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Smectic liquid crystals vividly illustrate the subtle interplay of broken translational and orientational
symmetries, by exhibiting defect structures forming geometrically perfect confocal ellipses and hyperbolas.
Here, we develop and numerically implement an effective theory to study the dynamics of focal conic domains
in smectic-A liquid crystals. We use the information about the smectic’s structure and energy density provided
by our simulations to develop several novel visualization tools for the focal conics. Our simulations accurately
describe both simple and extensional shear, which we compare to experiments, and provide additional insight

into the coarsening dynamics of focal conic domains.
DOI: 10.1103/PhysRevE.92.062511

I. INTRODUCTION

Translational order is frail. Most broken symmetry states
respond elastically until deformations are large. In con-
trast, crystals fracture or plastically yield at strains of a
few parts per thousand. In equilibrium, they form grain
boundaries—expelling rotation gradients into walls—when
subject to atomic-scale boundary displacements. An analogous
expulsion occurs in smectics, which expel deviations from
equal-layer spacing in a manner that can be mapped onto the
Meissner-Higgs effect [1]. Instead of grain boundaries, this
expulsion of strain in smectics results in remarkable patterns
of singular ellipses, hyperbolas, and parabolas known as focal
conic domains (FCDs, Fig. 1), which are the signature of the
smectic one-dimensional layered structure. Smectics provide
a window into deep properties of translational order, lending
insight into crystalline behavior.

FCDs have appealed to theorists and experimentalists since
the early days [2], partially because of their unique geometric
origin. In its minimum energy state, a smectic has lamellar
layers spaced at equal distances. Equal layer spacing implies
a singularity at the centers of curvature of the surfaces. This
constraint of equal layer spacing, surprisingly, determines the
allowed shapes of the smectic’s lamella. The lamella choose
surfaces whose centers of curvature trace out curves rather than
costly two-dimensional internal boundaries. These surfaces are
called cyclides of Dupin [3]; their centers of curvature trace
out one-dimensional conic sections, typically confocal ellipses
and hyperbolas. The resulting structures in smectics are known
as FCDs.

On a practical level, an understanding of focal conic
dynamics is necessary for the description of a variety of
liquid-crystalline states, such as smectic-A [4,5], smectic-C
and -C* [6,7], lyotropic lamellar [8,9], twist-bend [10], and
even metallotropic liquid crystals [11]. We focus our attention
on smectic-A’s, which are the simplest case. Our current under-
standing of focal conic structures in smectics at rest includes
the study of geometrical and energetic properties [12—14], the
effects of anchoring for several substrates [15—17], the role
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played by dislocations [18,19], and beautiful insights extracted
from a hidden symmetry of the Poincaré group [20]. When a
smectic is driven by external dilatative stresses, experiments on
initially planar-aligned samples show a sequence of elastic and
plastic strain patterns that ultimately lead to a polygonal array
of parabolic focal conic lines [21]. More recently, experiments
on smectic samples with antagonistic anchoring conditions
subjected to shear flow report on the emergence of satellite
defects [22]. Further recent developments on the smectic rhe-
ology have been reported in Refs. [23,24]. However, progress
in simulating smectic dynamics has been slow, perhaps
because of the challenge of incorporating defect dynamics into
Ericksen-Leslie-Parodi theory. Simulations of smectics are
often based on atomistic and molecular dynamics approaches
[25-27]. Numerical solutions of the Ericksen-Leslie equations
and Monte Carlo methods using the Frank free energy have
been reported for nematics (see, e.g., Refs. [28,29]). As far as
the authors know, there has been no report of the observation
of focal conic domains in smectic simulations.

In this paper we present results of our simulations of an
effective theory of smectic-A liquid crystals. Our dynamics
is an extension of Ericksen-Leslie-Parodi dynamics and the
Oseen-Frank free energy [30,31], in that we allow focal
conic singularites by allowing the order parameter to change
magnitude, but we continue to forbid dislocations. The use of
modern GPU computing makes these simulations feasible. Our
simulations naturally form FCDs upon relaxation of random
initial conditions and allow us to study these fascinating defects
both during formation and under mechanical loading. We find
good comparisons with experiments performed under similar
situations. Our approach allows us to investigate focal conic
structures in great detail through simulations, and provides
us with an invaluable tool to understand their several aspects,
ranging from energetics, topology, and geometry to anchoring
and mechanical strain effects, nicely complementing current
experimental approaches [32].

II. EQUATIONS OF MOTION

Our description of the smectic starts from its elastic free
energy,

W= /dr[F(NM,BMNV) +X-V x N, (1)

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.92.062511

LIARTE, BIERBAUM, ZHANG, LEAHY, COHEN, AND SETHNA

FIG. 1. (Color online) Experimental (a and c¢) and simulation
(b and d) results for polarizer microscopy images of a section of
smectic-A slab for planar (a and b) and homeotropic anchoring (c
and d).

which is a functional of the layer-normal field and its
derivatives. The layer normal field N can be written in terms
of the scalar displacement field u as N = Ny — Vu [4,33],
where Ny is the undeformed layer normal. The free-energy
density F is given by

F :%(1 — NH? 4+ K N}V - N)?
+ %1@4 NV (N-VIN-NV-N]. ()

Here, the first term penalizes compression or extension of
the layers away from N = 1. The second and third terms
are related to splay and saddle-splay distortions, which are
inherited from the Oseen-Frank elastic free energy [30,31,34].
Notice that the order parameter N plays a dual role and
is very close to a unit vector field away from the focal
singularities because of the small de Gennes’ length (we
will elaborate on this choice of dynamics in the next few
paragraphs). The Lagrange multiplier A forbids dislocations
by ensuring that the layer-normal field is curl-free, since the
vector V x N is the density of dislocations (the Burger’s
vector in units of the average layer spacing is given by
the contour and area integrals § N -d€ = [V x N -ds).
We will treat the effects and dynamics of dislocations in a
separate paper [35]. Note that there is no term in the free
energy to account for anchoring at the boundaries. We instead
enforce strict anchoring, by doubling the simulation volume
and using suitably symmetrized initial conditions, to enforce
the homeotropic or planar boundary conditions (see Sec. III
for more details).

Note that a more general smectic free energy should depend
on two order parameters, such as the displacement field and
the tensorial liquid-crystalline order parameter. For uniaxial
order, it is possible to write the elastic free energy as a
functional of the Frank director » and layer normal N vector

PHYSICAL REVIEW E 92, 062511 (2015)

fields. Assuming these vectors are parallel (they should be in
smectics-A), and that their sizes are nearly constant (they will
be constant except near singularities), it is possible to minimize
the free energy with respect to one of the fields, yielding a
relationship between N? and n2, and derive a (complicated)
effective free energy in terms of a single field. For the sake
of simplicity, we bypassed this analysis and started with a
single-order parameter. The unusual amplitude dependence
(~N?) multiplying the K and K4 elastic terms is motivated by
gradient distortions of the form (V Q)?, which are proportional
to N2 for nematic uniaxial ordering [36], where O = [(Q; ;)]
is the Maier-Saupe tensorial order parameter. Since n and N
are parallel, we use N* in the first term of Eq. (2) because the
lowest-order invariant in a Landau-de Gennes theory (trQ?) is
proportional to N*. Strictly speaking, neglecting an effective
coupling between n and N, the compression term should be
proportional to (1 — N?)?, as in the first term of the right-hand
side of Eq. (4). Later on we will get back to this choice for the
smectic dynamics [see Egs. (4) and (5)].

To arrive at the smectic’s dynamical equations of motion,
we evolve the layer normal field in the simplest possible
form, assuming N relaxes directly toward equilibrium. These
dynamics give a partial differential equation for the gradient-
descent evolution of N:

N (8¥[8 3
¥ =~(5v (i) ®

where the angle brackets denote a spatial average and y is
a viscosity constant; y can be written in terms of Leslie
coefficients as Yy = a3z — o, [4]. The second term of Eq. (3)
ensures that the net number of layers in the cell given by N
does not change during the gradient descent step. Equations
(1)—(3) differ from Ericksen-Leslie-Parodi (ELP) dynamics in
a few aspects. We relax the constraint of equal layer spacing
IN| =1, which is ensured in ELP theory by means of a
Lagrange multiplier, and we consider amplitude-dependent
elastic constants. Apart from the dependence on N, our
dynamics is a particular case of ELP theory in the limit of
infinite fluid viscosity. As a result, our centers of mass move
affinely with the external shear and only the orientation of the
molecules change.

We have also considered two other choices for the energy-
gradient dynamics, which are not completely described by
Egs. (1)—(3). For future reference, we label the dynamics
described in the last paragraph as dynamics I. For our second
choice (dynamics II), we keep Egs. (1) and (3) but replace the
free-energy density by

Fi; = g(l — N>?>+ K(V-N)~. 4)

Note that this choice of dynamics does not make contact with
the tensorial order parameter Q. Since there is no amplitude
dependence, the saddle-splay term is a surface term that
vanishes in a system with periodic boundary conditions. On
the one hand, the absence of a saddle-splay term limits the
morphology of the allowed focal conic domains, since this term
is associated with the Gaussian curvature energy of the layers
[5] (the splay term is associated with the mean curvature).
On the other hand, the equations of motion are simpler for
dynamics I, so that we can implement simulations in a more
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efficient way, and study the numerical effects of varying grid
sizes and de Gennes’ lengths (see Appendix A). Finally, for
our third choice (dynamics IIl) we consider the free energy as
a functional of the displacement field and its derivatives, and
replace Eq. (2) by

_B. _ 292 2
Fri= 4[1 (Vu)’]” + K(V - Vu)’, &)
which is equivalent to Eq. (4), and Eq. (3) by
12 Y
L= -, 6
PP Su ©

where y is a viscosity constant, and A is a length scale
that we take to be the grid spacing a for convenience. This
roughly corresponds to a smectic where the motion of layers
is the dynamical bottleneck, rather than the reorientation
of molecules (and hence the layer normals). The numerical
evolution is slower for this choice of dynamics, probably due to
derivatives of higher order in the equations of motion. Figure 2
shows polarizer microscopy images of a simulated smectic-A
planar section, starting from the same initial condition [which
has been used in Fig. 1(b)] and evolved using dynamics I
(a), II (b), and III (c). For (a) and (b), we evolved the
initial configuration for a period of about r = 20007, where
T = y/B; (c) was obtained using dynamics III for a longer
time (~100007). The morphology in (c) resembles the FCD
pattern shown in Fig. 2(d) of Ref. [11] for metallotropic liquid
crystals.

To impose the external shear and extensional flows, we
assume the layers are dragged with a displacement field
determined by the flow. For simple shear, the layers are dragged
in the x direction according to the displacement field

ul(x,y,z;1) = lé(z —[;)sin(wt), @)
Z

where [, is the system size in the z direction, A is the amplitude,
and o is the frequency of oscillation; our simulations are
done at a fixed Ericksen number ya)lz2 /K = 129. Extensional
dynamics are implemented by stretching the smectic in the z
direction while it contracts in the orthogonal x and y directions,
as described by the set of equations

_ 1L y(0)
L) =100 f(), L) = Vo
fO) =1, f@)>0,Vte[0,00), (8)

FIG. 2. Simulation results for polarizer microscopy images of
a planar section of smectic-A slab using dynamics I (a), 11 (b), and
I (c).
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where I, I, and [, are the grid sizes along the x, y, and z
directions. To incorporate shear and dilatational dynamics
simultaneously with the director relaxation, we employ an
operator splitting method, alternatively applying gradient-
descent motion from Eq. (3) and one of the loading dynamics
from Eqgs. (7) and (8).

III. EXPERIMENTAL AND SIMULATION SETUP

We perform analogous experiments on 8CB in the SmA
phase, using a custom-built shear cell that allows precise
control of the plate separation for gaps as small as 2-5 um
while keeping the plates parallel to <1 part in 10° [37],
allowing us to explore a large range of strain amplitudes
and Ericksen numbers. The shear cell is outfitted with two
parallel glass plates, which we use as the sample bound-
aries, and imaged with cross-polarized microscopy. We treat
the glass slides with cetyl-trimethylammonium bromide for
homeotropic anchoring and with a poly-imide treating for
planar anchoring.

At the beginning of our simulations, we generate normally
distributed random grids for each spatial component of the
layer-normal field. We then enforce anchoring constraints and
use a Gaussian filter to smooth the field on short length scales.
To implement boundary conditions, we double the grid size in
the z direction and require that

Ny(; +z) = N:(; — 2), Ny(lz +2)= Ny(lz - 2),
)
N.(; +2) = =N — 2),

for planar anchoring, and

Nx(lz + Z) = _Nx(lz - Z), Ny(lz + Z) = _Ny(lz - Z)s
(10)
N.(; +2) = N, — 2),

for homeotropic anchoring, with 0 <z <[, —1. Mixed
homeotropic and planar boundary conditions can be enforced
in a similar way by quadrupling the thickness of the simulation
grid. In order to remove the curl component of the field, we
use a Helmholtz decomposition in Fourier space. The resulting
components are divided by the mean length of the director
field so that the field has average unit norm. We use an Euler
integrator with adaptive step size [38] in order to integrate
our partial differential equations. The driving code is written
in Python. Each step of the integration is evaluated using
parallel computing on a GPU using CUDA. Spatial derivatives
are evaluated with Fourier methods (FFTs). In this paper we
present results for fixed values for the ratio K,4/K = —1.5,
and for de Gennes’ length scale § = /K/B = 0.2a, where a
is the finite-difference grid spacing. (Larger & produces similar
results with blurred features; see Appendix A). Except in the
study of dilatational flow, we have presented results for fixed
values of [, = 320&. A systematic study of the dependence
of the dynamical behavior on sample thickness is beyond the
scope of the present work.

IV. VISUALIZATION

From these random initial conditions, our gradient-descent
dynamics forms FCDs that closely resemble those seen in
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FIG. 3. (Color online) Simulated energy density (white-blue
density plot) and some sections of the layer surfaces (black lines) at
the top section z = [, of the system with planar anchoring [Fig. 1(b)].

experiments as shown in Fig. 1. We visualize the focal conics
domains in our simulations through several techniques we have
developed. We render polarizer microscopy images, as shown
in Fig. 1, by ray-tracing light using the Fresnel equations
for anisotropic dielectrics [5]. Figure 3 shows a plot of the
free-energy density F, overlaid with cross-sections of the
layer surfaces (contours of constant N -r — u). The free
energy is high at the focal lines, where the layer contours form
cusps.

Three visualizations of the three-dimensional smectic
structure are shown in Fig. 4. Figure 4(a) is a volume rendering
visualization of the free-energy density where each voxel is
given a color and degree of transparency that is associated
with its free-energy density. The high energy regions (red)

(a) (b)

Jﬂ!

FIG. 4. (Color online) 3D visualizers of a simulation of smectic-
A liquid crystals with planar anchoring. (a) Volume rendering
visualization of the energy density; (b) loci of the centers of curvature
of the layer surfaces; (c) layer surfaces.

PHYSICAL REVIEW E 92, 062511 (2015)

have organized into the characteristic focal conic structure
of smectics, forming multiple ellipses, each with a hyperbola
coming out of its focus. The focal conic character of the
smectic structures is reinforced by the loci of the principal
centers of curvature of the smectic layers, shown in Fig. 4(b),
which coincide with the regions of high-energy density in
Fig. 4(a) [5]. To calculate the radii of curvature, we project
each layer’s second fundamental form tensor M, = 9,0,u
into the layer-surface tangent plane. The principal radii of
curvature are equal to the inverse of the principal curvatures,
which are the eigenvalues of the projected M, . The shared
surface normals intersect at the centers of curvature for the
layers, which form the confocal conics [12]. Finally, Fig. 4(c)
shows three-dimensional level surfaces of the mass-density
field.

V. COARSENING

To study the coarsening dynamics of focal conics we
simulate with no anchoring at the boundary, since the boundary
constraint introduces a length scale for the distribution of
the layer-surface radii of curvature. As the system evolves,
our dynamics seem to energetically favor ellipses with large
linear eccentricity c¢. The layers around singular ellipses
become flatter with increasing ¢, and converge to planes when
¢ — o00. This is the dominant coarsening mechanism in our
simulations. The coarsening of focal conics becomes slower
with increasing time, but it does not stop until a uniform flat
configuration is reached. (Our computational defect structures
can be stabilized with simulated “dust” particles on the glass
slides, by introducing spatially dependent energetic anchoring
on the boundaries.) To quantify the coarsening, we investigate
the probability distribution of the principal radii of curvature
R, which define a characteristic distance to the focal conics
and are distributed according to a function P(R,t), which
also depends on time. The scaling assumption states that the
morphology at late times statistically scales with a single
length scale R*, so in particular P(R,7) o< [I[R/R*(¢)] for
some (possibly universal) function I1(X). In Appendix B, we
propose two possible arguments yielding the cutoff radius of
curvature R* ~ ¢tY/4 and R* ~ [t ln(t/rc)]1/4. Figure 5 shows
scaling collapse plots that are consistent with both of these
possibilities (see Appendix B for more details, and for a
discussion of the decay in the energy density with time). Using
the first scaling form (~%), we observe that the exponent
o = 0.5 gives a better numerical collapse of the data. We
do not show the collapse plot for this exponent because
it does not have theoretical motivation. Incidentally, the
inclusion of logarithmic corrections (due to the singularities
near the conic sections) makes the collapse worse for @ = 0.5,
but improves the collapse using o = 0.25. These results
do not change if we use dynamics II.' The approach to
equilibrium by increasing eccentricity to minimize bending

'Previously, using a different amplitude dependence of the elastic
constants (~N*), we were motivated by an apparent self-similar
structure to propose a third scaling form (~ 7%, with o =~ 0.29). The
interested reader should refer to the second version of this manuscript
in the arXiv repository [48].
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FIG. 5. (Color online) Scaling collapses in logarithmic scale of
the layer-surface radii of curvature distribution. (a) Naive power-law
scaling, R*(t) ~ t'/*. (b) Incorporation of logarithmic corrections to
scaling, R*(t) ~ [t log(t/z.)]"/*, with 7. = 1007.

energy is an interesting contrast to the typical approach to
equilibrium of decreasing eccentricity to minimize a surface
energy.

VI. FLOW DYNAMICS

Our simulations and experiments also provide a window
to understand dynamics of focal conic domains under shear.
From our simulations, simple shear oscillations parallel to
the glass slides primarily act to accelerate the focal conics’
coarsening. When we shear stabilized focal conic structures,
our simulations show that the focal conics are not significantly
altered by the planar shear, in qualitative agreement with our
experiments with strong homeotropic anchoring. In addition,
our simulations allow us to tune the smectic’s anchoring
at the boundary. As a result, our simulations promise to
discern the effects of anchoring imperfections, such as weak
or spatially modulated anchoring, on the rich structures that
can be produced in experiments [39].

Under dilative strain (stretching the layer spacing),
homeotropic smectic-A liquid crystals are known to release
free energy by forming undulations [40-42], and focal conic
domains [21,43]. In Fig. 6(a) we show simulation results for the
total free energy as a function of time for a dilative dynamics
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FIG. 6. (Color online) Simulation and experimental results for
SmA under dilative stress. (a) Total free energy as a function of time.
In the inset we show layers in the x—z plane showing undulation
pattern at t = 1207. (b) Simulation and (c) experimental results for
crossed-polarizer images showing a pattern of focal conic domains,
at strain amplitudes of 0.33 and 0.13, respectively.

with f(t) =14 A(l —coswt), where A =0.25 and w =
27 /1000 (t ). The first sharp peak at about #; = 100 7 marks
the onset of an undulation pattern, which is depicted in the
layers contour plot in the inset of Fig. 6(a). Linear stability
analysis using the methods of Refs. [40-42] leads to a critical
strain threshold €, that is given by the solution of the equation
(see Appendix C):

1~ 6e, + 66,2
€t 0e” T8 (11

L Rl T T
(1—3e + 2662)2 I,

€.
c lZ

since €. is small. This analysis results in a buckling wavelength
of ®9a ~ 0.04/,, which is consistent with our simulations [see
inset of Fig. 6(a)], as the onset strain of the instability [the
first peak in Fig. 6(a)] is later than the instability onset by
approximately a factor of two, because of the growth time of
the undulation pattern. The second peak of the free energy
signals the onset of a configuration, which evolves toward
a complex pattern of focal conic domains. Figures 6(b) and
6(c) show crossed-polarizer images obtained from simulations
and experiments at maximum strain, respectively. We found
compatible results using dynamics II.

Note the fascinating fact that the critical change in length
€l, ~ m& is a microscopic length. Except near a critical
point, one expects £ to be of the order of a molecular size;
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the instability threshold” for a bulk material happens when
one stretches it by one molecular length [44]. A simple
calculation for crystals shows an analogous result for grain
boundaries: a bent crystal’s ground state has dislocations
once the net displacements become of the order of the
lattice constant (up to a logarithm of the crystal size over
the atomic size). Unlike crystals that are metastable, smec-
tics are unstable under long-wavelength deformations with
atomic-scale displacements—the lower-energy defective state
has no associated nucleation barrier. Thus, the equilibrium
continuum elastic theory of materials with broken translation
invariance is frail [45,46]—it is only valid in general for
microscale net displacement differences over macroscale
distances.

VII. CONCLUSIONS

To conclude, we have presented results from numerical sim-
ulations and experiments of smectic-A liquid crystals. In our
simulations, focal conic domains spontaneously emerge out of
random initial configurations. The numerical reproduction of
the experimental morphologies is striking, for both planar and
homeotropic boundary conditions. Our several visualization
tools comprise the description of the most important structural
features of FCDs. We have also characterized the coarsening
of FCDs, by studying the scaling behavior associated with the
distribution of the layer surface radii of curvature, which is
the length scale related to the size of the focal conics. Finally,
we have studied the system response to strain, which includes
a numerical and experimental investigation of the classical
dilatational instability, correctly predicting the instability
threshold, and the onset of a state populated with parabolic
focal conic domains.
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APPENDIX A: CONVERGENCE TESTS

In this section we present some results of a test to analyze
the effects of small grid sizes and small de Gennes’ length
(¢ = 0.2a) in our simulations. We start with a smoothened
random initial field of linear size 16a, and evolve it for a very

2This instability to defect structures is not true for two-dimensional
smectics with undulating [41,49] boundary conditions [[50], Ch. 4].
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TABLE 1. Comparison of the errors of evolved simulation
configurations for grids with increasing resolution and de Gennes’
length.

o3 (16,128) o4 (32,128) o, (64,128)

Initial state 1075 1075 105
E1-16 = 0.2a att = 200t 0.55 0.03 0.0007
& -16 = 0.4a att = 200t 0.02 0.0009 0.0007

short time (*0.57), using dynamics Il with & = 0.2a and no
anchoring at the boundaries.’> We then duplicate the resulting
configuration into larger lattices, with linear sizes 32, 64, and
128. To generate a smooth interpolation between lattice points
of the larger lattices, we copy the Fourier components of small
wave number, and leave the coefficients associated with short
wavelengths equal to zero. To be consistent with the periodic
boundary conditions, we divide the smaller cubic grid into
eight equal pieces and copy the configuration of each piece
into the corresponding corner of the larger grid in Fourier
space. To estimate the finite-size error, we evaluate

max mai( IN,(bi,bj,bk)— N/;(i,j,k)|, (A1)

op =
nefx,y,z} i,

where N and N’ are the large and small lattices, with linear
sizes [ and I’ = b, respectively. The indices i, j, and k are
grid coordinates of N’. The second row of Table I shows
the error comparison for this initial configuration. Since the
configuration is copied (with a smooth interpolation) from the
smaller to the larger lattices, this error is of order 10715, We
then evolve this initial state for each grid for a period of time of
about 2007, keeping & = 0.2a for [ = 16, and using dynamics
I11. In order to have comparable simulations, we multiply K and
K»4 by four (thus increasing & by a factor of two) each time
we double the grid size, since the wave vectors are divided by
two, and the splay and saddle-splay terms contribute with two
gradient terms. The results for §,_1¢ = 0.2a and ¢ = 2007 are
shown in the third row of Table I. Note that the difference
between the 323 lattice (with £ = 0.4a) and the 1283 lattice
(with £ = 1.6a) is of just about two percent. For the sake
of completeness, we started with the same initial state and
evolved each lattice using dynamics Il with & _1¢ = 0.4a
(so that &£ = 0.8a, 1.6a, and 3.2a for L = 32, 64, and 128,
respectively). The results for this case are shown in the fourth
row. Notice that 0,(64,128) for £&;_;¢ = 0.2a is comparable
to 04(32,128) for &, 15 = 0.4a, because the 643 lattice in the
third row and the 323 lattice in the fourth row are simulated
using the same de Gennes’ length. The same comparison
holds between 0,(32,128) for &;,_;6 = 0.2a and 04(16,128)
for £,_16 = 0.4a. Note that this test analyzes convergence
upon increasing both resolution and de Gennes’ length, and
that £ = 0.4a gives sensible results even for small lattices.
We recall that most of the results that have been presented in
this paper were obtained using dynamics I with & = 0.2a for
large grids (256> x 64). We keep the results for dynamics I,
even though it is harder to control numerical instabilities in this

3We do not use dynamics I in these calculations because it is harder
to control numerical instabilities for larger de Gennes’ length.
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case, because that is our only choice with a Gaussian curvature
energy, which is associated with the saddle-splay term. We
emphasize that we do not observe a significant change for
our results for coarsening and dilative dynamics when we use
dynamics Il with & = 0.4.

APPENDIX B: SCALING EXPONENT FOR
THE COARSENING OF FOCAL CONICS

The principal radii of curvature R define a characteristic
distance to the focal conics: equally spaced layers develop
singularities at their centers of curvature. These radii have
a time-dependent probability distribution P(R|f). Scaling
suggests that all correlation functions should scale with
a single length scale R*(¢) that diverges at late times,
hence P(R|t) ~ II(R/R*)/R* for some perhaps universal
function I1(X). (Here the last factor preserves normalization:
J P(R)YdR = [TI(X)dX = 1.) In coarsening problems, it is
often possible to use simple energetic arguments to derive
the power-law divergence R*(¢) ox t*; for example, phase
separation in systems without hydrodynamic flow hase = 1/3
for conserved order parameters and @ = 1/2 for nonconserved
order parameters. Here we give two possible scaling forms of
increasing sophistication. The first mimics the standard ener-
getic arguments and the second provides a refined argument
including a logarithmic correction due to defect cores (Fig. 5).

Away from the defect cores, where |N|= 1, the free
energy density scales as R~2. So the average energy density
is

E(RY) = / P(R)/R%*dR. (B1)
In traditional coarsening, one assumes that the integral for
E(R*) converges at zero, so £(R*) ~ 1/(R*)?. This leads to
a force (tension) T = 8E/SR* ~ 1/(R*)?. Since the order
parameter is nonconserved,*

R=—yT, (B2)

where y is an effective inverse viscosity (see Sec. 11.4 of
Ref. [47]). This can be solved giving R* ~ 174 [Fig. 5(a)],
and hence E[R*(¢)] ~ 1/t'/? (Fig. 7).

How does this change if we consider the defect cores,
where |N| < 1? The energy in the cones, near the focal conic
line singularities, scales as the length of the conics times
In(R/&), where & is de Gennes’ length scale. Within a focal
domain of size R*, near the singular ellipse and hyperbola
R — 0, the volume fraction P(R) ~ R, so that IT(X) ~ X
for small X. This leads to a divergence in the integrated
energy near the focal conic singularities, which is cut off

by &,

E(RY) = /oo(l/Rz)H(R/R*)/R*dR
&

= /OO I1(X)/(XR*)Hd X
£

/R*

“Dynamics I could perhaps correspond to conserved dynamics.
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FIG. 7. (Color online) Total free energy ¥ (symbols) as a func-
tion of time in log-log scale. The blue dashed line correspond to the
behavior predicted from the naive argument R* ~ t'/4. The black
dashed line is a best fit (~ 17%).

1
~ (1/R*)2/ X/X*dX
&/R*

= log(5/R")/(R")’ (B3)
(see Sec. 10.5 of Ref. [5]). After some calculation, Eq. (B2)
implies

R* ~ [t In(t/7.)]"/4, (B4)

in the limit of large R or ¢. So if the focal domains are all
of the same length scale R*, and the relaxation of the core
singularites dominates the coarsening, we expect a t'/4 scaling
with a logarithmic correction, as in Fig. 5(b). There is a large
range of values for t., which collapse our data. Figure 5(b)
shows a scaling collapse plot with the logarithmic corrections
for . = 1007. Note that Eq. (B4) only applies for times ¢
larger than 7., hence the range of times used in the collapse
plot of Fig. 5(b). Our data for t < 2007t do not fit well in the
collapse plot, even when we consider lower t, so that ¢ is still
greater than 7.; we surmise that 7, is associated with the time
needed to form line singularities. Unfortunately, we have not
been able to verify this hypothesis, since there is no surface
anchoring in this case and the three-dimensional visualizers
are not useful at early stages of the dynamic evolution.

Both of these scaling forms are compatible with the data,
given the limited scaling regime (less than a decade in length,
corresponding to less than three decades in “size”); P(R,t)
is clearly still evolving in shape from its nonuniversal initial
form.

APPENDIX C: LINEAR STABILITY ANALYSIS
FOR SmA UNDER DILATIVE STRAIN

We consider a situation where a thin slab of homeotropic
smectic-A is subject to dilative stress [4,5,33,40-42]. In
this case, the smectic layers are parallel to the glass slides,
so that the stretching of the gap promotes an increase of
the interlayer spacing. Planar-layer configurations store a
considerable amount of bulk energy as strain is increased,

062511-7



LIARTE, BIERBAUM, ZHANG, LEAHY, COHEN, AND SETHNA

which is released with the formation of an undulation pattern
after a critical strain is reached. Here we use the methods of
Refs. [40—42] to study the formation of undulation instabilities
on smectic-A liquid crystals.

The displacement field associated with an undulation
pattern of a smectic-A can be written as

u(r) = €z + ug cos(gx) sin(kz), (CDn

where we take k = 7/, to enforce strict homeotropic anchor-
ing. Our elastic free-energy density is given by

B
fzz(

Notice that we have not included a saddle-splay term, nor have
we considered amplitude dependence of the elastic constant
K, since their effects are negligible. Roughly speaking, the
amplitude dependence of K»4 gives rise to higher-order terms
for the undulating solution. Hence, we can approximate N
multiplying K and K4 by one, and the saddle-splay term
becomes a surface term that vanishes for periodic boundary
conditions. Also, we do not need to include a Lagrange
multiplier, since N =z — Vu is curl-less if u is given by
Eq. (C1). The free-energy density Eq. (C2) can be written in
terms of the displacement field as

- 1—[1+ il 2—28MTZ+K PN (3
=il @) 2R ) @

We can combine Eqs. (C3) and (C1) in order to write

I _
L -

1 —N*» +K(V-N)>~. (C2)

§2q4u02 sin?(kz) cosz(qx)

+ %{[Clzuoz sin®(kz) sin?(gx)
— 2(kug cos(kz) cos(gx) + €) 4+ 11> — 1}%, (C4)

where £ = /K /B is de Gennes’ length scale. To find the
stability threshold we integrate out the free-energy density
over one period in the x direction, and from O to /, in the z

direction:
27 I
F=f"’ dx/ dz f(x.,2).
0 0

The stability threshold is given by the solution of the equation

(C5)

92F
=0, C6
or
4k (6€? — 66 + 1) + ¢*(£2g> — 8€> + 126> — 4€) = 0.
(C

For given & and [, this equation defines a curve in the € x g
plane. Figure 8 shows the critical strain as a function of g
for £ = 0.2a and I, = 64a, corresponding to our simulation
parameters, where a is the finite-difference grid spacing. The
strain is minimal for

V4ed — 6€2 + 2¢

C8
£ (C8)

q:
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FIG. 8. Showing critical strain as a function of ¢ for £ = 0.2a
and [, = 64a.

Equation (C8) can be plugged back into Eq. (C7), so that

& | 1—6e.+6e?  mé

_— C9
LV (=36 +2¢.2)? L ()

€

where the approximate solution on the right-hand side of
Eq. (C9) is valid since € is small. Notice that our approximate
critical strain (& /1,) corresponds to half of the value obtained
in Refs. [40-42], because we use a slightly different form for
the free-energy density. Also, it is interesting to point out that
the critical change in length €./, &~ & is a microscopic length
(see main text).

Figure 6 shows simulation results for smectic-A liquid
crystals under dilative stress with § = 0.2a and [, = 64a. We
simulate f(f) = 1 + A[l — cos(wt)] [see Eq. (6) of main text],
with A = 0.25, and w = 27/1000 7 ~'. Equation (C9) predicts
a strain threshold of €, & 0.01, and a critical wavelength of
q ~ 9a ~ 0.04/,, which is consistent with our simulations.
However, sincee =1 — f —1 we can rearrange f(¢) in order
to write

€c

Al —¢) (C10)

1 1[
t, = — cos 1

i|’»¢:45t,
w

which is about half of the time threshold associated with
the first peak of Fig. 6(a). We suggest that the time scale
associated with the growth of the undulation pattern accounts
for the discrepancy between the simulation threshold and the
analytical estimate. We tested our stability analysis directly by
adding a small perturbation 6 V to N. Under a gradient descent
infinitesimal evolution of N, we expect that F[SN,(t 4+ §t)] =
exp(Ar6t)F[SN,(t)], where F denotes a Fourier transform
operator. An exponent A, is less than zero for stable planar
configurations and reaches zero at the critical strain for some
wave number g. Careful numerical calculations for A; lead
to t. &~ 45t and g &~ 9a, in agreement with our analytical
estimate. There is no significant change (apart from shifts of
numerical values) in the analysis and numerical results using
dynamics II.
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