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Field-driven dynamics of nematic microcapillaries
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Polymer-dispersed liquid-crystal (PDLC) composites long have been a focus of study for their unique electro-
optical properties which have resulted in various applications such as switchable (transparent or translucent)
windows. These composites are manufactured using desirable “bottom-up” techniques, such as phase separation
of a liquid-crystal–polymer mixture, which enable production of PDLC films at very large scales. LC domains
within PDLCs are typically spheroidal, as opposed to rectangular for an LCD panel, and thus exhibit substantially
different behavior in the presence of an external field. The fundamental difference between spheroidal and
rectangular nematic domains is that the former results in the presence of nanoscale orientational defects in
LC order while the latter does not. Progress in the development and optimization of PDLC electro-optical
properties has progressed at a relatively slow pace due to this increased complexity. In this work, continuum
simulations are performed in order to capture the complex formation and electric field-driven switching dynamics
of approximations of PDLC domains. Using a simplified elliptic cylinder (microcapillary) geometry as an
approximation of spheroidal PDLC domains, the effects of geometry (aspect ratio), surface anchoring, and
external field strength are studied through the use of the Landau–de Gennes model of the nematic LC phase.
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I. INTRODUCTION

Traditional liquid-crystal display (LCD) technology is
principally based upon manipulating optical properties of
nematic liquid-crystal (LC) thin films through the application
of spatially localized electric fields. LCDs utilize the combi-
nation of a rectangular thin film geometry, precisely controlled
surface anchoring conditions, and the application of an electric
field in order to manipulate a defect-free LC texture into a
desired state [1,2]. A key aspect of traditional LCD technology
is that conditions are engineered such that they do not
impose topological constraints which result in the formation
of orientational defects. Alternatively, an increasing number
of different LC mechanisms and phases have been discovered
which leverage the presence of orientational defects [3].

Polymer-dispersed liquid-crystal (PDLC) films are one
of the most studied LC-based materials which involve LC
dynamics with orientational defects present. One of the main
applications of these films is as switchable “privacy glass,”
where an electro-optical property of the film is used such
that an applied field drives the film to a transparent state and,
upon release of the field, the film returns to a translucent state
[1]. PDLC composites are formed through “bottom-up” man-
ufacturing processes, mainly through photopolymerization-
induced phase separation [1]. For low volume fractions of the
LC component, the resulting composite morphology involves
a spheroidally confined dispersed LC guest phase in a polymer
matrix phase. This spheroidal confinement imposes topologi-
cal constraints on the dispersed LC domains which require the
formation of orientational defects. Experimental observation
of these PDLC films in the presence of external fields has
shown a rich and complex range of electro-optic behavior
[3] depending on PDLC composition, chemistry, structure,
polymer/LC anchoring conditions, and external field strength.
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Experimental studies have indicated that nonspherical
droplet shape, specifically anisometric shape, is a key factor
in PDLC film relaxation time following release of the external
field [4]. However, direct experimental observation of LC
internal structure and dynamics for PDLC composites is chal-
lenging due to the length (nm–μm) and time (ns–μs) scales
involved in LC dynamics. Simulation studies [5–22], however,
have shed light on a far more rich landscape of internal
structure than what is observable through experimentation.
Over the past two decades, simulation-based analysis has been
used with increasing success, mainly focusing on cylindrical
and spherical domains. Lattice-based simulations [5–8] are
able to resolve submicron domains and have mainly been
applied to study the effects of submicron cylindrical confine-
ment where geometry and anchoring affect the stability of the
nematic phase. However, continuum simulations [12–24] have
been able to overcome the length and time scales required
to simultaneously capture defect dynamics (nanoscale) and
domain shape (�μm).

Continuum simulations of confined LC domains [12–24]
have been conducted using either Frank-Oseen vector theory
[25] or Landau–de Gennes tensor theory [9–11]. While many
of these past studies have focused on circular or spheroidal
[12–14] and elliptic or ellipsoidal [15–20] confined LC
domains, they have relied on Frank-Oseen theory, which
cannot capture orientational defects and phase transition.
More recently, simulations of nematic LC confinement have
been performed using the high-descriptive Landau–de Gennes
tensor theory [21,22], but these studies were limited to
cylindrical domains and in the absence of an external field.

In this context, the overall objective of this study is to
predict both the formation and electric field-driven dynamics
of nematic elliptic cylinder domains. While this geometry
is a poor approximation of spheroidal and ellipsoidal do-
mains observed in PDLCs [4], it has direct relevance to
the study of nematic-filled capillaries which are of inter-
est for fiber optics-based devices [26]. Furthermore, even
though two-dimensional elliptic domains are not topologically
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equivalent to three-dimensional ellipsoidal domains, this
“coarse” geometric simplification has been used in almost all
past simulation-based work in the area except for in Ref. [20].
The Landau–de Gennes tensor model for the nematic phase
is used in order to capture the presence of orientational
defects, experimentally relevant anchoring conditions, and
phase transition. The specific objectives are to study the effects
of geometry (aspect ratio) and anchoring conditions on:

(i) the formation dynamics and equilibrium textures of
nematic elliptic cylinder domains. This is similar to the state
of the PDLC after quenching the phase-separated film.

(ii) the external field-driven dynamics of nematic elliptic
cylinder domains. This is similar to the state of the PDLC after
application of an electric field to induce the transparent state.

(iii) the relaxation or “restoration” dynamics of nematic
elliptic cylinder domains following release of the external field.
This is similar to state of the PDLC after release of the electric
field to return to the translucent state.

This study is performed with a few important assumptions;
the hydrodynamic effects and thermal fluctuations of nematic
order are neglected. Additionally, heterogeneous nucleation is
assumed to be the dominant mechanism for formation of the
domain from the disordered-isotropic phase, which is based
on recent experimental observations [27].

The paper is organized as follows: First the theoretical and
numerical bases for the simulation method are presented, the
nematic domain visualization and quantification methods are
described, the results are presented and discussed for formation
and switching dynamics, and then conclusions are made.

II. BACKGROUND

In this section the theoretical model and simulation methods
are briefly described. The theoretical model is based upon the
Landau–de Gennes theory for the nematic phase. This model
is a Landau expansion for the nematic phase [28] with respect
to a tensor order parameter which enables simulation of phase
transition and orientational defects (disclinations). Surface an-
choring is modelled using a Landau-type expansion for the sur-
face free energy [29, chap. 4], as well. The governing equations
are solved using the finite-element method with second-order
implicit adaptive time stepping [30]. Finally, visualization of
the resulting tensor fields uses hyperstreamlines [31] with a
recently introduced topological seeding method [32].

A. Landau–de Gennes model

The Landau–de Gennes model for the nematic free energy
[28] is expanded in terms of a second-order symmetric
traceless tensor order parameter which is related to the
anisotropic part of the magnetic susceptibility tensor [28]. This
tensor is known as the Q tensor and is defined as:

Q = λ1nn + λ2mm+λ3l l = S
(
nn − 1

3δ
) + P (mm−l l),

(1)

where n/m/l are eigenvectors of Q which characterize the
axes of molecular orientation, λi are the eigenvalues of Q,
S = 3

2λ1 is the uniaxial scalar nematic order parameter, and
P = 1

2 (λ2 − λ3) is the biaxial scalar nematic order parameter.
S and P quantify the extent to which the molecules conform to

the local orientation where S = P = 0 in the isotropic phase
and S �= 0, P = 0 in the uniaxial nematic phase. However,
certain boundary conditions or geometries, external fields, and
the presence of disclination defects can result in simultaneous
order in multiple directions, resulting in biaxial order where
both S and P are nonzero.

The Landau–de Gennes model is able to capture both
phase transition and elasticity through including terms in the
expansion involving both Q and ∇ Q:

fb( Q,∇ Q,E,T )

= fiso + fnb( Q,T ) + fne( Q,∇ Q) + fe( Q,E), (2)

where fb is the Helmholtz free-energy density of the domain,
fiso is the free-energy contribution of the isotropic phase,
fnb is the free-energy contribution of bulk nematic ordering
(thermodynamic), fne is the free-energy contribution of the
nematic distortions (elastic), fe is the free-energy contribution
from the electric field, and E is the electric field vector. The
bulk nematic contribution is (Einstein notation):

fnb = 1
2a0(T − Tni)(QijQji) − 1

3b(QijQjk)Qki

+ 1
4c(QijQji)

2, (3)

where a0/b/c are material parameters and Tni is the theoretical
second-order isotropic-nematic transition temperature. The
nematic elastic contribution is as follows [33]:

fne = 1
2L1(∂iQjk∂iQkj ) + 1

2L2(∂iQij ∂kQkj )

+ 1
2L3(∂kQij ∂jQik), (4)

where Li are elastic material parameters which can be related
to the fundamental modes of nematic deformation: splay, twist,
and bend. In this study, the one-constant approximation is
employed, making the L2 and L3 terms vanish. The electric
field contribution is as follows [33]:

fe = − ε◦
8π

[(
ε‖ + 2ε⊥

3
δij + (ε‖ − ε⊥)Qij

)]
EjEi, (5)

where ε‖ and ε⊥ are the dielectric constants parallel and
perpendicular to the director n, respectively. The above free-
energy formulation may be used to approximate the total
free-energy functional of a nematic domain in the presence
of an electric field:

F [ Q] =
∫

V

fbdV . (6)

In order to simulate dynamics, with the previously men-
tioned assumptions of neglecting flow and thermal fluctua-
tions, the dynamic equation used corresponds to the time-
dependent Ginzburg-Landau model or so-called Model A
dynamics [34]:

∂Qij

∂t
= −�

[
δF

δQij

]ST

, (7)

where � = μ−1
r , μr is the rotational viscosity of the nematic

phase, and []ST is the symmetric-traceless component of the
expression. At equilibrium this expression is equal to the
Euler-Lagrange equation for the total free-energy functional
[Eq. (6)]. Expanding the functional derivative in the dynamic

062509-2



FIELD-DRIVEN DYNAMICS OF NEMATIC MICROCAPILLARIES PHYSICAL REVIEW E 92, 062509 (2015)

governing equation results in [33]:

μr

∂Qij

∂t
= −

{
∂fb

∂Qij

− ∂k

[
∂fb

∂(∂kQij )

]}ST

. (8)

B. Surface anchoring energy

The two major types of physical anchoring conditions for
nematic interfaces are homeotropic and planar, corresponding
to anchoring parallel and orthogonal to the surface normal,
respectively. In this work, homeotropic anchoring is utilized
in that it uniquely constrains the preferred anchoring direc-
tion, whereas the use of planar anchoring would introduce
additional degrees of freedom in the boundary conditions. As
with the bulk nematic domain, a surface free-energy density
can be formulated in terms of the Q-tensor field and the surface
unit normal k [29]:

fs = fs,iso − αkiQij kj , (9)

where fs,iso is the isotropic contribution to the surface free
energy, α is the anchoring strength, and only terms up to first-
order are retained. The total free energy [Eq. (6)] must now
include a contribution from the bounding surface:

F [ Q] =
∫

V

fbdV +
∫

S

fsdS, (10)

which imposes a boundary condition on the governing dy-
namic equation:

∂γ

∂Qij

+ kk

∂fb

∂(∂kQij )
= 0. (11)

C. Numerical methods and simulation conditions

Simulations were performed in two-dimensional elliptic
cylinder geometries using the method of lines, where spatial
discretization is achieved using the finite-element method
[30] and time-stepping through a time-adaptive second-order
implicit method. Mesh-independence simulations were first
performed, finding that a uniformly distributed node density of
2.06×105 nodes/μm2 was sufficient using an error tolerance
of 10−10. Verification of simulation results was performed
through convergence tests of equilibrium solutions. Simula-
tion results were visualized using hyperstreamlines [31] in
conjunction with a topologically informed seeding method for
alignment tensor fields [32]. Material parameters were used
that approximate pentyl-cyanobiphenyl (5CB) [35,36] shown
in Table I.

Two types of simulations were performed: formation
dynamics and switching dynamics. Formation dynamics sim-
ulations correspond to cooling of the PDLC domains from

TABLE I. Material parameters for 5CB.

Tni 307.2 K
a0 1.4×105 J/m3K
b 1.8×106 J/m3

c 3.6×106 J/m3

L1 3.0×10−12 J/m
ε‖ 17 (relative)
ε⊥ 7 (relative)

isotropic to nematic in the absence of an electric field; starting
above the bulk nematic transition temperature (308.4 K) and
cooling below to 307 K. Heterogeneous nucleation of the
nematic phase was assumed to be the dominant nucleation
mechanism based on recent experimental observations [27].
The initial conditions for these simulations assume a boundary
layer that is uniaxial and well aligned with the preferred
orientational axis of the surface k(θ ), where θ is the polar angle
of each surface point (see the Appendix). Switching dynamics
simulations correspond to application of an electric field to
a fully formed nematic domain. Simulations were performed
with varying electric field strengths and with the field oriented
along the major axis of the elliptic cylinder domain. The
nondimensionalized form of the governing equation was used,
and thus time is reported here as a dimensionless quantity,

t̃ = t

τ
, τ = μr

a0Tni
. (12)

III. RESULTS AND DISCUSSION

Characteristic length scales were used to determine phys-
ically relevant domain sizes, surface anchoring energy, and
electric field strengths for simulations. The most fundamental
length scale is that of nematic ordering itself, which is deter-
mined through the competition between bulk thermodynamic
and elastic contributions to the free energy [28]:

λn =
√

L1

a0(T − Tni)
, (13)

which is the nematic coherence length. This length scale
approximates the thickness of the nematic-isotropic interface.
The nematic coherence length is typically λn ≈ 4 nm in the
majority of LCs used in display technology.

The nematic domain size was chosen to be on the order of
1μm, much larger than λn, with a constant area of 0.8 μm2 for
all simulation geometries. For elliptic cylinder domains this
constrains the cross-sectional area such that πab = 0.8 μm2,
where a is the semimajor axis and b is the semiminor axis
of the ellipse. The μm scale for LC domains is relevant to
PDLCs used for privacy glass and other scattering applications
[1]. Spheroidal geometries have been observed by Drzaic and
others [4] that are relatively complex but range in aspect ratio
from approximately R = (1,2]; thus this range of aspect ratios
was used in simulations.

Another characteristic length quantifies the competition
between the electric field and the nematic elastic forces:

λe =
√

L1

(ε‖ − ε⊥)E2
, (14)

which is the dielectric coherence length [29]. The
range of electric field strengths that was studied was
[0 V/μm,5 V/μm], which are typical field strengths for
PDLC devices [2]. These field strengths result in λe → 10 nm,
which corresponds to a moderately strong electric field but not
to the extent that it could induce melting of the nematic phase.

A similar characteristic length can be determined for
the competition between surface anchoring and elastic
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FIG. 1. (Color online) Hyperstreamline visualizations of the Q-tensor fields during the formation process for nematic domains: (a) R = 1.05
with t = 50, 1.82×104, 2.43×104, 4.63×105, 6.40×106; (b) R = 1.6 with t = 50, 1.35×104, 1.93×104, 4.02×105, 4.56×106; and (c) R = 2
with t = 50, 1.19×104, 1.71×104, 3.09×105, 3.35×106.

forces:

λs = L1

α
, (15)

which is the surface extrapolation length [29]. As λs → 0 the
surface anchoring effects dominate and the nematic alignment
at the boundary governs the bulk texture; this is so-called
“strong” anchoring. As λs → ∞ the bulk nematic elasticity
effects dominate and the nematic alignment at the surface is
governed by the bulk texture. A value for the surface anchoring
strength of 5×10−5 J/m2 was used with λs ≈ 100 nm which
corresponds to “weak” surface anchoring.

A. Nematic domain formation and equilibrium texture

Figure 1 shows visualizations of the Q-tensor field for
nematic elliptic cylinder domains with aspect ratios R =
{1.05,1.6,2}. The dynamics observed in these simulations are
representative of those for all aspect ratios studied, R = (1,2].
A sequence of three distinct growth regimes was observed:
free growth, interface impingement and defect formation,
and bulk relaxation. The free growth regime involves the
stable nematic phase growing into the unstable isotropic
phase such that the texture is approximately commensurate
with the anchoring conditions. The interface impingement–
defect formation regime follows, where the nematic-isotropic
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FIG. 2. (Color online) Evolution of the distance d between de-
fects for different aspect ratio elliptic domains. In order from bottom
curve to top, the aspect ratio is R = {1.05,1.2,1.4,1.6,1.8,2.0}.

interface impinges on itself resulting in the simultaneous
formation of a pair of orientational defects along the major
axis. For all simulations, the type of orientational defects,
or disclinations, observed were wedge type with strength + 1

2
[37, chap. 2]. These disclinations are formed in order to resolve
the topological constraints imposed by the confinement ge-
ometry and anchoring conditions. Finally, the bulk relaxation
regime follows impingement where the fully formed nematic
texture relaxes to its equilibrium state through simultaneous
disclination motion towards the ellipse focal regions and bulk
reorientation.

The growth and formation mechanism for the R ≈ 1 case
has been studied in past work for two-dimensional domains
[10,21,22,25]. Rey and Sharma developed a texture phase
diagram using the Landau–de Gennes model for the circular
geometry [22]. They predict the splitting of a +1 disclination
into a pair of + 1

2 disclinations located at the center of the
domain for domain sizes on the order of λn. Given that
the simulated domains are micron scale, the defect splitting
observed in the R ≈ 1 case is in agreement with these past
results. The resulting domain texture is uniformly oriented in
a region parallel to an axis and with the pair of disclinations
located along the axis orthogonal to it. Additionally, simulation
results are found to also be consistent with past work [25]

predicting a transition from textures with disclinations to an
“escape” texture, absent of defects, under certain conditions
(anchoring strength, domain size, etc). The growth and
formation mechanism for the elliptic case R > 1 is observed to
significantly differ and does not exhibit disclination splitting,
even though the topologies of the elliptic and circular domains
are equivalent.

The underlying formation mechanism for elliptic domains
is well explained by the approximation of Wincure and Rey
[38] of the velocity of a uniaxial isotropic-nematic interface.
They have shown that its velocity v is proportional to the
difference in energy between the nematic and isotropic phases
�F and capillary force C [38]:

βv = C − �F, (16)

where β is an effective viscosity term. During the free growth
regime, in every case (Fig. 1), as the isotropic-nematic interface
approaches the center of the domain, the capillary force grows
inversely proportional to the radius of the central isotropic
region. The first deviation of the elliptic formation mechanism
is observed due to this competition of forces. For a circular
domain, v(θ ) is essentially constant but for the elliptic domain
it varies from a maximum at the interface regions closest to
the minor axis to a minimum at those regions closest to the
major axis.

As the radius of curvature of the interfaces closest to the
major axis approaches a critical value proportional to the
nematic coherence length λn, the capillary force approaches
the difference in free-energy driving force (C → �F ). This
results in a critical slowing down of the interface and the
transition from the free growth regime to the impingement–
defect formation regime. The conditions under which this
occurs for the elliptic case cannot result in the formation of a
+1 disclination which later splits, as is observed for circular
domains [22]. Instead, a pair of + 1

2 disclinations form directly
along the major axis of the elliptic domain near the two (ellipse)
focal points. Simultaneously, the isotropic-nematic interfaces
in the central region impinge, forming a well-aligned central
region along the minor axis of the elliptic domain. This defect
formation mechanism is the confinement-driven analog to the
defect “shedding” mechanism discovered by Wincure and Rey
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FIG. 3. (Color online) (a) Schematic of an ellipse in polar coordinates; (b) plot of the mean curvature κ of the ellipse boundary versus polar
angle θ .
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FIG. 4. (Color online) Hyperstreamline visualizations of field-driven textures with E < Ec for domains with aspect ratio (a) R = 1.05,
(b) R = 1.6, and (c) R = 2.0.

for free growth of nematic droplets in an isotropic matrix phase
[36]. In both cases, defects are formed at the isotropic-nematic
interface due to frustration between bulk droplet texture and
interfacial anchoring.

Finally, the fully nematic domain relaxes towards the equi-
librium state, shown in the final sets of images in Fig. 1 for the
domains with aspect ratios R = {1.05,1.6,2}. This relaxation
involves simultaneous motion of the disclinations along the
major axis and bulk reorientation. The relaxation mechanism
for circular domains has been shown to be governed by the
competition of bulk elasticity and surface anchoring strength
[22]. Elliptic domains introduce an additional contribution:
the variation of the curvature of the boundary. Figure 2
shows the evolution of the distance between defect cores
for the formation process of each of the domains simulated.
At equilibrium, the defect separation distance is found to
increase with increasing aspect ratio, which occurs without any
changes in bulk elasticity or surface anchoring strength. This
behavior can be explained by quantifying the mean curvature
imposed by the elliptic boundary conditions. Figures 3(a) and
3(b) show the schematic of an ellipse in polar coordinates
and the mean curvature κ as a function of θ for ellipses of
increasing aspect ratio. As aspect ratio increases, the curva-
ture of the boundary regions increasingly becomes distinct:
(i) a high-curvature region outward by the ellipse focal points
and (ii) low-curvature regions elsewhere. Thus as aspect
ratio increases, the combination of geometry and anchoring
effects increasingly impose highly localized deformation of
the nematic in the focal regions of the ellipse. This results in
equilibrium textures with defects located in these regions.

B. Field-switching dynamics

Field-switching dynamics simulations were performed for
the range of aspect ratios R = (1,2] using the results from
Sec. III A as initial conditions. Electric field orientation was
chosen to be parallel to the major axis which results in the most
significant field-driven effect on domain texture. The results of
these simulations are presented and discussed by first focusing
on the equilibrium domain textures during application of the
electric field and after its release. Following this, the dynamics
of the transition from the initial equilibrium domain to the
field-driven domain and after release of the field are presented
and discussed. In order to interpret the complex textures and
texture dynamics resulting from these transient simulations,
the droplet order parameter is introduced [39],

Qd = V −1
∫

V

QdV, (17)

which can be further decomposed into the droplet director nd

and droplet scalar order parameter Sd . In all elliptic cases the
droplet director nd is initially parallel to the minor axis due to
the homeotropic anchoring conditions. The magnitude of Sd

relates to the optical properties such that as Sd decreases, the
domain more efficiently scatters light and as it increases, the
domain more efficiently transmits light.

1. Field-driven equilibrium textures

Simulations of application and release of an electric field,
with strengths ranging from [0 V/μm, 5 V/μm] were per-
formed. Two different field-switching regimes were observed
where the droplet director nd either remained constant (low

FIG. 5. (Color online) Hyperstreamline visualizations of field-driven textures with E > Ec for domains with aspect ratio (a) R = 1.05,
(b) R = 1.6, and (c) R = 2.0.
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FIG. 6. (Color online) Plot of droplet scalar order parameter Sd

versus electric field strength E for R = (1,2] where ◦ and • glyphs
correspond to nd ⊥ E and nd ‖ E, respectively.

field strength) or reoriented (high field strength). Visualiza-
tions of the equilibrium Q-tensor fields for both regimes are
shown in Figs. 4 and 5, respectively. These results support the
assumption that a critical field strength Ec exists depending on
the domain aspect ratio, anchoring strength and LC material
properties.

For the E < Ec regime in the field-driven state, there is
a small response in the domain texture resulting in a change
in the droplet scalar order parameter Sd but not the droplet
director. Defects are driven inwards along the major axis which
results in larger field-aligned focal regions; this mechanism
similar to the domain texture prior to the bulk relaxation
regime observed during formation. Upon release of the field the
domain is restored to the initial equilibrium texture resulting
from the formation process.

For the E � Ec regime in the field-driven state, there is
a large response of the domain where disclinations transition

to be aligned along the minor axis and the domain becomes
strongly field-aligned through reorientation of nd . This is
achieved through the domination of electric field forces over
surface anchoring forces, although defect “escape” is not
observed as it could be for very strong electric field or very
weak surface anchoring conditions [40]. Upon release of the
field the domain is restored to the initial equilibrium texture
resulting from the formation process.

Figure 6 shows droplet scalar order parameters Sd for
simulated equilibrium domains at different field strengths both
below and above Ec. As electric field strength is increased
(but still held below Ec) the effect is minimal on Sd . This can
be explained through observation of the field-driven domain
textures in Fig. 4; while the area aligned with the field (focal
regions) increases in size and uniformity, this is achieved
through a simultaneous reduction in the central region that
is aligned orthogonal to the field. Thus the net increase in
nematic order in the focal regions is almost completely offset
by decreased order in the central region.

As electric field strength is increased above Ec there is
a significant deformation of the domain texture, both with
respect to Sd and nd . This response is similar to the Fredericks
transition observed in planar LC domains exposed to an
external field [28]. In all simulations the droplet director nd is
observed to reorient parallel to the applied field vector (major
axis). The observed response of Sd after application of the field
is more complex. For low aspect ratios R < 1.5 the electric
field is found to result in a field-aligned nematic domain with
droplet scalar order parameter greater than in the absence of
the field. This is the traditional mechanism associated with
PDLC films used for privacy glass, where in the “off” state
they scatter substantially more than in the “on” state. For higher

FIG. 7. (Color online) Hyperstreamline visualizations of the field-on texture dynamics for the R = 2 domain with E = 5 V/μm and
t = 0, 5.25×105, 1.05×106, 1.55×106, 1.89×106, 2.11×106, 2.33×106, 2.71×106, � 5.00×106.

062509-7



KHAYYATZADEH, FU, AND ABUKHDEIR PHYSICAL REVIEW E 92, 062509 (2015)

101 102 103 104 105 106 107 108 109

t

0.18

0.20

0.22

0.24

0.26
S

d

(a)

101 102 103 104 105 106 107 108 109

t

0.18

0.20

0.22

0.24

0.26

S
d

(b)

101 102 103 104 105 106 107 108 109

t

0.10

0.15

0.20

0.25

S
d

(c)

101 102 103 104 105 106 107 108 109

t

0.10

0.15

0.20

0.25

S
d

(d)

Aspect ratio
1.05 1.2 1.4 1.6 1.8 2.0

FIG. 8. (Color online) Droplet scalar order parameter evolution versus time for domains with a range of aspect ratios R = (1,2] with
electric field applied [(a) and (c)] and following release [(b) and (d)]: (a) E = 1 V/μm < Ec (driven), (b) E = 1 V/μm < Ec (release),
(c) E = 5 V/μm > Ec (driven), and (d) E = 5 V/μm > Ec (release). Droplet director orientation nd is indicated by line type: solid and dashed
lines correspond to nd ⊥ E and nd ‖ E, respectively.

aspect ratios R > 1.5 the opposite behavior is observed; even
though the domain texture is field aligned, the droplet scalar
order parameter is substantially lower in the field-driven state
compared to without the field. This corresponds to an increase

in light scattering, regardless of the orientation of the droplet
director nd . This “reverse-mode”-like mechanism is typically
associated with PDLC films formed using a nematic LC with
negative dielectric anisotropy [41].

FIG. 9. (Color online) Hyperstreamline visualizations of the release texture dynamics for the R = 2 domain, continued from Fig. 7(i)
(t = 0), with t = 1.79×106, 6.75×106, 8.55×106, 1.03×107, 1.26×107, � 1.60×107.
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2. Field-driven dynamics textures

Figure 7 shows simulation results of the field-driven
dynamics for the R = 2 case for E = 5 V/μm > Ec. These
results are representative of simulation results for all domains
R = (1,2]. A sequence of three distinct dynamic regimes were
observed: bulk growth-recession, disclination–bulk rotation,
and bulk relaxation.

The bulk growth-recession regime involves the simultane-
ous growth of the field-aligned focal regions and recession of
the field-orthogonal central region which involves the motion
of the disclinations inwards along the major axis. This regime
was observed for both the E < Ec and E > Ec cases, where in
the former the net change in the domain texture was minimal
(see Fig. 6). In the latter case (E > Ec) as shown in Fig. 8(c),
this regime involves a monotonic decrease in the droplet scalar
order parameter Sd → 0, corresponding to a radial texture
(maximal light scattering).

The disclination–bulk rotation regime follows the bulk
growth-recession regime; as the distance between disclination
defects decreases (along the major axis) the repulsive nematic
elastic forces approach that of the applied field. At that point,
the defect separation distance becomes constant and rotation
occurs. The initiation of this regime is found to involve a
sharp transition of the droplet director from being orthogonal
to parallel to the field direction [Fig. 8(c)]. This discontinuous
transition of nd is enabled by the radial texture of the droplet,
where Sd = 0 making nd a degenerate quantity. Disclinations
and bulk nematic texture simultaneously rotate about the center
of the domain, increasing domain field alignment rapidly
[Fig. 8(c)].

The bulk relaxation regime involves simultaneous rotation
and expulsion of the disclinations from the central region along
the minor axis. The rotation process ceases as disclinations
approach the boundaries and surface anchoring forces balance
out bulk elastic forces. Higher electric field strengths likely
exist which would overcome surface anchoring and result in
an “escape” texture [40], but they exceed the field strengths
typically used in PDLC applications [2], the focus of this study.

The observed mechanism predicted by simulations provides
a more refined understanding of the mechanism predicted by
Drzaic [4]. As opposed to short time-scale bulk reorientation
followed by long time-scale defect motion, simulations predict
that the mechanism is instead through the simultaneous motion
of disclinations, growth of field-aligned regions, and recession
of nonaligned regions. As originally predicted by Drzaic, the
long time-scale component of the mechanism is through the
motion of defects transitioning from one axis of the domain
to the other, but the short time-scale mechanism also involves
linear defect motion and reorientation dynamics in the outer
regions of the domain.

Figure 9 shows simulation results of the domain dynamics
upon release of the field. The regimes observed following
release of the electric field are found to be similar to that
of driven mechanism but occurring in reverse. There are two
significant differences: time scale and droplet director evolu-
tion. The time scales associated with each regime are an order
of magnitude larger compared to their electric field-driven
analogs, which is expected due to the different in magnitudes
of the surface anchoring and electric field strengths. The

surface anchoring strength governs the magnitude of the
restoring forces which, in turn, govern the time scale for
nematic orientation dynamics. They can be compared through
their characteristic lengths, where λs

λe
≈ 10 for the simulation

conditions used. Additionally, during the disclination–bulk
rotation regime the droplet director nd continuously rotates
instead of exhibiting a sharp transition. This is due to the fact
that the droplet scalar order parameter Sd does not decrease
to zero during growth-recession regime. Thus a continuous
rotation is required in order for the droplet director to return
to the equilibrium configuration, orthogonal to the field
direction. Equilibrium textures in all restoration simulations
were found to be the same as those from the formation
simulations, indicating that under the simulation conditions
the electric-field-induced deformations of the nematic domain
were viscoelastic.

IV. CONCLUSIONS

In this work, a simulation-based study was performed on
the formation and electric field switching dynamics of elliptic
cylinder nematic domains. The observed nematic reorientation
dynamics were found to have a complex dependence on ge-
ometry (aspect ratio), surface anchoring strength, and external
field strength. Both formation and reorientation dynamics
were found to be governed by the presence and motion of
nematic disclination defects within the domain. Geometry of
the domain, specifically aspect ratio, was found to strongly
effect domain texture by providing regions of high curvature
to which nematic defects are attracted. Simulations also predict
the presence of a geometry-controlled transition from nematic
order enhanced by an external field (low aspect ratio) to
nematic order frustrated by an external field (high aspect ratio).

Equilibrium and dynamic behavior of elliptic nematic
domains are found to significantly differ from circular
ones, which opens up new possibilities for electro-optical
mechanisms for applications of nematic-filled capillaries.
Experimental validation of the presented results is needed,
which can be achieved through comparison with future electro-
optical dynamics measurements of nematic-filled capillaries
as has been done for PDLC films [4]. Finally, the results
presented support the use of simulation-based methods for
rational design of PDLC optical functional materials tailored
to application-specific requirements for nematic texture and
switching dynamics.
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APPENDIX: INITIAL CONDITIONS FOR
HETEROGENEOUS NUCLEATION

The initial conditions for all simulations assume a boundary
layer that is uniaxial and aligned with the surface normal k(θ ),
where (r,θ ) are the polar coordinates of each surface point. A
linear decay was used for the uniaxial nematic order parameter
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S [Eq. (1)]:

Sinit(r,θ ) = Sb

[
r − rs(θ ) + λn

λn

]

for rs(θ ) − λn < r < rs(θ ), (A1)

S = 0 for 0 � r � rs(θ ) − λn, (A2)

where Sb is the bulk order parameter value at the simulation
temperature, λn is the nematic coherence length [Eq. (13)],
and rs(θ ) is the radial coordinate of the ellipse surface. The

expression for rs(θ ) is

rs(θ ) = ab√
b2 cos2 θ + a2 sin2 θ

, (A3)

where a and b are the lengths of the major and minor
ellipse axis, respectively. The nematic director field [Eq. (1)]
is assumed to be well aligned with the ellipse surface
normal:

n = a cos(θ )e1 + b sin(θ )e2, (A4)

resulting in the initial Q-tensor field:

Qinit = Sinit
(
nn − 1

3δ
)
. (A5)
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