin
biocompatible polymer with a circular opening of 250-μm
diameter at its center. Counter and working electrodes were
connected to an impedance analyzer (HIOKI LCR-3532)
interfaced with a computer. The present study focused on
monitoring the micromotions resulting in changes of cell mem-
brane protrusions. These changes require active remodeling of
the intracellular cytoskeletal protein actin, and several other
actin-associated proteins. Through numerical simulation it has
been found that at 40 kHz the electric field lines are distributed
in the entire cell-layer, including both intra- and intercellular
pathway. Thus, to capture overall changes in membrane
protrusions resulting from variation in intracellular dynamics
of cytoskeletal proteins, impedance value of growing cells was
measured in real time at 40-kHz frequency with excitation
voltage of 10 mV. Moreover, a customized experimental
setup consisting of fast-switching circuit and software was
developed to explore the dynamic events during the entire cell-
growth period (60–90 h) in real time with avoiding the direct
continuous intervention of external electric field, which may
alter the natural cellular activities. It has also been reported that
the micromotions originated from continuous rearrangement
of cellular protrusions and intracellular mass movement for
cell-cell interaction and migration [18]. Although the ampli-
tude of structural reorganization is in the submicron level,
the rearrangement of cell body is a time-driven phenomena
and persist for several minutes [19]. Therefore, in the present
study data were acquired throughout the experiment without
changing the culture medium at an interval of 5 min till the
cells were dead after reaching 100% confluence. Initially,
400 μl of DMEM medium was poured and impedance value
was measured as same procedure for 30 min. The average
of these impedance values of fresh medium was used for
baseline correction. Subsequently, medium was replaced with
cells suspended in the same volume of fresh medium and
measurements were repeated. The present study is aimed
to classify cancer and normal cells through measurement
of real-time growth kinetics during cell culture considering
micromotion as a marker. To achieve micromotion for cell-cell
communication, formation of monolayer is essential within
a stipulated time. Since the growth kinetics of HaCaT cells
is very slow at a lower cell concentration because of its
epithelial nature as compared to cancer cells (MCF-7 and
MDA-MB-231), a little higher concentration of HaCaT cells
was taken during experiment to form a complete monolayer
and sheetlike structure. All the experiments were performed
three times and the average impedance values were taken. As
cells grow on the electrodes, there is change in impedance
across the two electrodes, which is recorded by impedance

analyzer. Finally, the measured impedance values of different
cells were generalized as differential-normalized impedance
(ZN ) with respect to the initial measured impedance value of
medium according to Eq. (1).

ZN =
(

Zc − Zm

Zm

)
, (1)

where Zm and Zc are impedance of medium only and medium
with cells, respectively.

C. DWT-based multiresolution analysis (MRA)

The wavelet transform becomes a powerful analyzing
tool for stationary, nonstationary, intermittent time series,
especially, to find out hidden short events inside the time
series [25]. The advantages of wavelets are that they are able
to represent a signal in the time and frequency domain at the
same time leading to handle of wider range of signals than
Fourier analysis. A wavelet is a function ψ ∈ L2(R) with a
zero average [26]; i.e.,∫ +∞

−∞
ψ(t)dt = 0. (2)

The DWT of a signal is defined as

W (j,k) = 1√
2j

∫ +∞

−∞
x(t)ψ∗

(
t − k2j

2j

)
dt, (3)

where ψ(t) is called the mother wavelet, ψ∗ represents the
complex conjugate of the mother wavelet, the dyadic sequence
2j is the scaling parameter, and k2j denotes the translation
parameter. The sampled dyadic scale parameter determines the
oscillatory frequency and length of wavelet, and the translation
parameter determines its shifting position. DWT consists of
two sets of functions called scaling function φj,k(t) and the
wavelet function ψj.k(t), which are defined as follows:

φj,k(t) = 2− j

2 φ(2−j t − k),ψj,k(t) = 2− j

2 ψ(2−j t − k), (4)

where j,k are integers. DWT decomposes a time series signal
into the approximations coefficients (Aj,k) and the detail
coefficients (Dj,k) provided by scaling function associated
with low-pass filter (LPF) and wavelet function associated
with high-pass filter (HPF), respectively. The approximation
coefficient is split again into high- and low-frequency compo-
nents to get multiresolution decomposition of a signal, which
is shown schematically in Fig. 1.

The output of these filters are given by

Aj,k =
∑

n

l(n − 2k)aj−1,n,Dj,k =
∑

n

h(n − 2k)aj−1,n,

(5)
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FIG. 1. DWT-based decomposition process of a signal x(n).
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where l(n) and h(n) are the filter coefficients of LPF and HPF,
respectively. The number of decomposition levels is selected
based on the dominant frequency components of the signal.
In this study, the measured time-series impedance data is
decomposed up to four levels having approximations A1–A4
and details D1–D4. Since the temporal resolution is better for
Daubechies 8 (Db8), the mother wavelet Db8 has been chosen
for the present analysis of bioimpedance signals.

D. Cell features in terms of wavelet

The extracted wavelet coefficients provide a compact
representation that shows the energy distribution of the signal
in time and frequency. The following features were computed
and used to represent the time-frequency distribution of the
bioimpedance signals:

1. Cellular-energy: Signature of wavelet coefficient energy

The different levels of wavelet coefficients over the scales
can be interpreted as uneven distribution of energy across
the multiple frequency bands. This distribution pattern has
been found to be useful for classifying between different cells.
According to Parseval’s theorem, the energy of the signal can
be partitioned at different resolution levels. In conjunction with
the definition of signal energy, the wavelet coefficient energy
at the j th level for n number of samples, denoted as Ej , can
be calculated by Eq. (6),

Ej =
Nj∑
n=1

D2
j (n), (6)

where Nj is the length of detailed signal Dj (n). In the
present work, the wavelet coefficient energy is introduced
as “cellular-energy.” The cellular energy provides direct
quantitative information of the energy of the living cells to
execute the physiological and biological activities. In this
work, the “cellular energy” of all three types of cells are
computed for four different levels (D1–D4).

2. Cellular power: Signature of wavelet coefficient power

In time-series bioimpedance signal, each detail signal can
be represented as being the fluctuation associated with the
cell micromotion. In order to estimate the level of fluctuation,
the power dissipation due to cellular micromotion can be
calculated. The power dissipation in each decomposition level
of the detail signal due to current I is termed as “cellular
power” according to Eq. (7):

Pj =

⎛
⎜⎝

√√√√ 1

Nj

Nj∑
n=1

D2
j (n)

⎞
⎟⎠I 2. (7)

3. Cellular moments: Signature of wavelet coefficient moment

Moment calculation is standard approach in statistics to get
an insight about a distribution, such as spread, dispersion, and
shape of the distribution. Since it is believed that growth pattern
of normal and cancerous cells differ significantly, the moment
calculation of their bioimpedance signal has been done to
determine difference based on these statistical parameters.

The nth moment of a real-valued continuous function f (x) of
a real variable about a value “a” is given by Eq. (8):

μn =
∫ +∞

−∞
(x − a)nf (x)dx. (8)

In this work, the moment of each approximate signal (A1–A4)
was calculated and termed as “cellular moments.” The first-
order raw moment is mean, while second-order central moment
gives variance. The value of “a” is zero for the calculation of
mean and variance. Mean and variance provide information on
the location and variability (spread, dispersion) of a set of num-
bers, and by doing so, provide some information on the appear-
ance of the distribution of the numbers. The third-order central
moment gives skewness of the data set. The skewness describes
the distribution of the signal, i.e., whether the mass of distribu-
tion is concentrated on the right side or left side. Thus, skew-
ness gives a quantitative information about growth rate of cell.

III. RESULTS AND DISCUSSION

A. Real time bioimpedance-based cell-growth monitoring

The impedance value of growing cells was measured in
real time at an interval of 5 min at 40 kHz frequency. As
cells start attaching to the bottom electrodes, the current flow
alters between the counter and working electrodes resulting in
increased impedance value. Figures 2(a), 2(b), and 2(c) show
the real-time growth kinetics of HaCaT, MCF-7, and MDA-
MB-231 cells in terms of bioimpedance signal, respectively.
All the experiments were conducted three times and the
average of them was plotted in Fig. 2.

A typical bioimpedance signal has different phases of
cell-growth kinetics, i.e., proliferation, confluence, and death,
clearly morphed in increase and decrease of magnitude of
bioimpedance signal. Figure 2 describes the different phases
of cell-growth kinetics as follows:

(i) Cell growth: When cells are inoculated in the wells
initially they attach on the surface and then they start to spread
on the electrode area, which is followed by cell division. This
leads to increase in impedance of the electrode due to area
coverage by cells. Thus, in the first phase of cell growth, the
bioimpedance value increases proportionately as cells grow,
spread, and divide.

(ii) Confluence phase: As cells start growing and dividing,
they become confluent and in the process cover the maximum
surface area, which gives rise to maximum and nearly constant
impedance value. The value remains nearly constant with
minimum variation till cell death is activated.

(iii) Death phase: Due to lack of space and nutrient avail-
ability with time, cells switch to death mode by undergoing
apoptosis. As cells start to die they start losing cell-cell as well
as cell-substrate adhesion, which eventually leads to decrease
in bioimpedance.

From Fig. 2 it can be observed that the growth rate
of cancer cells is faster (higher rising slope) than that of
normal cells. Further, Fig. 2 also depicts that the measured
time-series bioimpedance signals consist of small fluctuations.
These fluctuations are associated with the micromotion of
cells resulting in a minor change in current pathways, which
ultimately leads to oscillation in measured bioimpedance.
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FIG. 2. (Color online) Time-course impedance measured on an ECIS sensing device during the cell culture of (a) HaCaT (normal cells),
(b) MCF-7 (breast cancer cells), and (c) MDA-MB-231 (breast cancer cells) at 40 kHz.

The micromotion associated with overall dynamic structural
rearrangement of filopodia, lamellipodia, or membrane ruffles
in micrometer scale. Figure 3 shows the phase contrast
images along with membrane protrusions of HaCaT, MCF-
7, and MDA-MB-231 cells at their maximum confluence
stage. The MCF-7 and MDA-MB-231 breast cancer cells
have prominent structures like filopodia as depicted from
Fig. 3. Although MDA-MB-231 cells had larger and prominent
filopodia, MCF-7 cells revealed more such structures but
smaller and less distinguished. Whereas HaCaT cells have the
least prominent filopodia and lamellipodial structures, they
thus form a well-defined monolayer in culture plate. This
indicates that micromotions originated from these dynamic
arrangement and rearrangement of these cellular projections

should differ for cancer cells. This is also revealed from
Fig. 2, which describes that impedance fluctuations correlated
to cellular micromotion is different for normal cells (HaCaT)
and cancer cells (MCF-7, MDA-MB-231). Thus, the study
of micromotion will help understanding cellular migrations
cell-cell communication, cell motility, etc. Since the different
types of cells will have different kinds of intercellular and
intracellular interactions, their motility is bound to differ.
Therefore, the micromotion could be an important aspect of
study of cell-growth kinetics for distinguishing different types
of cells. The bioimpedance-based study could successfully
describe the detailed growth kinetics of normal and cancer
cells, which was further used to distinguish the cancerous cells
from normal cells.

(c)(b)(a)

FIG. 3. (Color online) Phase contrast microphotograph during their confluence stage for (a) HaCaT, (b) MCF-7, and (c) MDA-MB-231
cells. Red arrow indicates the membrane protrusions, filopodia. MDA-MB-231 cells had larger and prominent filopodia, and MCF-7 cells
revealed more such structures but smaller and less distinguished, whereas it is least prominent in HaCaT. Scale bar = 50 μm.
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B. DWT-based analysis of bioimpedance signal

In this study, DWT has been used to analyze these
bioimpedance signals in depth and to find distinguishing
characteristics features. A four-level DWT-based multiscale
analysis using the Db8 wavelets has been performed to
decompose the bioimpedance value of cancer and normal cells
as shown in Fig. 4. The wavelet coefficients, as shown in the
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FIG. 4. Wavelet decomposition results of bioimpedance signal
using Db8 for (a) HaCaT, (b) MCF-7, and (c) MDA-MB-231 cells.

right panels in Fig. 4, provide the detail characteristics. The
variation of approximation and detail in Fig. 4 shows that at the
beginning when value of bioimpedance is low, the fluctuation
of detail coefficient is also low, correlating with initial start
of cell growth. In the first few hours cells start to attach and
attain its shape maintaining less cellular micromotion. While
the number of cells was increasing due to cell division and
proliferation, the level of fluctuation due to cell micromotion
in each band was getting higher, thus consistently agreeing
to a hypothesis that the greater the number of living cells,
the higher the level of fluctuation. Furthermore, when cells
become confluent it still continues its cellular movement for
signal transduction. Therefore, impedance fluctuation in detail
is observed throughout this confluence phase. Finally, when
cells enter in death phase, cell micromotion is ceased, which
can also be observed from decaying oscillations in the detail
signal. It can be easily observed that there is a distinguishable
difference in cellular micromotion for cancerous (MCF-7 and
MDA-MB-231) and normal cells (HaCaT). Figure 4 depicts
that impedance fluctuation for cancer cells is more throughout
the times. MDA-MB-231 cells (basal type) have been reported
to be more invasive and having greater migratory potential
than MCF-7 cells (luminal type) [27]. Therefore, during the
growth of cancer cells and while cells reach confluence in a
two-dimensional culture plate, they tend to migrate and interact
with other cells with the help of cellular protrusions apart from
undergoing cellular division. HaCaT, on the other hand, is an
immortalized keratinocyte having minimal cellular protrusions
like filopodia, and forms a regular-colonies, tight sheetlike
structure with strong cell-cell adhesions, least migratory
potential, and no invading characteristics [28]. The detail
subfigures in Fig. 4 also describe that cancer cells continue the
impedance fluctuations even in death phase compare to normal
cells. Therefore, in the present study, the cellular micromotion
is considered as a main parameter to classify cancerous and
normal cells. To achieve the goal, the different features of the
detail wavelets (D1–D4) are calculated for each type of cells.

C. Correlation between cell types and wavelet features

The energy, power, and moment of each of the detail and
approximate signal were calculated, which showed a good
correlation with cell types, e.g., cancerous and normal cells.
The signal processing and statistical parameters were estab-
lished as the quantitative signatures to distinguish cancerous
and normal cells.

1. Cellular-energy analysis

Wavelet energy provides a good indication of the total
energy contained at a specific spatial frequency level. Here,
the energy of the detail signals at all four levels (D1–D4) was
calculated for all three cells based on Eq. (6), which is the
sum of the instantaneous energy over the total time cycle of
cell growth. Table I summarizes the cellular energy values of
normal (HaCaT) and breast cancer (MCF-7, MDA-MB-231)
cells. It can be observed from Table I that the “cellular-energy”
values at third and fourth level, i.e., (D3 E) and (D4 E) for
MCF-7 and MDA-MB-231 cells have distinguishably higher
than that of HaCaT cells. Here, micromotion represents overall
dynamic changes in lamellipodia and filopodia involving in
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TABLE I. Energy obtained from detail coefficients for HaCaT, MCF-7, and MDA-MB-231 cells.

Features Parameter HaCaT MCF-7 MDA-MB-231

D1 E 0.383 ± 0.019 0.724 ± 0.058 0.232 ± 0.011
Cellular D2 E 0.172 ± 0.013 0.785 ± 0.0314 0.285 ± 0.014
energy D3 E 0.087 ± 0.004 3.48 ± 0.02 1.06 ± 0.084
(a.u.) D4 E 0.051 ± 0.004 3.93 ± 0.117 2.47 ± 0.074

Cellular D1 P 2.41 ± 0.096 2.52 ± 0.10 1.43 ± 0.057

power D2 P 1.62 ± 0.081 2.62 ± 0.157 1.58 ± 0.126
(a.u.) D3 P 1.15 ± 0.080 5.52 ± 0.110 3.05 ± 0.061
×10−14 D4 P 0.886 ± 0.026 5.87 ± 0.117 4.65 ± 0.139

continuous rearrangement of actin filaments in association
with several actin-associated proteins and GTP as energy
source [29,30], which has a leading role to play in cancer
cell migration and invasion. Thus, huge mechanical forces are
generated through molecular changes in cellular cytoskeleton
to induce and retract the formed cellular protrusions, which
are very important for cellular tethering to its surface and
directional movement [20]. The measured energy of the signal
involves cell energy expenditure as stated above, which may
be correlated directly with the calculated energy of detail
coefficients. The energy at different level decomposition can
be correlated with short-term and long-term disturbances.
The “cellular-energy” value of normal cells reduces with
increase of level of decomposition. This infers that the
normal cells have more short-term disturbance, while cancer
cells express long-term disturbance. Here, D4 E (cellular
energy at the fourth level) is most significant in terms of
long-term disturbance and subsequently used as classifier
to characterize cancer and normal cells. The energy can be
physically described as the work capacity accumulated during
its deformation to the final relief. Normal HaCaT cell forms
an epithelial layer in vitro [28] and displays little cellular
migration potential. MCF-7 although being a cancerous cell
line is much more adhesive in nature with lesser invasive
and migratory potential. MDA-MB-231 nevertheless has over-
expression of those proteins, which are involved in invasion
and metastasis, with minimum or no ability to form a single
epithelial layer in vitro [31]. Thus, the highly metastatic and
invasiveness potential of cancer cells increases the overall
work capacity correlating with micromotion. Moreover, it is
also found that cancer cells escape from cellular senescence
and become immortal by activating telomerase [32]. This
activation of telomerase keeps the cancer cells in the long-term
proliferation stage, which leads to increase in the cellular

activities. Further, cellular-energy D3 E, D4 E of all three
cells were calculated at different phases of cell growth as
summarized in Table II. The results show that energy value
during growth and confluence phases is higher than that of
death phase. This observation infers that cells are more active
in the first two phases. Moreover, the amount of energy carried
by a signal is directly related to the amplitude of the signal. A
high-energy signal is characterized by a high amplitude, while
a low-energy signal is characterized by a low amplitude with
signal duration maintaining same. The amplitude of a signal
refers to the maximum amount of displacement from its rest
position. The cellular energy was calculated without padding
any additional data points to obtain the original information
based on Eq. (6), which is dependent on time length. Further,
the cellular-energy D3 E, D4 E of all three cells have been
calculated with respect to the same time interval (10 h),
irrespective of total time duration at three growth phases
to support the results. The calculated results are shown in
Table III, which again depicts that cancerous cells have higher
“cellular energy” compared to normal cells, suggesting that
cancerous cells have higher displacement, which is related
to higher cellular micromotion of cancer cells. Thus, the
energy of detail coefficients suggests that cancerous cells
are more active and have higher micromotion than the other
normal cells even under nonagitated condition. Hence, this
“cellular-energy” feature can be used to distinguish between
normal and cancer cells.

2. Cellular-power analysis

Here, cellular power provides the quantitative information
about the power dissipation due to cellular micromotion. Dur-
ing the impedance measurement of cells typically 1 μA current
is passed through the ECIS system. Thus, the power dissipation

TABLE II. Energy of detail coefficient (D3 E and D4 E) at different phases for HaCaT, MCF-7, and MDA-MB-231 cells.

Phase Parameter HaCaT MCF-7 MDA-MB-231

Growth D3 E 0.019 ± 0.0013 1.523 ± 0.076 0.088 ± 0.004
Phase D4 E 0.018 ± 0.0013 1.714 ± 0.068 0.608 ± 0.024

Confluence D3 E 0.058 ± 0.004 1.616 ± 0.080 0.841 ± 0.042
Phase D4 E 0.023 ± 0.001 1.5394 ± 0.061 0.975 ± 0.039

Death D3 E 0.009 ± 0.0001 0.334 ± 0.017 0.150 ± 0.007
Phase D4 E 0.013 ± 0.0002 0.728 ± 0.029 0.616 ± 0.024
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TABLE III. Comparison of piecewise cellular energy (D3 E and D4 E) for 10 h at different phases of cell growth for HaCaT, MCF-7, and
MDA-MB-231.

Phase (10 h) Parameter HaCaT MCF-7 MDA-MB-231

Growth D3 E 0.013 ± 0.0010 0.378 ± 0.019 0.083 ± 0.003
Phase D4 E 0.016 ± 0.0009 0.779 ± 0.023 0.298 ± 0.006

Confluence D3 E 0.029 ± 0.0017 0.336 ± 0.007 0.106 ± 0.005
Phase D4 E 0.011 ± 0.0008 0.252 ± 0.010 0.129 ± 0.004

Death D3 E 0.006 ± 0.0005 0.139 ± 0.007 0.062 ± 0.003
Phase D4 E 0.012 ± 0.0007 0.256 ± 0.010 0.117 ± 0.002

at each level of the detail coefficient is calculated based on
Eq. (7) and the values are summarized in Table I. Since the
power dissipation is a measure of the rate at which energy
is dissipated or lost, higher cell-power dissipation reflects
the work due to higher level of cellular micromotion. In this
study, cell-power dissipation at the fourth level decomposition
(D4 P ) was selected as a classifier that simply reflects the
work due to long-term cellular micromotion. It was found
that both the breast cancer cells MCF-7 and MDA-MB-231
showed comparatively higher cell-power dissipation than that
of normal HaCaT cells. Thus, cancerous and normal cells can
be successfully distinguished by measuring “cellular-power”
dissipation of bioimpedance data.

3. Cellular-moments analysis

It has been seen that growth pattern of normal and
cancerous cells differ, so the moment calculation of their
bioimpedance signal has been done in order to see any
difference based on these statistical calculations. The first-,
second-, and third-order moments of each approximate signal
(A1–A4) are calculated based on Eq. (8) for all three cells
and the results are tabulated in Table IV. It was found that
the mean of approximate signal (M1 A) of MCF-7 and
MDA-MB-231 cells is higher than HaCaT signifying that
normalized impedance value of cancer cells is higher than
that of normal cells. Furthermore, the higher value of variance
(M2 A) indicates that the distribution of impedance value of
MCF-7 is more scattered, which can be correlated with more
impedance fluctuation due to higher cellular movement. In

general, the variance is equivalent to power of the signal. This
analysis again supports the above finding higher “cellular-
energy” and “cellular-power” dissipation of MCF-7 cells. The
third-order central moment, skewness (M3 A) is a measure
of lopsidedness of the distribution of a time-series signal. The
higher skewness values (with negative sign) of MCF-7 and
MDA-MB-231 cells indicates that the mass of distribution is
centered toward the right-hand side. Computing this feature
from Fig. 2, the initial analysis shows that cell confluence and
death phase of cancer cells were higher than that of HaCaT.
Therefore, “cellular moments” can also be important features
to characterize the cancer and normal cells based on their
impedance-measured cell-growth kinetic.

IV. CONCLUSION

In this study, a wavelet-based multiscale analysis technique
has been established to study the ECIS-captured bioimpedance
data. The impedance associated with cell growth is monitored
over time using an ECIS device. The measured real-time
impedance signals are associated with fluctuations that reflect
the fine changes in cellular behavior and movement. Thus, a
quantitative analysis technique is demonstrated to study the
cellular dynamics. When cells are transformed from normal to
malignancy stage cellular dynamics, cell-body structure, mem-
brane projections, and behavior changes markedly, which leads
to change in their micromotions. Here, the micromotions are
assumed to originate from dynamic structural rearrangement
of filopodia, lamellipodia, or membrane ruffles in micrometer

TABLE IV. Moments obtained from approximation values for HaCaT, MCF-7, and MDA-MB-231 cells.

Moments Parameter HaCaT MCF-7 MDA-MB-231

First order M1 A1 0.758 ± 0.017 1.665 ± 0.033 1.245 ± 0.012
(mean) M1 A2 0.758 ± 0.007 1.665 ± 0.041 1.245 ± 0.025

M1 A3 0.758 ± 0.022 1.665 ± 0.049 1.245 ± 0.037
M1 A4 0.758 ± 0.011 1.666 ± 0.017 1.245 ± 0.012

Second order M2 A1 0.262 ± 0.013 0.609 ± 0.030 0.235 ± 0.012
(variance) M2 A2 0.261 ± 0.013 0.608 ± 0.0304 0.233 ± 0.009

M2 A3 0.261 ± 0.013 0.605 ± 0.0302 0.233 ± 0.014
M2 A4 0.262 ± 0.013 0.601 ± 0.030 0.231 ± 0.011

Third order M3 A1 −0.032 ± 0.0016 −0.213 ± 0.008 −0.131 ± 0.006
(skewness) M3 A2 −0.032 ± 0.0019 −0.213 ± 0.010 −0.131 ± 0.005

M3 A3 −0.033 ± 0.0013 −0.215 ± 0.013 −0.132 ± 0.008
M3 A4 −0.033 ± 0.0023 −0.216 ± 0.006 −0.132 ± 0.003
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scale. A four-level DWT-based multiscale analysis using
the Db8 wavelets has been performed to decompose the
bioimpedance values, subsequently the approximation and de-
tail coefficients are further analyzed. It has found that the detail
coefficients are directly correlated with cellular micromotion.
Subsequently, in this study, three novel parameters—cellular
energy, cellular power, and cellular moments—have been
introduced to characterize and distinguish human breast cancer
cells (MCF-7, MDA-MB-231) and normal epithelial cells
(HaCaT). The cellular energy and cellular power provide a
quantitative information of intensity of impedance fluctuations
associated with cellular micromotion. Cellular-energy and
cellular-power dissipation may be correlated with associated
biological activities to alter the cell-body projections through
molecular changes in cellular cytoskeleton. The results in-
dicate that cancerous cells have higher “cellular energy”
compared to normal cells, suggesting that cancerous cells
are more active and have higher cellular displacement. It
is also revealed that cellular-power dissipation due to its
micromovement is higher for MCF-7 and MDA-MB-231 cells.
Further, the first-, second-, and third-order moments of each

approximate signal (A1–A4) termed as “cellular moments” de-
scribes the magnitude, distribution, and variation of impedance
value coupled with cell-growth kinetics. These results indicate
that the proposed wavelet-based technique promises to be an
effective tool for characterization and differentiating cell types
with the capability to measure overall dynamics of cellular
projections like lamellipodia and filopodia, avoiding direct
monitoring of their differences in morphology and migration.
Following technique may further be explored on other sets
of cancer and normal cell lines to validate these results
and consider its translational value in formulating diagnostic
tool.
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