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We introduce a simple model for a biaxial nematic liquid crystal. This consists of hard spheroids that can
switch shape between prolate (rodlike) and oblate (platelike) subject to an energy penalty �ε. The spheroids
are approximated as hard Gaussian overlap particles and are treated at the level of Onsager’s second-virial
description. We use both bifurcation analysis and a numerical minimization of the free energy to show that,
for additive particle shapes, (i) there is no stable biaxial phase even for �ε = 0 (although there is a metastable
biaxial phase in the same density range as the stable uniaxial phase) and (ii) the isotropic-to-nematic transition
is into either one of two degenerate uniaxial phases, rod rich or plate rich. We confirm that even a small amount
of shape nonadditivity may stabilize the biaxial nematic phase.
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I. INTRODUCTION

Basic stripped-down models of low-molecular-weight liq-
uid crystals treat them as collections of either hard rods or hard
plates. However, small, flexible molecules known as tetrapodes
also exhibit liquid crystalline phases, including the elusive
biaxial nematic phase [1,2]. This is a consequence of the
interplay between conformational and packing entropies: the
molecules are able to adopt an anisometric stable conformation
that allows them to pack more efficiently into orientationally
ordered mesophases. Previous theoretical studies of such
systems have been presented [3–5]. In particular, Vanakaras
and coworkers [3,4] introduced a model of interconverting
hard rods and plates and showed that, at the level of the
L2 approximation of Onsager theory, it does not exhibit any
biaxial behavior. Mixtures of prolate and oblate spheroids [6]
do, nevertheless, appear to exhibit a stable biaxial nematic
phase when treated with the full Onsager theory, which is
confirmed by computer simulation [6]. It is therefore of interest
to investigate interconverting spheroids, for which it may be
important to solve the full Onsager theory rather than make the
L2 approximation. We will introduce a minimal model which
permits a clear, detailed analysis, for which we can compare
the L2 and full Onsager approaches.

The remainder of this paper is organized as follows: in
Sec. II we describe our model and the simple Onsager theory
used to study it. Our results are presented in Sec. III: as
a prerequisite to applying the theory to our chosen model,
we derive an analytic expression for the angle-dependent
excluded volume of two unlike particles (Sec. III A). We then
perform a bifurcation analysis of the stability of the isotropic
phase with respect to the (uniaxial or biaxial) nematic phase
(Sec. III B). Finally, the order parameters, pressure, and Gibbs
potential of the uniaxial and biaxial phases are calculated,
first using the L2 approximation (Sec. III C) and then fully
numerically (Sec. III D). The effect of shape nonadditivity is
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also investigated. Conclusions and directions for future work
are collected in Sec. IV.

II. THEORY

A. Theory and model

In our model, which is closely related to that of Vanakaras
et al. [3,4], a particle can exist in one of two states: a prolate
and an oblate spheroid. The energies of these two states
(conformers) differ by a prescribed amount �ε, and the two
states are in chemical equilibrium [3,4]. The Helmholtz free
energy density (FED) of a uniform mixture of interconverting
rods (R) and plates (P) of densities ρR and ρP is, in the Onsager
second-virial approximation,

βf (ρR,ρP ) = ρR[log(�3ρR) − 1] + ρP [log(�3ρP ) − 1]

+ ρR

∫
f̂R(ω) log[4πf̂R(ω)]dω

+ ρP

∫
f̂P (ω) log[4πf̂P (ω)]dω

+ ρ2
R

∫
f̂R(ω1)BRR(ω1,ω2)f̂R(ω2) dω1dω2

+ ρ2
P

∫
f̂P (ω1)BPP (ω1,ω2)f̂P (ω2) dω1dω2

+ 2ρRρP

∫
f̂R(ω1)BRP (ω1,ω2)f̂P (ω2) dω1dω2

+ εRρR + εP ρP , (1)

where β = 1/kBT , Bij (ω1,ω2) (i,j = R,P ) are the ori-
entational second-virial coefficients, f̂R(ω) [f̂P (ω)] is the
orientational distribution function (ODF) of rods (plates), and
εR (εP ) is the energy penalty (here and henceforth in units of
kBT ) associated with a rod (plate). The chemical potentials
(to within an additive constant) of rods and plates are easily
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found:

βμR = log ρR +
∫

f̂R(ω) log[4πf̂R(ω)]dω + 2ρR

∫
f̂R(ω1)BRR(ω1,ω2)f̂R(ω2) dω1dω2

+ 2ρP

∫
f̂R(ω1)BRP (ω1,ω2)f̂P (ω2) dω1dω2 + εR, (2)

βμP = log ρP +
∫

f̂P (ω) log[4πf̂P (ω)]dω + 2ρP

∫
f̂P (ω1)BPP (ω1,ω2)f̂P (ω2) dω1dω2

+ 2ρR

∫
f̂R(ω1)BRP (ω1,ω2)f̂P (ω2) dω1dω2 + εP . (3)

Likewise, the ODFs of rods and plates are obtained by functionally differentiating the FED subject to the normalization constraints:
δ(βf )

δf̂R(ω)
= ρRλR

⇒ f̂R(ω) = C−1
R exp

[
−2ρR

∫
BRR(ω,ω′)f̂R(ω′) dω′ − 2ρP

∫
BRP (ω,ω′)f̂P (ω′) dω′

]
, (4)

δ(βf )

δf̂P (ω)
= ρP λP

⇒ f̂P (ω) = C−1
P exp

[
−2ρP

∫
BPP (ω,ω′)f̂P (ω′) dω′ − 2ρR

∫
BRP (ω,ω′)f̂R(ω′) dω′

]
, (5)

where CR and CP are normalization constants and we have
written the Lagrange multipliers for rods (plates) as ρRλR

(ρP λP ) for convenience.
Equating the chemical potentials, Eqs. (2) and (3), and using

Eqs. (4) and (5) yield

ρR

ρP

= CP

CR

exp[−(εR − εP )] = CP

CR

exp(−�ε), (6)

where �ε = εR − εP . Because the total density is

ρ = ρR + ρP , (7)

we find, for the equilibrium densities of rods and plates,

ρR = ρ

1 + (CP /CR)e�ε
, (8)

ρP = ρ

1 + (CR/CP )e−�ε
. (9)

These equations are not closed-form relationships, as both CR

and CP also depend on ρR and ρP . They do, however, tell us
that when �ε > 0 (<0) rods (plates) cost more energy than
plates (rods), and the system will be plate rich (rod rich).

The same general approach (with or without Parsons-Lee
rescaling) has been successfully used to understand the phase
behavior of mixtures of rodlike and platelike particles [6–11];
the difference is that here, as in [3,4], the composition is not
fixed a priori but will depend on �ε. Thus εR and εP effectively
shift the chemical potentials of rods and plates, and �ε is
directly related to the intrinsic probabilities of rods and plates
as defined in [3,4].

We choose to describe the interactions of rods and plates
by the simple hard Gaussian overlap (HGO) model [12]
generalized to mixtures:

Uij (r12,ω1,ω2) =
{

0 if r12 � σ (r̂12,ω1,ω2),

∞ if r12 < σ (r̂12,ω1,ω2),
(10)

where ωk = (θk,φk) are the polar and azimuthal angles
specifying the orientation of the long axis of particle k and
r̂12 = r12/r12 is a unit vector along the line connecting the
centers of the two particles, either of which may be a rod or a
plate (i.e., i,j = R,P ). For like particles, the contact distance
σ (r̂12,ω1,ω2) is that originally determined by Berne and
Pechukas [13], who considered the overlap of two ellipsoidal
Gaussians. This was later extended to unlike particles of length
lk and breadth dk (k = 1,2) by Cleaver et al. [14]:

σ (r̂12,ω1,ω2) = σ0

[
1 − 1

2
χ

{
(αr̂12 · û1 + α−1r̂12 · û2)2

1 + χ (û1 · û2)

+ (αr̂12 · û1 − α−1r̂12 · û2)2

1 − χ (û1 · û2)

}]− 1
2

, (11)

where ûk = (cos φk sin θk, sin φk sin θk, cos θk) and

σ0 =
√

d2
1 + d2

2 , (12)

χ =
[(

l2
1 − d2

1

)(
l2
2 − d2

2

)
(
l2
2 + d2

1

)(
l2
1 + d2

2

) ]1/2
, (13)

α2 =
[(

l2
1 − d2

1

)(
l2
2 + d2

1

)
(
l2
2 − d2

2

)(
l2
1 + d2

2

)
]1/2

. (14)

It is also useful to define the particle length-to-breadth ratio,
κk = lk/dk . For like particles of moderate κ ≡ κ1 = κ2, the
HGO model is a good approximation to the hard ellipsoid (HE)
contact function [15,16], with the considerable computational
advantage over HEs that σ (r̂12,ω1,ω2), the distance of closest
approach between two particles, is given in closed form.

Because HGO particles are defined in terms of their contact
distance, they are “nongeometric” objects, whose volume is
not well defined. In this paper we wish to suppress depletion
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effects by considering rods and plates of the same volume.
Therefore, following, e.g., [17], we shall approximate the
volume of an HGO particle by that of a HE with the same
axes lengths, i.e., vk = (4π/3)lkd2

k .

B. Order parameters

Equations (4) and (5), with Eqs. (8) and (9), yield the ODFs
of rods and plates, as well as their number fractions. One
important question is how to identify the phase described by
a pair of ODFs. Clearly, in the isotropic (I) phase, f̂R(ω) =
f̂P (ω) = 1/4π , but how should we characterize the different N
phases? These are, we recall, the rodlike (or calamitic) uniaxial
phase (N+

U ), the platelike (or discotic) uniaxial phase (N−
U ), and

the biaxial nematic phase (NB). Where the distinction between
the two uniaxial phases is unimportant, we shall refer to them
collectively as NU . Here we follow [6] and define the following
order parameters:

SR = 〈P2(cos θ )〉R, (15)

�R = 〈sin2 θ cos 2φ〉R, (16)

SP = 〈P2(cos θ )〉P , (17)

�P = 〈sin2 θ cos 2φ〉P , (18)

where the Euler angles are measured relative to the rod
eigenvector frame. The z axis is thus defined to be the rod
director. By convention, the plates are assumed to order along
the y axis of this frame. The limiting values of these order
parameters are shown in Table I of [6]; these were used as
initial guesses in our numerical calculations, as well as to
characterize the resulting phases.

III. RESULTS

A. The second-virial coefficient of unlike HGOs

Equations (4) and (5) contain the angle-dependent second-
virial coefficients of rods and plates, Bij (ω1,ω2) (i,j = R,P ).
These are known for i = j [18]; for i �= j , this is our first
original, and analytically exact, result:

BRP (ω1,ω2) = 2π

3

[
1
2

(
d2

R + d2
P

)]3/2

(1 + a11)(1 + a22) − a12a21
, (19)

where

a11 = cx(1 + cy cos2 θ12)

1 − cxcy cos2 θ12
, (20)

a12 = cx(1 + cy) cos θ12

1 − cxcy cos2 θ12
, (21)

a21 = cy(1 + cx) cos θ12

1 − cxcy cos2 θ12
, (22)

a22 = cy(1 + cx cos2 θ12)

1 − cxcy cos2 θ12
, (23)

cx = d2
R

(
1 − κ ′

R
2)

d2
P + d2

Rκ ′
R

2 , (24)

cy = d2
P

(
1 − κ ′

P
2)

d2
R + d2

P κ ′
P

2 . (25)

The derivation of Eq. (19) is sketched in Appendix A.
Additionally, shape nonadditivity may be introduced through
a new parameter ν [19]:

κ ′
R = νκR, κ ′

P = ν−1κP ; (26)

that is, a rod (plate) sees another rod (plate) with elongation
κR (κP ), but a rod (plate) sees a plate (rod) with elongation κ ′

P

(κ ′
R). Varying ν changes the second-virial coefficient for two

unlike particles and is known to alter the topology of the phase
diagram [20].

B. Bifurcation analysis

The next step would be iteratively to solve Eqs. (4) and (5)
for the ODFs, together with Eq. (8) or (9) for the density
of rods or plates. However, it is useful (and physically more
illuminating) first to investigate the stability of the isotropic
phase relative to the uniaxial or biaxial nematic phases. This
can be done analytically using bifurcation analysis and serves
as a check on our later numerical work. Here we quote only
the final results and refer readers to Appendix B for details.

From Eqs. (3.6) and (3.9) in [21], the overall density ρ∗ at
which the I phase becomes unstable with respect to either the
NU or NB phases is

ρ∗ = 5

4

⎡
⎣−(

xI
RB

(2)
RR + xI

P B
(2)
PP

) −
√(

xI
RB

(2)
RR − xI

P B
(2)
PP

)2 + 4xI
RxI

P B
(2)
RP

2

xI
RxI

P

(
B

(2)
RRB

(2)
PP − B

(2)
RP

2)
⎤
⎦, (27)

where B
(l)
ij are the expansion coefficients of Bij (ω1,ω2):

Bij (ω1,ω2) =
∑
l=0

B
(l)
ij Pl(cos θ12), (28)

B
(l)
ij = 2l + 1

2

∫ +1

−1
Bij (ω1,ω2)Pl(cos θ12)d(cos θ12). (29)

For hard spheroids of identical volume and κR = 1/κP , B(0)
RR =

B
(0)
PP = B

(0)
RP ; that is, all the isotropic second-virial coefficients

are equal. For the HGO model, B
(0)
RR = B

(0)
PP , but B

(0)
RP differs

by a small amount [see Fig. 1(a)], and this difference slightly
complicates the analysis of the I phase. If, however, we make
the rather good approximation that all these virial coefficients
are equal (they differ by less than 3% if κ � 5), then it is
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FIG. 1. (Color online) (a) Expansion coefficients B
(l)
ij for l = 0,2. (b) Bifurcation density ρ∗ of the I phase with respect to the N phase vs

rod elongation κR for different �ε = εR − εP . Here ν = 1 (additive shapes).

straightforward to calculate the number fractions of rods and
plates in the I phase (where CR = CP ), viz.,

xI
R = e−εR

e−εR + e−εP
, (30)

xI
P = e−εP

e−εR + e−εP
= 1 − xI

R. (31)

In particular, the instability is with respect to NB if [21,
Eq. (3.19)]

1 + 2
5ρ∗(xI

RB
(2)
RR − xI

P B
(2)
RP

) = 0. (32)

Here, and in the remainder of this paper, all results are for
rods and plates of the same volume, such that κP = 1/κR; for
HGO particles, this implies they also have the same excluded
volume. Results for the bifurcation density are shown in
Fig. 1(b): we conclude that the I phase is unstable with respect
to the NB phase if εR = εP and with respect to the NU phases
if εR �= εP . This, of course, does not rule out the existence of
an NB phase for εR �= εP ; it merely implies that in this case it

would have to bifurcate from the N+
U or N−

U phase, not from the
I phase. Note that the fact that the curve for �ε = 1 lies below
that for �ε = 0 does not mean that the I phase is unstable with
respect to the NB phase. Rather, this result is meaningless, as it
predicts an instability with respect to the NB phase at a lower
density than that at which the I phase becomes unstable with
respect to any N phase.

C. The L2 approximation

We now come back to Eqs. (4), (5), and (8) or (9). These
have to be solved numerically by an iterative procedure, which
is computationally difficult as good initial guesses for the
ODFs are needed to achieve convergence. In order to accelerate
progress, we start by resorting to the L2 approximation of
Stroobants and Lekkerkerker [22]. Here the angle-dependent
second-virial coefficients Bij (ω1,ω2) are expanded in series
of Legendre polynomials as in Eqs. (28) and (29), and these
expansions are truncated at order l = 2. Upon substitution of
the truncated expansions into Eqs. (4) and (5), some of the
angular integrations can be performed analytically, with the
result

f̂R(ω) = C−1
R exp

{−2ρRB
(2)
RR

[
P2(cos θ )SR + 3

4 sin2 θ cos 2φ�R

] − 2ρP B
(2)
RP

[
P2(cos θ )SP + 3

4 sin2 θ cos 2φ�P

]}
, (33)

f̂P (ω) = C−1
P exp

{−2ρP B
(2)
PP

[
P2(cos θ )SP + 3

4 sin2 θ cos 2φ�P

] − 2ρRB
(2)
RP

[
P2(cos θ )SR + 3

4 sin2 θ cos 2φ�R

]}
, (34)

where we have used the definitions of the order parameters of rods and plates, Eqs. (15)–(18), as well as the spherical harmonic
addition theorem. The equilibrium Helmholtz FED and chemical potentials of rods and plates, Eqs. (1)–(3), likewise become

βf (ρR,ρP ) = ρR

(
log ρR − 1 + log

4π

CR

+ εR

)
+ ρP

(
log ρP − 1 + log

4π

CP

+ εP

)
+ ρ2

R

[
B

(0)
RR − B

(2)
RR

(
S2

R + 3

4
�2

R

)]

+ 2ρRρP

[
B

(0)
RP − B

(2)
RP

(
SRSP + 3

4
�R�P

)]
+ ρ2

P

[
B

(0)
PP − B

(2)
PP

(
S2

P + 3

4
�2

P

)]
, (35)

βμR = log ρR + log
4π

CR

+ 2ρRB
(0)
RR + 2ρP B

(0)
RP + εR, (36)

βμP = log ρP + log
4π

CP

+ 2ρP B
(0)
PP + 2ρRB

(0)
RP + εP , (37)
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FIG. 2. (Color online) (a) Order parameters and (b) composition for the I-N+
U phase transition for κR = 1/κP = 5. �ε = 0 and ν = 1.

Lines without symbols: L2 approximation; lines with symbols: full numerical solution.

from which the pressure can be found via the standard
thermodynamic relation

p = ρRμR + ρP μP − f. (38)

The L2 approximation substantially reduces the computational
burden, as it requires fewer numerical integrations and it
is also easier to devise good initial guesses for the order
parameters than for the full ODFs. This approximation is
known to introduce considerable error in the description of the
excluded volumes, especially for the parallel and perpendicular
configurations [8]. However, as we shall see later, for our model
it appears to perform reliably, for which reason it is used in
many of the calculations presented henceforth.

To proceed, we equate the chemical potentials, Eqs. (36)
and (37), and solve the resulting equation using NETLIB

routine HYBRD, together with the self-consistency equations
for the order parameters, (15)–(18). All numerical integrations
were performed by 64-point Gauss-Legendre quadrature. We

consider two cases: �ε = 0 (no energy penalty associated
with particle shape changes) and �ε �= 0 (one of the shapes
has lower energy than the other). Recall that in all cases
κR = 1/κP , and rods and plates have the same volume, which
removes depletion effects. We also investigate the effect of
shape nonadditivity, ν �= 1.

1. Unbiased shapes: �ε = 0

Depending on our initial guesses for the order parameters,
we find N+

U , N−
U , and NB phases (Figs. 2, 3, and 4, respectively).

N+
U (N−

U ) is always richer in rods (plates), whereas the NB phase
is an equimolar mixture of rods and plates. The transitions,
whether into the uniaxial or biaxial nematic phases, occur at the
densities predicted by bifurcation analysis and, interestingly,
all appear to be continuous or at least to exhibit very small
density or order parameter discontinuities.

To check the relative stability of the N+
U , N−

U , and NB

phases we plot in Fig. 5 the Gibbs free energy per particle
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FIG. 3. (Color online) (a) Order parameters and (b) composition for the I-N−
U phase transition for κR = 1/κP = 5, �ε = 0 and ν = 1.

Lines without symbols: L2 approximation; lines with symbols: full numerical solution.
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FIG. 4. (Color online) (a) Order parameters and (b) composition for the I-NB phase transition for κR = 1/κP = 5, �ε = 0, and ν = 1.
Lines without symbols: L2 approximation; lines with symbols: full numerical solution.

(which is equal to the chemical potential) for all three phases
vs pressure. We find that N+

U and N−
U have exactly the same

Gibbs free energy, which is always less than that of NB . This
is so even for elongation κR = 20, for which one would expect
NB to be stable at high enough density [6]; instead, it is
always metastable. The question then naturally arises, Could
NB be stable for yet larger κR? To answer it, we calculated
the angle-dependent second-virial coefficients in the limit κ ≡
κR = 1/κP → ∞. In the case considered here, where rods and
plates have the same volume v0 ≡ vR = vP ⇒ dP = dRκ

2/3
R ,

it is not difficult to show that

BRR(ω1,ω2) = BPP (ω1,ω2) ≈ v0κ
2 sin2 θ12, (39)

BRP (ω1,ω2) ≈ 2π

3

(
1

2

)3/2

v0κ
8/3 cos2 θ12. (40)

It follows that, if κ is very large, the rod-plate excluded volume
will be much larger than either the rod-rod or plate-plate
excluded volume, which favors a kind of “demixing”: at low
densities, the system will consist of an isotropic equimolar
mixture of rods and plates. As the density is raised, all particles
will become either rods or plates, with equal probability, in
order to avoid the heavy penalty associated with rod-plate
interactions but will remain in the isotropic state; finally, at an
even higher density, the rods or plates will order into a uniaxial
nematic phase. Thus we do not expect the NB phase to be stable
even in the limit of infinitely long rods and infinitely thin plates.

2. Biased shapes: �ε �= 0

For �ε �= 0 we could not find a biaxial phase. If �ε < 0
(rods favored), the transition is into the N+

U phase (see Fig. 6),
whereas if �ε > 0 (plates favored), it is into the N−

U phase (see
Fig. 7). As in the case of �ε = 0, the N+

U phase is rod rich,
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FIG. 5. (Color online) Chemical potential, or Gibbs free energy per particle, of NU , NB , and I phases vs pressure for �ε = 0, ν = 1 and
(a) κR = 1/κP = 5 and (b) κR = 1/κP = 20. Lines without symbols: L2 approximation; lines with symbols: full numerical solution.
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FIG. 6. (Color online) (a) Order parameters and (b) composition for the I-N+
U phase transition in the L2 approximation for κR = 1/κP = 5,

�ε = −1, and ν = 1.

and the N−
U phase is plate rich, but now even the I phase is rod

rich if �ε < 0 and plate rich if �ε > 0. This is a result of the
intrinsic preference for rods or plates, respectively, regardless
of the environment in which they find themselves.

3. Nonadditive shapes: ν �= 1

Here �ε = 0 in all cases. As before, we find N+
U , N−

U , and
NB phases (Figs. 8, 9, and 10, respectively), depending on our
initial guesses for the order parameters. However, if ν � 1.3
or ν < 1, the NB phase is now stable relative to the N+

U and N−
U

phases (which again have exactly the same Gibbs free energy;
see Fig. 11). Furthermore, for ν � 1.3 it is now the N+

U (N−
U )

phase that is richer in plates (rods), whereas the NB phase
is again an equimolar mixture of rods and plates. It is also
noteworthy that the I-N transition occurs at a lower density
than for ν = 1. For ν < 1, on the other hand, the I-N transition
is shifted to higher densities, and the N+

U (N−
U ) phase is richer

in rods (plates), as for ν = 1 (not shown).

Taking ν > 1 means that the rods see the plates as flatter
than two plates see each other, and the plates see the rods
as longer than two rods see each other. At the same time,
the rod-plate excluded volume is greater than it would be
for additive particles. The converse is true if ν < 1. It thus
appears that, in agreement with earlier work [8,20], shape
nonadditivity, of pretty much any kind, promotes biaxiality.

D. Full numerical solution

As noted in Sec. III C, the L2 approximation is known to
introduce artifacts owing to its poor representation of the pair
excluded volume. In view of the extremely small difference
in Gibbs free energies between the NU and NB phases, one
might reasonably wonder whether the metastability of the NB

phase could be one such artifact. So we went back to solving
Eq. (8) using NETLIB routine HYBRD; each iteration of this
requires the ODFs, which themselves were found by simple
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FIG. 7. (Color online) (a) Order parameters and (b) composition for the I-N−
U phase transition in the L2 approximation for κR = 1/κP = 5,

�ε = 1, and ν = 1.
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FIG. 8. (Color online) (a) Order parameters and (b) composition for the I-N+
U phase transition in the L2 approximation for κR = 1/κP = 5,

�ε = 0, and ν = 3.
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FIG. 9. (Color online) (a) Order parameters and (b) composition for the I-N−
U phase transition in the L2 approximation for κR = 1/κP = 5,

�ε = 0, and ν = 3.
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FIG. 10. (Color online) (a) Order parameters and (b) composition for the I-NB phase transition in the L2 approximation for κR = 1/κP = 5,
�ε = 0, and ν = 3.
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FIG. 11. (Color online) Chemical potential, or Gibbs free energy
per particle, of NU , NB , and I phases vs pressure in the L2
approximation for κR = 1/κP = 5, �ε = 0. and ν = 3.

iterative solution of Eqs. (4) and (5). As before, all numerical
integrations were performed by 64-point Gauss-Legendre
quadrature.

The choice of initial guesses for the ODFs turns out to
be crucial: these were taken to be of the form of the L2
ODFs, Eqs. (33) and (34), with guesses made for the rod
density and order parameters drawing on Table I of [6]. In
all cases we started from deep inside the (uniaxial or biaxial)
nematic phase, going down or up in total density. Whereas
N+

U or N−
U was easily converged to (see Figs. 2 and 3), the

NB phase required very small density steps and could only
be obtained up to densities about 6% higher than that of the
transition into the isotropic phase. To circumvent this difficulty,
we implemented an alternative, “intermediately numerical”
scheme in which we constrained the densities of rods and
plates, ρR and ρP , to be equal and solved only Eqs. (4) and (5).
The resulting order parameters coincide with those yielded by
the unrestricted numerical solution in the range of densities
where both methods can be used, so it is these that we present
in Fig. 4(a). If we relax the constraint by allowing ρR to be
ever so slightly different from ρP , the Gibbs free energy goes
down: a first hint that the NB phase is, again, only metastable.
And, indeed, this is again borne out by the Gibbs free energy
calculations (see Fig. 5; note that the Gibbs free energies of
the I phase from the L2 approximation and full numerical
solution are the same, as the L2 approximation only affects
the orientational part of the free energy).

As announced earlier, the L2 approximation is seen to
perform quite well, as it only slightly underestimates the order
parameters and the degree of segregation of rods and plates
in the N+

U and N−
U phases (see Figs. 2 and 3). This gives us

confidence in the conclusions drawn in Secs. III C 2 and III C 3.

IV. DISCUSSION AND CONCLUSIONS

We have studied a minimal model of a mesogen composed
of particles that can change shape, which are encountered
in some experimental situations. The model consists of
interconvertible uniaxial rods and plates, approximated as

HGO particles. We considered only rods and plates of the same
volume and such that κP = 1/κR , which implies that all pairs
of particles have the same excluded volume. Within Onsager’s
second-virial theory, we found, from bifurcation analysis
as well as from numerical solution of the self-consistent
equations, that upon increasing the density the model exhibits
a transition from the isotropic to the nematic phase. If there is
no energy penalty associated with particle shape change (i.e.,
�ε = 0), the nematic phase can be either rodlike uniaxial
(calamitic, N+

U ), platelike uniaxial (discotic, N−
U ), or biaxial

(NB). However, we have verified that, for particle elongations
up to κR = 20, the biaxial nematic phase is always metastable
with respect to either uniaxial nematic phase. Furthermore, on
the basis of an asymptotic calculation, we expect that, in the
limit κ → ∞, the system will become unstable with respect to
either pure rods or pure plates, which obviously do not order
biaxially. If, on the other hand, there is a moderate penalty for
changing shape (i.e., �ε �= 0), the transition is always from
the isotropic into one of the uniaxial nematic phases. Still,
we have not considered any other possible competing phases,
such as smectics of crystals, which may be more stable at
higher densities. We also note that the Gibbs free energy
differences between NU and NB phases close to the I-N
transition are extremely small; hence it might be possible to
observe a biaxial nematic phase, even if only metastable.

In summary, although oblate and prolate spheroid mixtures
appear to show a biaxial nematic phase [6], our Onsager
calculations indicate that such a phase is unstable for inter-
converting particles, even with no internal energy difference
between the oblate and prolate shapes. It would appear that
the system can always lower its free energy by breaking the
symmetry to form a rod-rich or plate-rich uniaxial nematic
phase instead. However, this may be a consequence of the
very high symmetry of the particular realization of the model
that we have used, namely, the fact that rods and plates have
the same volume and all rod-rod and plate-plate pairs have the
same excluded volume. Nor have we explored more extreme
values of |�ε| � 1.

As found earlier by others, the biaxial nematic phase can be
stabilized by allowing nonadditive particle shapes. Although
this may not be easy to realize in experimental systems, it
certainly is amenable to computer simulation. The Onsager
second-virial approach is known to yield poor quantitative
agreement with simulations for small particle elongations, so
the theory would need to be modified to incorporate, e.g.,
Parsons-Lee rescaling [18,23], which has been shown to lead
to substantial improvement [6,9–11,17]. In the case of HGOs
there is the additional problem that the volume of one particle,
and hence the packing fraction, is undefined. Another possible
avenue for further research is to consider the effects of third- or
higher-order virial coefficients. At this level of approximation
the rod-plate symmetry is broken, which may also have
implications for the behavior of our model for �ε = 0.
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APPENDIX A: THE EXCLUDED VOLUME OF TWO
UNLIKE HGOS

To calculate the orientation dependent second-virial coeffi-
cient for dissimilar HGO particles, we refer to Eq. (25) of [14],
which we write in the form

f1/2(û1,û2,r̂12) = 1

4�
(1 + r̂12 · A · r̂12), (A1)

where

� = 1
2

(
b2

1 + b2
2

)
, (A2)

with bi = dk/2 being the degenerate transverse semiaxis of
particle k (k = 1,2). The symmetric matrix A is given by

A = cx û1û1 + cy û2û2 + cxcy(û1 · û2)(û1û2 + û2û1)

1 + cxcy(û1 · û2)2
. (A3)

There was a typographical error involving a missing factor of
2 in the original equation, and that has been corrected here.
As before, û1 and û2 are unit vectors along the symmetry axes
of particles 1 and 2, respectively, and r̂12 is the unit vector
along the line joining the particle centers. The other symbols
in these expressions are given in the main text and depend on
the sizes and shapes of the two particles but do not depend on
orientation.

The contact distance between the two particles,
σ (r̂12,ω1,ω2), is given by Eq. (24) of Ref. [14],

σ (r̂12,ω1,ω2) ≡ σ (û1,û2,r̂12) = 1√
f1/2(û1,û2,r̂12)

, (A4)

and the pair excluded volume is then given by

B2(û1,û2) = 1

6

∫
[σ (û1,û2,r̂12)]3d r̂12. (A5)

In order to do this integral it is convenient to write A in the
diagonal form,

A = λ1ê1ê1 + λ2ê2ê2, (A6)

where ê1 and ê2 are orthogonal unit vectors, each being a linear
combination of û1 and û2. To obtain these eigenvectors and
the corresponding eigenvalues, we need to solve

A · ê = λê, (A7)

where

ê = αû1 + βû2. (A8)

This leads to the eigenvalue equation[
û1 · A · û1 − λ û1 · A · û2

û2 · A · û1 û2 · A · û2 − λ

][
α

β

]
=

[
0

0

]
, (A9)

where the two eigenvalues are λ1 and λ2, as required in
Eq. (A6). The corresponding values of α and β may be
substituted into Eq. (A8), and this, after normalization, gives
the eigenvectors ê1 and ê2.

We now take ê1 to be the z axis and ê2 to be the x axis
and use polar coordinates, so that the expression for the pair
excluded volume becomes

B2(û1,û2)= (4�)3/2

6

∫ 2π

0
dφ

∫ π

0
sin θ dθ

×
(

1

1 + λ1 cos2 θ + λ2 sin2 θ cos2 φ

)3/2

, (A10)

which may then be evaluated by standard means.

APPENDIX B: BIFURCATION ANALYSIS

This appendix sketches how Mulder’s methodology [21]
may be applied to the problem of shape-changing spheroids,
first, to calculate the density ρ(0) at which the isotropic phase
first becomes unstable with respect to nematic fluctuations
and, second, to find out what conditions are necessary for a
continuous transition. This could be either to a biaxial nematic
phase NB , or to coexisting N+

U and N−
U phases.

We write

ρ = ρ(0) + ερ(1) + ε2ρ(2) + · · · , (B1)

f̂R,P (ω) = f̂
(0)
R,P (ω) + εf̂

(1)
R,P (ω) + ε2f̂

(2)
R,P (ω) + · · · , (B2)

where f̂
(0)
R,P (ω) = 1/4π , the ODFs for rods and plates in the

isotropic phase. As discussed in [21], we are free to choose the
higher-order terms in Eq. (B2) to be orthogonal to f̂

(0)
R,P (ω). In

this case, this means that the integral of each of the higher-order
terms is zero.

The rod and plate ODFs satisfy Eqs. (4) and (5), and we
also have the equal chemical potential condition,

μR = μP , (B3)

where the chemical potentials of rods and plates are given by
Eqs. (2) and (3), respectively. We seek solutions as a power
series in ε.

To order ε0, we have an isotropic phase at an overall density
ρ(0) and where the rod and plate densities are given by the
isotropic solution of Eq. (B3). We denote the corresponding
mole fractions as x

(0)
R,P . For the important special case where

�ε = 0, we have x
(0)
R = x

(0)
P = 0.5.

To determine the value of the bifurcation density ρ(0), we
consider the O(ε) solution. Equation (B3) shows there to be
no first-order correction to the isotropic mole fractions, i.e.,
x

(1)
R = x

(1)
P = 0. Equations (4) and (5) yield

f̂
(1)
R (ω) = −2ρ(0)

[
x

(0)
R

∫
BRR(ω,ω′)f̂ (1)

R (ω′) dω′

+x
(0)
P

∫
BRP (ω,ω′)f̂ (1)

P (ω′) dω′
]
, (B4)

f̂
(1)
P (ω) = −2ρ(0)

[
x

(0)
R

∫
BRP (ω,ω′)f̂ (1)

R (ω′) dω′

+ x
(0)
P

∫
BPP (ω,ω′)f̂P (ω′) dω′

]
, (B5)

i.e., a set of eigenfunction equations for f̂
(1)
R,P (ω). As discussed

in [21], the relevant degenerate solution is spanned by the set

062506-10



PHASE BEHAVIOR OF SHAPE-CHANGING SPHEROIDS PHYSICAL REVIEW E 92, 062506 (2015)

of second-rank spherical harmonics. If this form of solution is
substituted into Eqs. (B4) and (B5) and use is made of Eqs. (28)
and (29) in the main text, one ends up with a standard algebraic
eigenvalue equation. The solution of this yields the bifurcation
density, as given in Eq. (27) using a slightly different, but
hopefully obvious, notation.

This first-order analysis, however, provides no information
about the nature of the nematic instability or whether the tran-
sition is first order or continuous. To obtain this information,
we need to go to second order in ε. This is a little intricate but

essentially follows the clear exposition given in [21] with just
a few technical differences.

We start by noting that second-order changes to the
rod and plate mole fractions, as determined by Eq. (B3),
play no role in the second-order equations for the ODFs.
Thus the rod and plate mole fractions are the same as
above.

The second-order analysis follows the techniques of degen-
erate perturbation theory. The second-order equation for the
rod ODF is

f̂
(2)
R (ω) = −2ρ(0)

[
x

(0)
R

∫
BRR(ω,ω′)f̂ (2)

R (ω′) dω′ + x
(0)
P

∫
BRP (ω,ω′)f̂ (2)

P (ω′) dω′
]

+2[ρ(0)]2

{[
x

(0)
R

∫
BRR(ω,ω′)f̂ (1)

R (ω′) dω′
]2

+
[
x

(0)
P

∫
BRP (ω,ω′)f̂ (1)

P (ω′) dω′
]2}

− 2ρ(1)

[
x

(0)
R

∫
BRR(ω,ω′)f̂ (1)

R (ω′) dω′ + x
(0)
P

∫
BRP (ω,ω′)f̂ (1)

P (ω′) dω′
]

− 2[ρ(0)]2
∫ {[

x
(0)
R

∫
BRR(ω,ω′)f̂ (1)

R (ω′) dω′
]2

+
[
x

(0)
P

∫
BRP (ω,ω′)f̂ (1)

P (ω′) dω′
]2}

dω, (B6)

and there is a similar expression for the plate ODF.
The first-order distribution functions are written as linear

combinations of second-rank spherical harmonics, e.g.,

f̂
(1)
R (ω) = A0,RY 2

0 (ω) + A2,R√
2

[
Y 2

2 (ω) + Y 2
−2(ω)

]
, (B7)

and a similar expression exists for the plates. If one multiplies
Eq. (B6) and the equivalent expression for plates by each
eigenfunction in Eq. (B7) and then integrates over angles, one

first eliminates the unknown second-order ODFs, and second,
one obtains expressions for the A coefficients (two for the rod
ODF and two for the plate ODF). Details are given in [21].

Finally, again as argued in [21], the transition is continuous
when ρ(1) = 0. Imposing this condition gives Eq. (32). As
noted previously, this condition may correspond either to
a continuous isotropic-biaxial nematic transition or to a
continuous transition from isotropic to two coexisting nematic
phases.
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