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Viscoelasticity of a homeotropic nematic slab
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The viscoelastic behavior of a homeotropic nematic slab is studied when it is subjected to a
(dilation-compression) sinusoidal deformation of small amplitude (linear regime). I show that the nematic
phase behaves as an isotropic liquid of viscosity ηc (ν3) at low (high) frequency, where ηc is the third Miesowicz
viscosity and ν3 a smaller viscosity first introduced by Martin, Parodi, and Pershan. The crossover frequency f �

between these two asymptotic regimes scales as h2/D, where h is the sample thickness and D = K3/γ1 is the
orientational diffusivity (with K3 the bend constant and γ1 the rotational viscosity). Between these two limits the
sample behaves as a viscoelastic fluid whose elastic and loss moduli G′ and G′′ are calculated. These predictions
are tested experimentally with a piezoelectric rheometer.
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I. INTRODUCTION

In 1990, Okana and Yamamoto calculated [1] and measured
experimentally [2] the mechanical transfer function of a
nematic slab confined between two glass plates treated for
strong homeotropic anchoring. “Strong” here means that the
anchoring extrapolation length K/Wa first introduced by de
Gennes [3] (where K is an elastic constant and Wa is the
anchoring energy) is much smaller than the slab thickness.
Their conclusion was that the slab behaves as a Newtonian
viscous fluid of viscosity equal to the third Miesowicz viscosity
ηc (defined when the director �n is perpendicular to the velocity
�v and parallel to the velocity gradient �∇v). In terms of Leslie’s
coefficient αi [3,4],

ηc = 1
2 (α4 + α5 − α2). (1)

While trying to measure ηc with a piezoelectric rheometer, I
realized that this result was only true at very low frequency
and small thickness and that the sample usually behaves as
a viscoelastic fluid of non-negligible elastic modulus G′ with
respect to its loss modulus G′′. For this reason, I calculated G′
and G′′ from the equations of nematohydrodynamics to fit my
experimental data. This allowed me to directly measure ηc, but
also the diffusivity D = K3/γ1 and another viscosity,

ν3 = ηc − α2
2

γ1
, (2)

first introduced by the Harvard group [3,5]. Here, K3 is
the bend elastic constant and γ1 = α3 − α2 is the rotational
viscosity.

II. THEORY

The nematic slab (of radius R and thickness h � R) is
sandwiched between two parallel circular disks treated for
strong homeotropic anchoring. The upper disk oscillates so
that h = h0 + δh cos(ωt). The vibration amplitude is small
enough (δh � h0) in order to stay in the linear regime of
deformation. For this reason and to simplify the notations, I
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replace h0 by h in the following each time it is possible. The
z axis is perpendicular to the plane of the disks situated at
z = ±h/2.

My purpose is to calculate the stress σ (t) = σ ′ cos(ωt) −
σ ′′ sin(ωt) that the nematic slab exerts on the upper plate
by solving the equation of nematohydrodynamics. Let �n
be the director and �v the velocity. In the linear regime, at
first order in deformation, �n = (nx,ny,1) and �v = (vx,vy,vz).
As h � R, ∂/∂z � ∂/∂x and ∂/∂y so that vz � vx and
vy according to the incompressibility condition �∇ · �v = 0
(lubrication approximation). In these conditions, the torque
equation simplifies to

K3nx,zz − γ1nx,t − α2vx,z = 0, (3)

K3ny,zz − γ1ny,t − α2vy,z = 0, (4)

where the terms in K3, γ1, and α2 respectively represent the
restoring elastic torque, the viscous torque, and the hydrody-
namic torque due to the flow. Note that in these equations, I
neglected the splay term in K1(ni,xx + ni,yy) with respect to the
bend term in K3ni,zz (i = x,y) because ∂2/∂x2 + ∂2/∂y2 �
∂2/∂z2 in the framework of the lubrication approximation.

Similarly, the momentum equation reads

∂P

∂z
= 0, (5)

∂P

∂x
= α2nx,zt + ηcvx,zz, (6)

∂P

∂y
= α2ny,zt + ηcvy,zz, (7)

where P is the pressure. As expected, these equations show
that the director and velocity fields are coupled via the viscosity
α2 (indeed, if α2 = 0 the equations for �n and �v become
independent).

To solve these equations together with the incompressibility
condition �∇ · �v = 0, I assume a solution of the form

P = A(t)(x2 + y2 − R2), (8)

nx = xf (z,t); ny = yf (z,t), (9)

vx = x g(z,t); vy = y g(z,t), (10)
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which has radial symmetry [in cylindrical coordinates nr =
rf (z,t) and vr = rg(z,t)]. In addition and for symmetry
reasons, I assume that f (g) is odd (even) in z which implies
that f,z (g,z) is even (odd) in z. This property is used in the
following.

I emphasize that this solution satisfies the boundary
condition for the pressure at the free surface of the sample
since P = 0 at r = R. Note here that I set the atmospheric
pressure equal to zero. More importantly, I suppose that the
jump of capillary pressure at the free surface is negligible. In
practice, this conditon is achieved by using a lower plate of
larger radius than the upper plate. In this way, it is possible
to fill the sample with a large excess of LC in order to create
a bulge of LC of millimetric size around the sample. In these
conditions, the capillary effects become negligible because the
radius of curvature of the interface with the air is very large
compared to the sample thickness.

As for the condition of homeotropic anchoring, it yields

f
(

± h

2
,t

)
= 0, (11)

while the condition of no sliding of the fluid on the disks
imposes

g
(

± h

2
,t

)
= 0. (12)

I now solve these equations, noting that Eq. (5) is automat-
ically satisfied with this choice of solution. Equations (6) and
(7) give

2A = α2f,zt + ηcg,zz, (13)

and Eqs. (3) and (4) lead to

K3f,zz = γ1f,t + α2g,z. (14)

Eliminating time between these two equations yields

2A = α2K3

γ1
f,zzz + ν3g,zz, (15)

where ν3 is given by Eq. (2). Note that this viscosity is the one
an experimentalist would measure if the director was free to
rotate in the flow, i.e., in the absence of any elastic restoring
torque (K3 = 0). Integrating this equation twice with respect
to z and putting the boundary condition (12), I obtain

g = A

ν3

(
z − h

2

)(
z + h

2

)
− α2K3

γ1ν3

[
f,z − f,z

(
− h

2

)]
. (16)

I now express that the upper plate oscillates while the other
is at rest. From the incompressibility condition and Eqs. (10),
I obtain

vz = −
∫ z

− h
2

2g dz, (17)

which gives by using Eq. (16)

vz = − 2A

ν3

(z3

3
− h2

4
z − h3

12

)

+ 2α2K3

γ1ν3

[
f − f

(
− h

2

)
− f,z

(
− h

2

)(
z + h

2

)]
.

(18)

Writing that vz(h/2) = ḣ (where the dot denotes the derivative
with respect to time) yields the pressure coefficient A:

A = 3ν3ḣ

h3
+ 6α2

h2

K3

γ1
f,z

(
− h

2

)
. (19)

The next step is to calculate f . Replacing g by its expression
(16) in Eq. (14) gives

Dcf,zz − f,t + 2kA

ν3
z = 0, (20)

where constants c = ηc

ηc+kα2
= ηc

ν3
and k = −α2

γ1
are two dimen-

sionless numbers.
To solve this equation, I set f (z,t) = f1(z) cos(ωt) +

f2(z) sin(ωt), which gives after substitution into Eqs. (19) and
(20)

A = −
(3ν3

h2
εω − 6α2

D

h2
f ′

2

)
sin(ωt) + 6α2

D

h2
f ′

1 cos(ωt)

(21)
and

⎧⎪⎪⎨
⎪⎪⎩

Dcf1,zz − ωf2 + 12
kα2

ν3

D

h2
f ′

1z = 0,

Dcf2,zz + ωf1 +
(

− 6k

h2
εω + 12

kα2

ν3

D

h2
f ′

2

)
z = 0.

(22)
Here, ε = δh

h
is the deformation and f ′

i = fi,z( ± h
2 ) (i = 1,2).

The general solution of this system of equations reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 =
(6k

h2
ε − 12

kα2

ν3

D

h2

f ′
2

ω

)
z

+ E cos(αz) sinh(αz) + F sin(αz) cosh(αz),

f2 = 12
kα2

ν3

D

h2

f ′
1

ω
z

− E sin(αz) cosh(αz) + F cos(αz) sinh(αz),

(23)

where α = √
ω

2cD
.

The next step is to calculate the four constants f ′
1, f ′

2, E, and
F . This can be done by expressing that f1(h/2) = f2(h/2) = 0
and by calculating f ′

1 and f ′
2 from the previous system of

equations. This procedure gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βhf ′
2 + E cos u sinh u + F sin u cosh u = −3k

ε

h
,

βhf ′
1 + E sin u cosh u − F cos u sinh u = 0,

− f ′
1 + 2βf ′

2 + Eα(− sin u sinh u + cos u cosh u)

+ Fα(sin u sinh u + cos cosh u) = −6k
ε

h2
,

2βf ′
1 + f ′

2 + Eα(sin u sinh u + cos u cosh u)

+ Fα(sin u sinh u − cos u cosh u) = 0,

(24)
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where u = α h
2 =

√
ω̄

8(1−kα2/ν3) , β = −6 kα2
ν3

1
ω̄

, and ω̄ = ω
D/h2 is

the dimensionless frequency. Solving this system of equations

with MATHEMATICA allows me to explicitly calculate f ′
1 and

f ′
2:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′
1

ε
= − 6k(cos(2u) − cosh(2u) + u sin(2u) + u sinh(2u))

h2
((−1 + (−4 + 8u2

)
β2

)
cos(2u) + (

1 + (
4 + 8u2

)
β2

)
cosh(2u) − 4uβ((−1 + 2β) sin(2 u) + (1 + 2β) sinh(2 u))

) ,

f ′
2

ε
= 6k

(
2
(
1 − 2u2

)
β cos(2u) − 2

(
1 + 2u2

)
β cosh(2u) + u(−1 + 4β) sin(2u) + u(1 + 4β) sinh(2u)

)
h2

((−1 + (−4 + 8u2
)
β2

)
cos(2u) + (

1 + (
4 + 8u2

)
β2

)
cosh(2 u) − 4uβ((−1 + 2β) sin(2 u) + (1 + 2β) sinh(2u))

) .

(25)

Finally, the stress σ that the nematic slab exerts on the upper
plate can be calculated by noting that the viscous stress and
the Eriksen elastic stress are negligible (of second order in
deformation):

σ = 1

πR2

∫ R

0
−A(r2 − R2)2πr dr = 1

2
AR2, (26)

where A is given by Eqs. (21) and (25). Finally, the effective
elastic and loss moduli of the nematic slab (effective because
they depend not only on the anchoring condition, here
homeotropic, but also on the sample thickness h) can be
calculated by using the classical formulas for a viscoelastic
fluid [6]:

σ = 3

2

(R

h

)2
ε[G′ cos(ωt) − G′′ sin(ωt)]. (27)

By identification, I obtain

G′ = 2α2D
f ′

1

ε
, (28)

G′′ = ν3ω − 2α2D
f ′

2

ε
, (29)

where f ′
1/ε and f ′

2/ε are given by Eq. (25). A remarkable
fact is that G′ and G′′ only depend on three constants
of the nematic phase, namely, the diffusivity D and the
two viscosities ν3 and kα2 or, equivalently, D and the two
viscosities ηc and ν3 as ηc = ν3 − kα2. Another interesting
point is to note that G′ → 0 and G′′ → ηcω when ω → 0

while G′ → 3√
2
kα2

√
ν3
ηc

√
ω D

h2 ∝ √
ω and G′′ → ν3ω when

ω → ∞. This shows that the nematic phase behaves as an
isotropic liquid of viscosity νc at low frequency and a liquid
of viscosity ν3 at large frequency (because, in this limit, G′
becomes negligible with respect to G′′). In between these
two asymptotic regimes, the nematic phase behaves as a
viscoelastic fluid. This viscoelastic behavior can be explained
qualitatively as follows: because of the flow, the director field
is deformed [term in α2 in the torque equations (3) and (4)].
Because of the curvature elasticity this deformation tends to
relax which induces a backflow and hence a modification of the
pressure field [term in α2 in the momentum equations (6) and
(7)] responsible for the elastic behavior of the nematic phase.

To illustrate these results, I plotted in Fig. 1 the two moduli
G′ and G′′ and their ratio G′/G′′ as a function of the angular
frequency for a “thin” and a “thick” nematic slab (of thickness
h = 20 μm and h = 200 μm, respectively) by taking ν3 =
0.04 Pa s, kα2 = −0.1 Pa s (which gives ηc = 0.14 Pa s), and
D = 1 × 10−10 m2 s−1.

As we can see in Fig. 1(c), the ratio G′/G′′ passes through a
maximum at a crossover frequency ω� which scales like D/h2

times a function of the viscosities. This function (of the order
of 100 here) is impossible to calculate analytically, although
the ratio G′/G′′ is written in the simple form

G′

G′′ = 2 β(cos(2u) − cosh(2u) + u sin(2u) + u sinh(2u))

− cos(2u) + cosh(2u) + 2uβ sin(2u) − 2uβ sinh(2u)
,

(30)
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FIG. 1. Elastic and loss moduli as a function of frequency for two
nematic slabs of thickness (a) h = 20 μm and (b) h = 200 μm, and
(c) their ratios as a function of frequency.
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FIG. 2. The same data as in Fig. 1(b) in linear scale for h =
200 μm. The figure shows that G′ is too small to be measured while
G′′ varies linearly as a function of ω as expected for a Newtonian
viscous fluid (with G′′ ≈ ν3ω). These curves are quite similar to the
experimental curves shown in Fig. 3 of Ref. [2].

where u ∝ √
ω and β ∝ 1/ω have been defined above.

Figure 1 also shows that in the range of frequencies
accessible experimentally (between 5 and 500 rad/s with my
rheometer; see the next section), the change of regime is only
visible in very thin slabs of thickness h < 30 μm. At larger
thickness, G′ becomes negligible with respect to G′′ as one can
see better in Fig. 2 where I plotted the same data as in Fig. 1(b)
in linear scale. This remark allows me to explain the previous

experimental results of Yamamoto and Okano [2], who found a
Newtonian behavior in a thick sample of homeotropic nematic
phase. I nonetheless insist on the fact that these authors did
not measure ηc (as they claim in Ref. [1]), but ν3.

For completeness, I also plot in Fig. 3 the functions
f (z,t)/ε = nr (z,t)/(εr) and g(z,t)/ε = vr (z,t)/(εr) over a
half-period of time (0 � ωt � π , knowing that during the next
half-period these functions only change sign) at three different
frequencies by taking h = 20 μm (as in my experiments) and
k = 1 (with the same values as above for D, ηc, ν3, and α2). The
origin of time is given by the relation h = h0 + εh0 cos(ωt).
The curves in Figs. 3(a) and 3(b) were calculated at very low
frequency (0.2 rad/s) with respect to ω�, the curves in Figs. 3(c)
and 3(d) at the frequency ω� at which the ratio G′/G′′ passes
through a maximum [ω� ≈ 22.8 rad/s, see Fig. 1(c)], and the
curves in Figs. 3(e) and 3(f) at large frequency with respect
to ω� (2000 rad/s). These curves show that the velocity profile
is parabolic at low frequencies and tends to become again
parabolic at large frequencies. On the other hand, it shifts
significantly from the parabolic profile in the intermediate
regime, when ω is close to ω�. These curves also show that
the tilt angle of the director tends to zero when ω → 0 and
becomes significant when ω ∼ ω� or larger. An interesting
observation is that the maximum tilt angle is obtained at
z = ±0.3h at the crossover frequency ω� and shift towards the
two surfaces when the frequency increases without changing
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significantly. This leads to the formation of a boundary layer
at large frequency [of thickness δ of the order of 0.1h at 2000
rad/s; see Fig. 3(e)] inside which the tilt angle returns to zero.
At this level, it must be noted that the condition for strong
homeotropic anchoring is satisfied provided that the anchoring
extrapolation length is smaller than δ—and not h—which is
more restrictive. These graphs also give the order of magnitude
of the velocity and of the director tilt angle at the edge of the
sample at r = R. For instance, vmax

r ≈ 9.5 μm/s and nmax
r ≈

0.053 rad = 3◦ at ω = 22.8 rad/s by taking R = 5 mm and
ε = 1 × 10−4. Another interesting point is the linear behavior
of f (z) at large frequency in the middle of the sample. This
behavior can be easily found from Eqs. (3) and (4) by noting
that at large frequencies the elastic term is negligible with
respect to the viscous terms in the middle of the sample. This
gives nr,t = −(α2/γ1)vr,z or equivalently f,t = −(α2/γ1)g,z.
At these frequencies the velocity profile is almost parabolic, of
expression g/ε = −(3/h2)(z − h/2)(z + h/2)ω sin(ωt). This
gives f/ε = −(6α2)/(γ1h

2)z cos(ωt) in the middle of the
sample as observed in Fig. 3(e). In a similar way, it is
possible to calculate f at low frequencies. In this limit, the
term in γ1 becomes negligible with respect to the term in
K3 in Eqs. (3) and (4). This gives K3nr,z = α2vr + C or,
equivalently, f,z = (α2/K3)g + C, where C is a constant. With
g/ε = −(3/h2)(z − h/2)(z + h/2)ω sin(ωt), I finally cal-
culate f/ε = −(3α2)/(K3h

2)(z3/3 − zh2/12) sin(ωt). This
function represents well the function plotted in Fig. 3(a). It
passes through two extrema at z = ±h/(2

√
3).

To test these theoretical predictions, I measured the me-
chanical impedance of a homeotropic nematic slab with a
home-made piezoelectric rheometer.

III. EXPERIMENT

A. Setup

A full description of the piezoelectric rheometer can be
found in Ref. [7]. This cell was designed to impose small
thickness variations on a sample of controlled thickness h.
Thanks to three differential screws and a linear variable
differential transformer (LVDT, Shaevitz ATA-101), h can be
continuously changed between ∼0 and 1 mm with a 1-μm
sensitivity and the parallelism between the two glass plates
[of radii 0.5 cm (top plate) and 0.6 cm (bottom plate) and
thickness 3 mm] can be adjusted to better than 1 × 10−4

rad. The cell is transparent in the middle and is mounted on
the stage of a polarizing microscope, which allowed me to
observe the sample and check the quality of the homeotropic
anchoring after filling with the liquid crystal. The sample is
regulated in temperature to within ±0.01 ◦C thanks to two
RKC HA400 controllers (one for each oven). The cell and
the microscope are inside a Plexiglas box which is itself
regulated at 22 ◦C to within ±0.1 ◦C. In practice, the sample
thickness h is measured to within ±0.2 μm before filling with
a spectrophotometer at a temperature Tref close to the melting
temperature of the nematic phase. If the temperature is changed
after filling with the liquid crystal, the sample thickness is
corrected to include the thermal dilation of the cell. This
correction (measured with the spectrophotometer when the
cell is empty) reads h(T ) = h(Tref) − 0.168(T − Tref), where

k2

k1

nematic slab

δh(t)

a(t)

u(t)

ce
ra

m
ic

s

LV
D

T

h

FIG. 4. Equivalent mechanical model of the cell.

h is given in micrometers and T in degrees Celsius. This
correction turns out to be important when the samples are thin,
which is the case in my experiment (h ∼ 20 μm).

From a mechanical point of view, the cell is well modeled
by two springs of force constants k1 and k2 in series with
the sample (Fig. 4). In practice, the displacement u(t) is
imposed by three stacks of piezoelectric ceramics and the
displacement a(t) is measured with the LVDT. The ceramics
are supplied with the internal function generator of a lock-in
amplifier (Standford SR850), which is used to measure the
displacements u(t) and a(t) and their phase shift φ. Sinu-
soidal deformations are used so that u(t) = √

2u0 sin(ωt) and
a(t) = √

2a0 sin(ωt + φ). In practice, we took care that the
sample deformation δh/h never exceeded 1 × 10−3. Note the√

2 factor used here as the lock-in amplifier gives rms values
a0 and u0.

For an isotropic liquid of viscosity η the motion equations
read ⎧⎪⎨

⎪⎩
σ = k1(u − a) = k2(a − δh),

σ = 3

2
η
R2

h2

δ̇h

h
.

(31)

Solving these equations gives the amplitude ratio a0/u0 and
the phase shift φ:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0

u0
=

√
ω2

r + C2ω2

ω2
r + (1 + C)2ω2

,

tan(φ) = − ωωr

ω2
r + C(1 + C)ω2

,

(32)

where C = k1/k2 is a rheometer parameter and ωr a relaxation
frequency

ωr = 2k1h
3

3R2

1

η
. (33)

Note that φ passes through a minimum φmin given by

tan(φmin) = − 1

2
√

C(C + 1)
(34)
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at frequency

ωmin = ωr√
C(C + 1)

. (35)

An important point is that, with an isotropic liquid, φmin

does only depend on C, independently of the value of the
viscosity. Another point to mention is that φ → 0 when ω →
0. This is expected because, in this limit, σ → 0 so that a(t) →
u(t) according to Eq. (31). All this is to say that φ must not
be confused with the phase shift between δh and the stress σ

imposed on the sample.
These formulas can be generalized for a viscoelastic fluid

of elastic and loss moduli G′ and G′′. A straightforward
calculation yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0

u0
=

√
(1 + aC)2ω2

r + C2ω2

(1 + a + aC)2ω2
r + (1 + C)2ω2

,

tan(φ) = − ωωr

(1 + aC)(1 + a + aC)ω2
r + C(1 + C)ω2

,

(36)

where C is defined above and

a = 3R2

k1h3
G′, (37)

ωr = 2k1h
3

3R2

ω

G′′ . (38)

These formulas are used to fit the experimental data. Again,
we focus on the fact that φ → 0 when ω → 0, whatever the
response of the sample, viscous or elastic.

B. Results

The liquid crystal chosen is 7CB (4-n-heptyl-4′-
cyanobiphenyl). It was purchased at Frinton Laboratories
(USA) and was used without further purification. The freezing
range at the nematic-isotropic phase transition was of the
order of 0.15 ◦C. The glass plates were treated with a silane
compound to ensure strong homeotropic ordering. In practice
the glass plates were successively cleaned with chromic-
sulfuric acid, rinsed with distilled water, dipped in a HCl-water
solution to remove all the chromium ions, rinsed again with
distilled water, and finally placed in an oven at 120 ◦C
overnight to dry. The plates were then dipped in a 1% silane
(Merck ZLI-3124) solution dissolved in a mixture of extra
dry toluene and 1,1,1-trichloroethane in the proportion of 1:1.
After dipping, the plates were exposed to air for 15 min and
then baked at 120 ◦C for half an hour. In this way, the humidity
in the room catalyzes the hydrolyzation of the silane onto the
glass, forming a covalent bond between silicon groups on the
surface of the glass and that in the silane molecule. This method
is known to give a very strong homeotropic anchoring [8]. The
sample thickness at the solidus temperature TNI = 42.5 ◦C of
the nematic-isotropic phase transition was h = 16.8 μm.

I start with measurements in the isotropic liquid. Figure 5
shows raw experimental curves measured in the isotropic
liquid at δT = T − TNI = 0.25 ◦C (i.e., 0.1 ◦C above the
liquidus temperature) when the voltage applied to the ceramics
is of 2.5 Vrms. The first graph shows the blank signal u0

measured before filling with the liquid crystal (it characterizes
the response of the ceramics) and the signal a0 measured

φ (
ra

d
)

3

2

1

0

 a
0,

 u
0 (

μm
)

500400300200100

ω (rad/s)

u0

a0

0.0

0.5

1.0

-0.5

-1.0

(a)

(b)

500400300200100

ω (rad/s)

 a
0 

/u
0 

4x10-2

FIG. 5. (Color online) (a) Displacements u0 and a0 as a function
of the angular frequency ω. The applied voltage is V = 2.5 Vrms. (b)
Amplitude ratio a0/u0 and phase shift φ as a function of ω. The solid
lines are the best fits of the data using Eqs. (32) and (33). Isotropic
liquid, δT = 0.25 ◦C, h = 16.7 μm.

with the liquid crystal. The second graph shows the ratio
a0/u0 and the phase shift φ between a(t) and u(t) (in phase
with the applied voltage). These curves show that the sample
deformation ε = δh/h < a0/h never exceeds 1 × 10−3. At
this level, it is important to check that I am working in
the linear regime of deformation. To this end, I measured
u0, a0, and φ as a function of the applied voltage V at a
fixed frequency (5 Hz, ω = 10π rad/s). The data given in
Fig. 6 show that a0 varies linearly with the applied voltage

4x10-2

3

2

1

0

a 0 
(μ

m
)

543210
V (Vrms)

-0.90

-0.85

-0.80

-0.75

-0.70

-0.65

-0.60

φ (rad
)

FIG. 6. (Color online) Displacement a0 and phase shift φ as a
function of the applied voltage V . Isotropic liquid, δT = 0.25 ◦C,
h = 16.7 μm.
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FIG. 7. Photo between crossed polarizers of the visible part of the
sample. The photo was taken at small frequency (2 Hz, ω = 4π rad/s)
when the contrast of the Maltese cross was a maximum. The hole
diameter is 5 mm and the polarizers are parallel to the sides of the
photo.

V while φ remains constant. This is the signature of the
linear regime. This result also indicates that the meniscus
effects are negligible (otherwise, the response of the sample
would depend on the amplitude of the deformation). After
these verifications, I can compare the experimental data to
the model. To do so, the two curves (a0/u0)(ω) and φ(ω)
shown in Fig. 5(b) were fitted together (global fit) with the
software IGOR PRO 6.12 (Wavemetrics, Inc., USA) by taking
C and ωr as free parameters in Eq. (36). This procedure gave
C = 0.0653 ± 0.008 and ωr = 30.1 ± 0.4 rad/s. The viscosity
was then obtained by taking h = 16.8 μm and k1 = 5.7109

Pa/m (this value was determined by performing similar
measurements with oils of known viscosities). By assuming
that h was known to within ±0.2 μm (note that the thickness
measurement is an important source of error here, for about
one half of the total error) and by neglecting the error on
k1, I finally obtained η = 0.0235 ± 0.0012 Pa s in very good
agreement with the value given in Ref. [9]. Note that this
viscosity corresponds to the co-called capillary viscosity of
the isotropic phase [10]. Indeed, the frequencies used here are
much too small to detect the de Gennes frequency corrections
to the viscosity due to the short-range order effects present in
the isotropic liquid just above the transition [3,11,12].

I now turn to the measurements in the nematic phase. First,
I photographed with a camera equipped with a macrozoom
lens the visible part of the sample between crossed polarizers.
The observation was made in parallel light by closing as
much as possible the aperture diaphragm of the objective.
The observation of a Maltese cross (Fig. 7), which oscillates
in intensity with a period double that of the excitation (this
is expected as the phase shift between the ordinary and
extraordinary rays, and consequently the transmitted intensity,
is a function of n2

r ), shows that the flow-induced deformation
of the director field is radial, as assumed in the calculation.
Second, I measured the amplitude ratio a0/u0 and the phase
shift φ between a(t) and u(t) in the nematic phase at various
δT after having checked that I was still working in the linear
regime of deformation. Three experimental curves are shown
in Fig. 8 when δT = −0.1 ◦, −5 ◦, and −15 ◦C. It is noteworthy

φ 
(r

ad
)  

   
   

   
   

   
 a

0 
/ u

0
φ 

(r
ad

)  
   

   
   

   
   

 a
0 

/ u
0

ω (rad/s) 

φ 
(r

ad
)  

   
   

   
   

   
 a

0 
/ u

0

(a)

(b)

(c)

ω (rad/s) 

ω (rad/s) 

FIG. 8. (Color online) Amplitude ratio and phase shift as a
function of the angular frequency in the nematic phase at
three different temperatures: (a) δT = −0.1 ◦C, h = 16.8 μm;
(b) δT = −5 ◦C, h = 17.6 μm; and (c) δT = −15 ◦C, h = 19.3 μm.
The solid lines are the best fits of the data to the complete model.

here that φ systematically passes through a minimum, the
value of which is higher than that predicted by Eq. (34) (of the
order of −1.1). This result shows that the experimental curves
obtained in the nematic phase cannot be correctly fitted with
the model for an isotropic liquid. By contrast, the experimental
curves are well fitted by using Eqs. (36)–(38) and the exact
expressions (25), (28), and (29) for G′ and G′′, as shown
in Fig. 8. This directly shows that the nematic sample is
viscoelastic. Here again, I performed a global fit of the two
curves at each temperature by fixing the value of C at 0.0653
(this is the value found when the rheometer is filled with
an isotropic liquid) and by choosing as free parameters the
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δ
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13
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ν
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FIG. 9. (Color online) Viscosities as a function of temperature.
For ν3, the error bars are not reported because the error is of the order
of the size of the open circles. The values of ν3 corresponding to the
crosses have been calculated from the values of ηc and α2 given in
Ref. [13] and the value of γ1 given in Ref. [14]. The solid lines are
guides to the eye.

diffusivity D and the two viscosities ηc and ν3 (or equivalently
kα2 and ν3). This procedure led to viscosities shown in Fig.
9 and the diffusivity shown in Fig. 10. Again, the errors were
calculated by assuming that, at each temperature, the sample
thickness (corrected for the temperature drift) was known
to within ±0.2 μm. Values of ηc and D obtained from the
literature were also reported in these figures (with ηc taken
from Refs. [9,13] while D and k, and so ν3, were calculated
from values of K3 given in Ref. [15], and values of γ1 given
in Ref. [14]) and values of ηc and α2 given in Ref. [13].
This comparison shows that the present values of ηc and ν3

agree well with those of the literature within the experimental
errors.

IV. CONCLUSION

This study shows that a homeotropic nematic slab has a
viscoelastic behavior under (dilation-compression) sinusoidal
deformation. The prediction of Okano et al. [1], namely,
that the slab behaves as an isotropic liquid of viscosity
ηc, is only valid at low frequency with respect to D/h2.
At larger frequency, the nematic slab rather behaves as an
isotropic liquid of viscosity ν3. It is in this regime that the

γ

δ

10
−1

0

FIG. 10. (Color online) Diffusivity as a function of temperature.
The solid line is a guide for the eye.

experiment of Yamamoto and Okano [2] was in fact conducted.
With my rheometer, these two regimes are difficult to reach.
Yet this is rather an advantage because measuring in the
intermediate regime—where G′ and G′′ are of the same
order of magnitude—enabled me to simultaneously obtain the
orientational diffusivity D = K3/γ1 and the two viscosities ηc

and ν3. Another advantage of this measurement is that there
is no need to impose a strong electric or magnetic field to
orient the director under flow, which is necessary to directly
measure the viscosity ηc [9]. Last but not least, I detected
neither viscoelastic behavior nor induced birefringence in the
isotropic liquid just above the transition, unlike the recent
measurements of Kahl et al. [16,17]. This could be due to
the lack of sensitivity of my rheometer which was primarily
designed to study much more viscous fluids such as smectic
phases [7] or, more likely, to the wetting conditions of the
nematic phase on the plates which are different from those
used in Refs. [16,17].
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