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Maier-Saupe model for a mixture of uniaxial and biaxial molecules
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2Instituto de Fı́sica e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900 Pelotas, RS, Brasil

(Received 1 July 2015; published 1 December 2015)

We introduce shape variations in a liquid-crystalline system by considering an elementary Maier-Saupe lattice
model for a mixture of uniaxial and biaxial molecules. Shape variables are treated in the annealed (thermalized)
limit. We analyze the thermodynamic properties of this system in terms of temperature T , concentration c of
intrinsically biaxial molecules, and a parameter � associated with the degree of biaxiality of the molecules. At
the mean-field level, we use standard techniques of statistical mechanics to draw global phase diagrams, which
are shown to display a rich structure, including uniaxial and biaxial nematic phases, a reentrant ordered region,
and many distinct multicritical points. Also, we use the formalism to write an expansion of the free energy in
order to make contact with the Landau–de Gennes theory of nematic phase transitions.
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I. INTRODUCTION

The characterization of biaxial nematic phases in a number
of thermotropic liquid-crystalline systems [1–3] stimulated a
revival of interest in the investigation of theoretical models to
describe biaxial structures [4]. About 40 years ago, Freiser [5]
showed the existence of uniaxial and biaxial nematic phases in
a generalization of the mean-field Maier-Saupe theory of the
nematic transition with the addition of suitably asymmetric
degrees of freedom. A nematic biaxial phase has also been
shown to exist in a lattice model with steric interactions
between platelets [6] and in a number of calculations for model
systems with soft- and hard-core interactions [7–9]. The early
experimental results, however, referred to a lyotropic liquid-
crystalline mixture [10], which should be better represented by
a model of uniaxial nematogenic elements [11,12] and which
motivated the use of an elementary version of the Maier-Saupe
theory [13–15] to investigate a lattice statistical model for a
binary mixture of cylinders and disks. We now propose an
extension of this elementary model, along the lines of Freiser’s
generalization of the Maier-Saupe theory, in order to analyze
the global phase diagram of a mixture of uniaxial and biaxial
molecules.

In some analytical [16] and numerical [11] calculations, it
has been pointed out that shape variations play an important
role in the stability of biaxial nematic phases. In spite of
the complexity of liquid-crystalline systems, whose complete
description may require the introduction of more realistic,
and necessarily involved, theoretical models, we believe that
there is still room for the investigation of elementary statistical
lattice models, with the addition of some ingredients that may
be essential to describe the main features of the thermodynamic
behavior. Along the lines of Freiser’s early work, we then
add extra degrees of freedom, of a biaxial nature, to an
elementary lattice model, which leads to the definition of
a six-state Maier-Saupe (MS6) model. This MS6 model is
similar to an earlier proposal by Bocarra and collaborators
[7] and may be regarded as a generalization of a previously
used three-state Potts model to describe the uniaxial nematic
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transition [17]. Shape variations are taken into account by
introducing a “biaxiality parameter,” �, and by considering a
binary mixture of molecules with � = 0 (intrinsically uniaxial
molecules) and � �= 0 (intrinsically biaxial molecules). This
model system is sufficiently simple to be amenable to detailed
statistical mechanics calculations for either quenched [18] or
annealed mixtures of molecules. We then carry out calculations
to obtain global phase diagrams and write an expansion of
the free energy for comparison with the standard form of
the phenomenological Landau–de Gennes theory of phase
transitions.

This paper is organized as follows. In Sec. II, we define the
MS6 model for a binary mixture of molecules and formulate
the statistical problem. In Sec. III, we analyze the mean-field
equations, draw a number of characteristic phase diagrams,
and put the problem in the context of the Landau–de Gennes
theory. Section IV is devoted to the final discussion and to
some conclusions.

II. THE SIX-STATE MAIER–SAUPE MODEL

The standard formulations of the Maier–Saupe theory of
nematic phase transitions [19] can be described in terms of the
Hamiltonian

H = −ε
∑
(i,j )

∑
α,β=1,2,3

�
αβ

i �
αβ

j , (1)

where ε is a positive parameter, (i,j ) means that the sum is
over pairs of molecules at sites i and j , and �i is the symmetric
traceless quadrupole tensor associated with a molecule at site i.
In general, �i may be written in terms of the direction cosines
or Euler angles which connect the laboratory and molecular
frames. From the traceless condition, we write the eigenvalues,
�1 = −1 + �, �2 = −1 − �, and �3 = 2, of the tensor �,
where � is a parameter that gauges the degree of biaxiality
[20]. The relation between � and molecular anisotropy is made
explicit in the Appendix.

The problem is considerably simplified if we resort to a
discretization of directions, which has been used to describe
the isotropic-nematic transition [17]. We then assume that
the principal molecular axes are restricted to the directions
of the Cartesian coordinates of the laboratory. Therefore, the
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quadrupole tensor � can assume only six states, represented
by the matrices⎛
⎝−1 + � 0 0

0 −1 − � 0
0 0 2

⎞
⎠,

⎛
⎝−1 + � 0 0

0 2 0
0 0 −1 − �

⎞
⎠,

⎛
⎝−1 − � 0 0

0 −1 + � 0
0 0 2

⎞
⎠,

⎛
⎝−1 − � 0 0

0 2 0
0 0 −1 + �

⎞
⎠,

⎛
⎝2 0 0

0 −1 − � 0
0 0 −1 + �

⎞
⎠,

⎛
⎝2 0 0

0 −1 + � 0
0 0 −1 − �

⎞
⎠,

(2)

which leads to the definition of the MS6 model. If the
molecules are intrinsically uniaxial (� = 0), we regain a three-
state model, which has been used to describe the transition
from the isotropic to the uniaxial nematic phase [17] and to
investigate the existence of a biaxial nematic phase in a binary
mixture of cylinders and disks [13–15].

The thermodynamic behavior of the MS6 model is deter-
mined from the canonical partition function

Z =
∑
{�i }

exp

⎡
⎣βε

∑
(i,j )

∑
α=1,2,3

�αα
i �αα

j

⎤
⎦, (3)

where βε = 1/T , so that T is the temperature in suitable
units, and the first sum is over all microscopic configurations
{�i} of this MS6 model. This problem is further simplified if
we consider a fully connected model, with equal interactions
between all pairs of sites. At this mean-field level, if � = 0, we
anticipate just a first-order transition between an isotropic and
a uniaxial nematic phase. If � �= 0, however, we can describe
the transition to a stable biaxial nematic phase.

We now turn to a mixture of intrinsically uniaxial (� = 0)
and intrinsically biaxial (� �= 0) molecules. In this mixture
we have two sets of degrees of freedom: (i) orientational
degrees of freedom, {�i}, of a quadrupolar nature, and
(ii) shape-disordered degrees of freedom, {�i}, with either
�i = 0 or �i = � �= 0, at all lattice sites. These two sets of
degrees of freedom may be associated with quite different
relaxation times, which leads to the distinction between
annealed and quenched situations [18,24]. In the quenched
case, the “shape-disordered” degrees of freedom never reach
thermal equilibrium during the experimental times. Given a
configuration {�i}, we calculate a partition function, Z =
Z({�i}), and a configuration-dependent free energy, f ({�i}).
The free energy of the system is the average of f ({�i}) over the
shape-disordered degrees of freedom, and the concentration
of intrinsically biaxial molecules is not a true variable of
equilibrium thermodynamics. In the annealed case, the two
sets of degrees of freedom are supposed to thermalize during
the experimental time, so that the concentration and chemical
potential are thermodynamically conjugate variables. In the
annealed case, given the concentration, both types of particles
are free to move across the system in order to minimize the
free energy. In this work, we consider annealed disorder only,
which is more appropriate to a liquid-crystalline system.

In the annealed case, consider a binary mixture of N1

intrinsically biaxial molecules (� �= 0) and N2 = N − N1

uniaxial molecules (� = 0). Given the numbers of uniaxial
and biaxial molecules, the canonical partition function is a
sum over the orientational and disorder configurations,

Za =
∑
{�i }

∑
{�i }

′
exp

⎡
⎣βε

∑
(i,j )

∑
α=1,2,3

�αα
i (�i) �αα

j (�j )

⎤
⎦, (4)

where the prime in the second sum indicates the restriction

N∑
i=1

�i = N1�. (5)

At this stage, in order to deal with the restricted sum in Eq. (4),
it is convenient to introduce a chemical potential and change
to a grand ensemble. First, we redefine the shape variable of
molecule i such that

�i = ni�, (6)

where

ni =
{

0 for a uniaxial object,
1 for a biaxial object. (7)

Then the grand partition function is given by

�a =
∑
{�i }

∑
{ni }

exp

⎡
⎣βε

∑
(i,j )

∑
α=1,2,3

�αα
i (ni) �αα

j (nj )+βμ
∑

i

ni

⎤
⎦,

(8)

where μ is the chemical potential, which controls the number
of biaxial molecules. We remark that the sums over config-
urations in Eq. (8) are no longer restricted, which makes it
possible to carry out the calculations in the mean-field limit,
as detailed in the next section.

III. MEAN-FIELD CALCULATIONS

The mean-field version of the MS6 model is given by the
Hamiltonian

HMF = − ε

2N

N∑
i,j=1

3∑
α=1

�αα
i (ni) �αα

j (nj )

= − ε

2N

3∑
α=1

[
N∑

i=1

�αα
i (ni)

]2

. (9)

The grand partition function �a in Eq. (8) can be factorized
using three Gaussian identities,

exp

⎡
⎣ βε

2N

(
N∑

i=1

�αα
i (ni)

)2
⎤
⎦

∝
∫ +∞

−∞
dqα exp

[
−βεN

2
q2

α + βεqα

N∑
i=1

�αα
i (ni)

]
, (10)

with α ∈ {1,2,3}. This factorization effectively decouples the
problem of calculating the grand partition function, and the
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sums over {�i} and {ni} can be performed in a straightforward
way, so that we can write

�a ∝
∫ +∞

−∞
dq1

∫ +∞

−∞
dq2

∫ +∞

−∞
dq3 exp(−Nβεψ), (11)

where ψ is a functional of {qα}. In the thermodynamic
limit, the integral can be calculated by standard saddle-point
techniques. Thermodynamic equilibrium is then associated
with the minimization of ψ with respect to {qα}, from
which we obtain self-consistent mean-field equations for these
quantities. These equations show that q1 + q2 + q3 = 0, which
suggests the introduction of a symmetric traceless tensor,

Q =
⎛
⎝q1 0 0

0 q2 0
0 0 q3

⎞
⎠, (12)

as an appropriate thermal average of �i(ni). Using the traceless
condition, it is convenient to rewrite Q as

Q = 1

2

⎛
⎝−S − η 0 0

0 −S + η 0
0 0 2S

⎞
⎠, (13)

in terms of two scalar parameters, S and η [25]. The isotropic
phase is given by S = η = 0. The nematic uniaxial phase is
given by S �= 0 and η = 0 (or η = ±3S). In the biaxial phase,
we have S �= 0 and η �= 0.

In the following paragraphs we write explicit expressions
for the thermodynamic potentials of the uniform system and
of the annealed binary mixture. From these expressions, it is
easy to perform numerical calculations to draw a plethora of
global phase diagrams in terms of the model parameters. In
order to asymptotically check the numerical findings, and to
make contact with established phenomenological results, we
may also write an expansion of the thermodynamic potential
in terms of the invariants of the tensor order parameter, In =
Tr Qn, with n = 1,2, . . . . Due to the symmetry properties of
Q, all these invariants can be written as polynomials depending
on two basic invariants, given by

I2 = Tr Q2 = 1
2 (3S2 + η2) (14)

and

I3 = Tr Q3 = 3
4S(S2 − η2). (15)

Therefore, the usual form of the Landau–de Gennes expansion
is written as

g = g0 + A

2
I2 + B

3
I3 + C

4
I 2

2 + D

5
I2I3

+ E

6
I 3

2 + E′

6
I 2

3 + · · · . (16)

According to this phenomenological expansion [27], there is
a Landau multicritical point for A = B = 0. In the vicinity
of this Landau point, we can establish parametric expressions
for the lines of phase transitions between the isotropic and the
nematic phases.

We now consider the specific cases of uniform and annealed
systems.

0 1 2 3
Δ

0

2

4

6

8

10

T

ISO

N+
B

N−

L

FIG. 1. Phase diagram, in terms of temperature T and degree of
biaxiality �, for a system of intrinsically biaxial molecules. N+ and
N− are uniaxial nematic prolate and oblate phases, respectively. B,
nematic biaxial phase; L, Landau multicritical point; ISO, isotropic
region. Solid lines indicate continuous transitions; dashed lines, first-
order phase transitions.

A. Uniform case

Consider a system of intrinsically biaxial molecules (�i =
� for all i). Assuming the discretization of orientations and
setting μ = 0 in Eq. (8), since disorder plays no role, the
functional ψ is written as

ψ = 1

2
(3S2 + η) − T ln 2 − T

× ln

{
exp

[
−3(S + η)

2T

]
cosh

[
(−3S + η)�

2T

]

+ exp

[
−3(−S + η)

2T

]
cosh

[
(3S + η)�

2T

]

+ exp

(
3S

T

)
cosh

(
η�

T

)}
, (17)

where T = (βε)−1. Minimizing ψ with respect to S and η leads
to the self-consistent mean-field equations, S = F1(S,η; T ,�)
and η = F2(S,η; T ,�). The values of S and η at the absolute
minimum of ψ correspond to the thermodynamic equilibrium
values for a fixed temperature T and degree of biaxiality �.
The free energy f = f (T ,�) of the system is obtained from
ψ by inserting the equilibrium values of S and η.

Figure 1 shows the phase diagram in the T -� plane, which
is obtained by solving the mean-field equations numerically.
As should be anticipated from phenomenological arguments,
this phase diagram shows two lines of continuous transitions
(solid lines) from a biaxial nematic region to the N+ (prolate)
and N− (oblate) uniaxial nematic regions. These critical lines
meet at a Landau multicritical point (L) on the first-order
boundary (dashed lines) between the isotropic and the uniaxial
nematic phases. It should be remarked that we regain an
intrinsically uniaxial system for � = 3. The phase diagram
for �> 3 is mapped onto the region 1 < �′ < 3 by the trans-
formations �′ = (� + 3)/(� − 1) and T ′ = 4T/(� − 1)2.
Note that a similar model for asymmetric ellipsoids leads to
essentially the same type of phase diagram [7]. Also, a number
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of calculations for continuous orientational degrees of freedom
lead to the same characteristic topology of this phase diagram
(see, for example, the works by Luckhurst and collaborators
[9] and Xheng and Palffy-Murhoray [28]).

From the expression of the free energy, we obtain the
parameter-dependent coefficients of a Landau–de Gennes
expansion about the Landau multicritical point:

A = 1 − 3 + �2

T
, B = 9

2

(
�2 − 1

T 2

)
, (18)

C = 1

T 3

(
9

4
+ 3

2
�2 + 1

4
�4

)
, (19)

D = − 45

16T 4
(�4 + 2�2 − 3), (20)

E = − 1

480T 5
(41�6 + 315�4 + 1215�2 + 1053), (21)

E′ = 1

40T 5
(�6 + 225�4 − 405�2 + 243). (22)

Therefore, the Landau point (L) is located at TL = 4 and
�L = 1. In the vicinity of the Landau point, limiting our-
selves to first-order terms in (T − 4) and (� − 1), we have
A = (1/4)(T − 4) − (1/2)(� − 1), B = (9/16)(� − 1), C =
1/16, D = 0, E = −41/7680, and E′ = 1/640. The sign of
E′ indicates the stability of the biaxial nematic phase near
the Landau point [19,27]. In this mean-field scenario, at fixed
� �= 1, as the temperature decreases from a sufficiently high
value, the system goes from an isotropic phase to a uniaxial
nematic phase and then to a biaxial nematic phase, according
to the prediction in the early work by Freiser [5]. It should be
remarked that the phenomenological Landau parameters are
written in terms of the parameters of the underlying molecular
model, which makes it easier to investigate a large range of
values.

B. Annealed disorder

In the annealed case, we calculate ψ , given by Eq. (11),
in terms of the proper thermodynamic field variables, tem-
perature T , and chemical potential μ = εT ln z, where z is
the fugacity. For the fully connected MS6 model of a binary
mixture of uniaxial and biaxial molecules, the functional ψ is
given by

ψ = 1
2 (3S2 + η2) − T ln 2 − T ln σ, (23)

where

σ = e− 3(S+η)
2T

{
1 + z cosh

[
(3S − η)�

2T

]}

+ e
−3(S−η)

2T

{
1 + z cosh

[
(3S + η)�

2T

]}

+ e
3S
T

{
1 + z cosh

(
η�

T

)}
. (24)

Again, the thermodynamic stable values of S and η are chosen
to minimize the function ψ for fixed values of temperature T ,
degree of biaxiality �, and chemical potential μ.

Inserting the equilibrium values of S and η into the
expression of ψ , we obtain the grand potential as a function of

T , μ, and �. If we wish to work with a fixed concentration c of
the intrinsically biaxial molecules, the free energy φ(c,T ; �)
comes from the definition

φ(c,T ; �) = ψ + c ln z, (25)

where the fugacity is eliminated by the expression

c = −z
∂ψ

∂z
, (26)

and we should insert the equilibrium values of S and η (with the
proviso of a Maxwell construction whenever it is necessary).

The grand potential can be used to write a Landau–de
Gennes expansion with coefficients

A = 1 − 3 + z(3 + �2)

T (1 + z)
, B = 9

2

z(�2 − 1) − 1

T 2(1 + z)
, (27)

C = 9 + z[18 + 9z + 6(1 + z)�2 − (1 − z)�4]

4T 3(1 + z)2
, (28)

D = 15

16

9 + z[18 − 6�2 + �4 − 3z(−3 + 2�2 + �4)]

T 4(1 + z)2 ,

(29)

E = 1053 − z(c0 + zc1 + z2c2)

480T 5(1 + z)3
, (30)

where

c0 = −3159 − 1215�2 + 225�4 − 11�6, (31)

c1 = −3159 − 2430�2 − 90�4 + 68�6 (32)

and

c2 = −1053 − 1215�2 − 315�4 − 41�6, (33)

E′ = 243 + z(d0 + zd1)

40T 5(1 + z)2 , (34)

where

d0 = 486 − 405�2 − 45�4 + �6 (35)

and

d1 = 243 − 405�2 + 225�4 + �6. (36)

From the usual condition A = B = 0, we locate a Landau
multicritical point,

μL = −TL ln(�2 − 1), TL = 4, (37)

which requires �2 > 1 and gives an indication of the existence
of qualitatively different phase diagrams (as there is no Landau
point for �2 < 1).

It is easy to show that this annealed version of the binary
mixture exhibits phase diagrams with many distinct topolo-
gies. This can be anticipated from an analysis of the energy
levels associated with the interaction between molecules, as
shown in Fig. 2. In fact, these energy levels are associated
with different degrees of degeneracy ω, and some levels cross
each other as the biaxiality of the molecules is changed. These
degeneracies account for entropic contributions to the free
energy, which do affect the equilibrium phase behavior of
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Δ

-40
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Ε/ε

ω = 6
ω = 9
ω = 12

FIG. 2. (Color online) Energy levels as a function of the degree
of biaxiality �. Level crossings account for variations in the entropic
contribution to the free energy. Solid lines correspond to energy levels
associated with interactions between two biaxial molecules, while
dashed lines indicate energy levels arising from interactions involving
at least one uniaxial molecule. Line thickness is proportional to the
degeneracy ω of the corresponding level.

the system. Therefore, we anticipate qualitative changes in the
phase diagrams as � assumes values close to the location of
the energy level crossings.

Contrary to what is seen in the uniform limit, in the
presence of unixial molecules the phase diagrams shown below
do not exhibit symmetry between 1 < � � 3 and � > 3.
This is due to the fact that the energy spectrum of the
interactions involving uniaxial molecules (shown as dashed
lines in Fig. 2) is not invariant under the transformation
� → (� + 3)/(� − 1), E → 4E/(� − 1)2, contrary to what
is observed for the energy spectrum associated with the
interactions between a pair of biaxial molecules. In other
words, for our choice of interactions the presence of a rod-like
solute distinguishes between the biaxial rod-like and the
biaxial disk-like components.

We now discuss the various topologies exhibited by
the phase diagrams as the biaxiality parameter is changed.
Figures 3 and 4 show T -μ and T -c phase diagrams for a
fixed degree of biaxiality, � = 1, where μ is the chemical
potential and c is the concentration of intrinsically biaxial
molecules. From the thermodynamic point of view, the first-
order boundaries (dashed lines) in the T -μ plane are mapped
into coexistence regions [shaded (gray) regions] in the T -c
plane. For low temperatures and intermediate concentrations,
there is a coexistence region between the uniaxial prolate (N+)
and the biaxial (B) phases. However, at higher concentrations
and intermediate temperatures, there is a second-order phase
transition (solid line) between the N+ and the biaxial phase.
In fact, the phase diagram exhibits a tricritical point (TC)
along the boundary between the N+ and the biaxial phase.
At higher temperatures, there is a first-order phase transition
between N+ and the isotropic (ISO) phase, with a very thin
coexistence region, as shown in the inset. Note that an incipient
Landau point appears at c = 1, which corresponds to an infinite
chemical potential, in agreement with the Landau–de Gennes
expansion. Phase diagrams with a similar topology (but with
no Landau point) can be drawn for 0 < � < 1.

-4 -2 0 2 4
 μ

0

2

4

T

ISO

N+

BTC

FIG. 3. Phase diagram for a fixed degree of biaxiality � = 1,
where T is the temperature and μ is the chemical potential. There
is a tricritical point (TC) along the boundary separating biaxial (B)
and uniaxial (N+) prolate nematic phases. There is no direct phase
transition between the isotropic (ISO) and the biaxial phases (for
finite values of the chemical potential).

Figure 5 shows the phase diagram for a fixed degree
of biaxiality � = 1.4. Similarly to Fig. 4, the N+ and
biaxial (B) phases coexist for intermediate concentrations
and low temperatures. However, the system also displays a
uniaxial oblate (N−) nematic phase, which appears at higher
concentrations and intermediate temperatures. The biaxial
phase appears between the two uniaxial phases, at intermediate
temperatures. All three ordered phases become identical to the
isotropic (ISO) phase at a Landau multicritical point (L). Also,
note that the biaxial phase presents discrete reentrant behavior

0 0.25 0.5 0.75 1 c
0

1

2

3

4

5

 T

0.216 0.2243.36

3.37

ISO

B

N+

TC

N+

ISO

FIG. 4. Phase diagram in terms of the temperature (T ) versus
the concentration (c) of biaxial molecules, at a fixed degree of
biaxiality, � = 1. There is an incipient Landau multicritical point
at c = 1, where the two ordered phases and the isotropic phase
become identical. Uniaxial (N+) and biaxial (B) phases coexist at low
temperatures and intermediate concentrations [shaded (gray) region].
The system exhibits a tricritical point (TC) along the boundary of the
B phase. Inset: Zoom-in on the coexistence [shaded (gray)] region
between the uniaxial nematic and the isotropic phases.
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2

3

4

5

T

0.21 0.223.49

3.5

N+

ISO

N−

B

ISO

N+

TC

L

FIG. 5. Phase diagram, in terms of temperature T and concen-
tration c of biaxial (B) molecules, for degree of biaxiality � = 1.4.
There is a Landau point (L). Note that the B phase displays reentrant
behavior near L.

close to the Landau multicritical point. Note that the changes
in the topology of the phase diagrams shown in Figs. 4 and 5
are in agreement with the dependence of the energy levels on
the degree of biaxiality � (see Fig. 2).

The phase behavior of the system changes significantly for a
degree of biaxiality around � = 1.5, which is close to another
crossing of energy levels. For example, in Fig. 6 we show the
phase diagram for degree of biaxiality � = 1.54. The low-
temperature biaxial phase B− is represented by a tensor order
parameter Q, whose largest eigenvalue (in absolute value) is
negative. However, an additional biaxial phase (B) appears
near the Landau point. The two biaxial phases are stable in
disconnected regions of the phase diagram. There is then a
coexistence region between the uniaxial nematic phases N+
and N−. This region is limited by two critical end points (CE)

0 0.25 0.5 0.75 1
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0.204 0.216

3.56
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N+
ISO

N+

N−

B−

B
L

TC CE
CE

FIG. 6. Phase diagram in the c-T plane for degree of biaxiality
� = 1.54, where T is the temperature and c is the concentration of
biaxial objects. Two nematic biaxial phases are stable in disconnected
regions of the phase diagram. There is a coexistence region between
the nematic uniaxial phases, ending at two critical end points (CE).
Dotted horizontal lines represent special tie lines associated with the
CEs.
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3

4
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Landau
Tricritical
Critical end

M1

FIG. 7. (Color online) Lines of multicritical points in the �-T
plane. There is a higher-order multicritical point M1, at which the lines
of Landau points (horizontal black line), tricritical points [left-hand
(green) line], and critical end points [right-hand (blue) line] meet.
There is then no stable biaxial phase for � � �M1 in the vicinity of
the Landau point.

associated with the biaxial phases. Also, the system exhibits
a tricritical point (TC) related to the coexistence region of
N+ and biaxial structures. As in the case � = 1.4, shown in
Fig. 5, the biaxial phase is reentrant in the vicinity of the
Landau point.

The topological changes in the phase diagram can be repre-
sented by the projections of the lines of different multicritical
points on the T -� plane, as indicated in Fig. 7. The temperature
of the Landau point (horizontal black line) is a constant
function of the degree of biaxiality �, which is in agreement
with a Landau expansion. The temperature of the tricritical
point [left-hand (green) line] increases monotonically with �,
as suggested by Figs. 4–6. However, the line of critical end
points [right-hand (blue) line] presents reentrant behavior in
the vicinity of � = 1.55, giving rise to the two critical end
points, as shown in Fig. 6. All multicritical lines meet at a
higher-order multicritical point M1. Note that the tricritical
and high-temperature critical end points are associated with
the biaxial phase near the Landau point. As a result, there
is no stable biaxial phase in the vicinity of the Landau point
for � � �M1 � 1.5576, although the low-temperature biaxial
phase survives in a small region at high concentrations and low
temperatures. This is illustrated in Fig. 8, for � = 1.57. There
is no stable biaxial nematic phase close to the Landau point
(L), which marks the meeting of various coexistence lines
separating the isotropic phase and the two nematic uniaxial
phases. Along those lines, there is a coexistence of phases
with different values of nematic order parameter S, but the
size of the coexistence region tends to vanish as we approach
the Landau point.

As the degree of biaxiality is further increased, the system
exhibits other distinct phase diagrams, as shown in Figs. 9
and 10. According to Fig. 2, multiple level crossings occur at
� = 3, which is a strong suggestion of changes in the phase
behavior of the system.

Figure 9 shows the phase diagram for � = 2.9. A triple
point appears, associated with the coexistence of two uniaxial
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FIG. 8. Phase diagram in terms of temperature (T ) versus
concentration (c) of biaxial molecules for a fixed degree of biaxiality,
� = 1.57. The biaxial phase B− is located at low temperatures and
high concentrations. There is no stable B phase near the Landau point
(L). The nematic uniaxial phases coexist in a region ending at a critical
end point (CE). The dotted horizontal line represents a special tie line
associated with the CE.

nematic oblate phases and a uniaxial prolate phase. Also, the
coexistence region of uniaxial nematic oblate phases ends
at a simple critical point (C). Although it is not shown in
Fig. 9, a stable biaxial nematic phase is still present, at low
temperatures and high concentrations, as well as the critical
end point associated with the biaxial phase.

As � is further increased, the simple critical point moves
upward in the phase diagram, approaching the lower border
of the coexistence region between the uniaxial N− and the
isotropic (ISO) phases. Then the simple critical point is re-
placed by a second triple point. For example, Fig. 10 represents
a phase diagram for � = 3. Due to the second triple point, there
appears an isolated second uniaxial oblate phase, N(2)

− . Note

0 0.2 0.4 0.6
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3

3.5

4

4.5

5

T

ISO

N+
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L
C

FIG. 9. Phase diagram in terms of temperature T and concentra-
tion c of biaxial objects, for degree of biaxiality � = 2.9. There is no
biaxial nematic phase around the Landau point (L). C indicates the
simple critical point associated with a coexistence region between
two uniaxial oblate phases. The dotted horizontal line indicates a
triple point, corresponding to the coexistence of two uniaxial oblate
phase and one uniaxial prolate phase.
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FIG. 10. Phase diagram in terms of temperature T and concen-
tration c of biaxial objects, for degree of biaxiality � = 3.0. This
system corresponds to a mixture of rods and plates with asymmetric
interaction energies. A uniaxial nematic prolate phase, N+, and two
uniaxial nematic oblate phases, N(1)

− and N(2)
− , are present. There are

two triple points, indicated by the dotted horizontal tie lines.

that, according to Eq. (2), the value � = 3 corresponds to a
binary mixture of rods and plates with asymmetric interaction
energies. A symmetric choice of interaction energies [15]
presents a much simpler phase diagram, with single nematic
uniaxial prolate and oblate phases, in addition to an isotropic
phase, and no triple points.

Figures 11 and 12 represent the phase diagrams for �= 5
and � = 6, respectively. In these diagrams the values of
concentrations are conveniently rescaled, so that visual effects
are improved. Also, note that we introduce some separations
just to emphasize the more interesting sectors of these phase
diagrams. There is no stable Landau point in either phase
diagram. In Fig. 11, the uniaxial phases N+ and N− coexist
with the isotropic (ISO) phase at a triple point, and a biaxial
B− phase remains stable at high concentrations. However, in
Fig. 12, there is a coexistence region of B− and isotropic
phases, as well as a triple point of coexistence of isotropic,
B−, and N+ phases. Figures 11 and 12 suggest that the triple

-10 -5
ln(c)

0

1.2

2.4

T

3.2

3.3

10 20
−ln(1−c)

ISO
N−

B−

CE

N+

FIG. 11. Phase diagram in terms of temperature T and concen-
tration c of biaxial molecules, for degree of biaxiality � = 5.0. The
Landau point is absent. A triple point appears, at which N+, N−, and
ISO phases coexist. The B− phase is stable at high concentrations.
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FIG. 12. Phase diagram in terms of temperature T and concentra-
tion c of biaxial objects, for degree of biaxiality � = 6.0. The Landau
point is absent. There is a coexistence region between the ISO and
the B− phases. In addition, ISO, B−, and N+ phases coexist at a triple
point. The B− phase is stable at high concentrations.

points meet the critical end point as the degree of biaxiality is
increased.

In Fig. 13 we draw the projections of distinct multicritical
points on the �-T plane. The line of Landau points is still
present, as well as the low-temperature part of the line of
critical end points associated with B−. Furthermore, there are
lines of triple points associated with the isotropic (ISO) and
various nematic uniaxial phases, as depicted in Figs. 9 and 10.
The line of Landau points meets the triple lines at another
special multicritical point, which we call the Landau end
point (LE). This point is characterized by the coexistence of a
critical isotropic phase and a noncritical N− phase. Otherwise,
two triple lines meet the line of simple critical points at two
multicritical end points (MCE). In addition, for � � 5.5, the
triple line meets the critical end line at a multicritical point,
M2, where the critical phase N− coexists with the noncritical
N+ and isotropic phases. Consequently, for � � 5.5, there is
a coexistence region between the isotropic and the B− phases
as we increase the concentration of biaxial molecules.

3.5

4

4.5

T

Critical
Landau
Triple
Critical end

2.7 3 3.3
Δ

0
0.1

5.4 5.7 6

2.4

3.2

4LE

MCE

MCE

M2

FIG. 13. (Color online) Lines of phase transitions in the �-T
plane. Dashed black lines represent lines of triple points. The short
solid (red) line of simple critical points ends at two multicritical end
points (MCE). The line of Landau points meets the lines of triple
points at a Landau end point (LE). Also, the longer (blue) line of
critical end points crosses the line of triple points at a multicritical
point, M2.

IV. CONCLUSIONS

We have introduced an elementary six-state Maier–Saupe
lattice model, which is obtained by the addition of extra
degrees of freedom, of a biaxial nature, to an earlier three-state
model. We have then described a phase diagram with biaxial as
well as uniaxial nematic structures and an isotropic phase. The
fully connected MS6 lattice model, of mean-field character, is
sufficiently simple to be amenable to a detailed treatment by
standard statistical mechanics techniques. Results are obtained
in terms of a parameter � which gauges the degree of
biaxiality. We then use this MS6 model to consider a binary
mixture of intrinsically uniaxial (� = 0) and intrinsically
biaxial (� �= 0) molecules and investigate the effects of “shape
variations” on the phase diagrams in terms of temperature and
either chemical potential or concentration of biaxial molecules.

Taking into account the fluid character of the liquid-
crystalline systems, in the present work we have restricted the
analysis to the thermalized (annealed) situation, in which case
orientational and shape degrees of freedom reach equilibrium
simultaneously. We obtain a wealth of topologically distinct
phase diagrams, with several nematically ordered structures
and multicritical points.

In the uniform case, in terms of the temperature T and
parameter �, we regain the first-order transitions between
isotropic and uniaxial nematic phases, and the critical lines
between the biaxial and the uniaxial nematic phases, which
meet at a Landau multicritical point. For a binary mixture of
biaxial and uniaxial molecules, we have drawn a number of
phase diagrams in terms of the temperature versus concen-
tration of biaxial molecules, with fixed values of �, which
display many distinct features. Depending on the parameters,
additional multicritical points appear, such as tricritical and
critical end points associated with the biaxial nematic phase.
The Landau, tricritical, and critical end points may give rise
to a higher-order multicritical point. Also, depending on the
range of values of �, there may be a line of Landau points
meeting a line of triple points at a Landau end point. This
intricate behavior of the mixtures of intrinsically uniaxial and
biaxial molecules can be understood in terms of crossings
of the microscopic energy levels as we change the degree of
biaxiality �.

The explicit expressions for the free energy were used to
obtain the coefficients of an expansion at high temperatures,
in the vicinity of the Landau multicritical point and to make
contact with the Landau–de Gennes theory. We were then
able to check our numerical findings against a number of
phenomenological calculations in the literature. Also, we have
provided a simple way of obtaining the expansion coefficients
in terms of the values of the molecular parameters.

The calculations predict the presence of stable biaxial
nematic phase at low temperatures and sufficiently high
concentrations of biaxial molecules, which is in agreement
with recent calculations of Longa and coworkers [16] for
a more elaborate model system of a mixture of biaxial
molecules in the annealed situation. Depending on the degree
of biaxiality, we predict first-order transitions between biaxial
and uniaxial nematic phases, as well as tricritical points, even
in the absence of a Landau multicritical point. For larger values
of the degree of biaxiality, the line of Landau points splits into
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lines of triple points. Also, we note a clear reentrance of the
biaxial regions for some choices of the parameters, which is
in agreement with the early work of Alben on a lattice model
of platelets [6].

In some recent publications, Akpinar, Reis, and Figueiredo-
Neto [29,30] reported x-ray and optical characterizations
of biaxial nematic structures in a large class of quaternary
liquid-crystalline mixtures. From these measurements, it has
been possible to establish many novel phase diagrams in terms
of the temperature and molar fraction of the components,
which represents a real advance with respect to the early work
of Yu and Saupe on a ternary lyotropic mixture. For all con-
centrations of the amphiphile component, if there is a nematic
biaxial structure, it is thermodynamically stable at intermediate
temperatures, between regions of different uniaxial nematic
structures, at lower and higher temperatures. Also, there are
examples of temperature-concentration phase diagrams with a
clear indication of the existence of a Landau multicritical point.
With a suitable choice of parameters, the MS6 model of binary
mixtures can qualitatively reproduce all of these observations.
In a very recent experimental investigation, Amaral and
coworkers [31] reanalyzed the phase diagram of a ternary
sodium dodecyl sulfate lyotropic mixture and pointed out the
peculiar coexistence of uniaxial and biaxial nematic structures,
which still seems to demand a theoretical explanation.

The present calculations, for the elementary MS6 lattice
model at the mean-field level, are a contribution to the
understanding of the effects of shape variations on the thermo-
dynamic behavior of complex liquid-crystalline systems. The
model of a binary mixture is sufficiently simple to produce a
number of analytical and numerical results for a wide range
of values of the molecular parameters. Also, it seems to be
possible to go beyond the mean-field scenario. The use of
more powerful techniques may uncover additional aspects of
the phase diagrams, in particular, limitations of the mean-field
approach at very low and very high concentrations.
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APPENDIX: RELATION BETWEEN THE BIAXIALITY
PARAMETER � AND THE MOLECULAR ANISOTROPY

Consider a mesogen which, in a schematic, can be repre-
sented by a rectangular parallelepiped with mass m and edges
of lengths a, b, and c. The elements of a “traceless inertia
tensor” � for this object can be defined as

�ij = Iij − 1
3δij Tr I,

where δij is the Kronecker delta and I is the inertia tensor.
In diagonal form, � can be written as

� =
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠,

with

λ1 = m

36
(−2a2 + b2 + c2), (A1)

λ2 = m

36
(a2 − 2b2 + c2), (A2)

λ3 = m

36
(a2 + b2 − 2c2). (A3)

Defining

� = 3
b2 − a2

a2 + b2 − 2c2
,

we can rewrite � as

� = λ3

2

⎛
⎝−1 + � 0 0

0 −1 − � 0
0 0 2

⎞
⎠,

which is proportional to the first diagonal form of the
quadrupole tensor in Eq. (2). The other forms would of course
be obtained by the other five configurations in which the
parallelepiped oriented so that its edges are always parallel
to the Cartesian axis.

Assuming λ3 < 0, the choice a = b < c would lead to a
“rod-like” uniaxial object and to � = 0, whereas a = c > b

would correspond to a “disk-like” uniaxial object, with �= 3.
Both 0 < � < 3 and � > 3 would correspond to unequal
edges and, thus, to biaxial objects.
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[8] J. P. Straley, Phys. Rev. A 10, 1881 (1974).
[9] G. R. Luckhurst, S. Naemura, T. J. Sluckin, K. S. Thomas, and

S. S. Turzi, Phys. Rev. E 85, 031705 (2012).

[10] L. J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000 (1980).
[11] R. Berardi, L. Muccioli, S. Orlandi, M. Ricci, and C. Zannoni,

J. Phys.: Condens. Matter 20, 463101 (2008).
[12] Y. Martinez-Ratón and J. A. Cuesta, Phys. Rev. Lett. 89, 185701

(2002).
[13] E. F. Henriques and V. B. Henriques, J. Chem. Phys. 107, 8036

(1997).
[14] E. do Carmo, D. B. Liarte, and S. R. Salinas, Phys. Rev. E 81,

062701 (2010).
[15] E. do Carmo, A. P. Vieira, and S. R. Salinas, Phys. Rev. E 83,

011701 (2011).
[16] L. Longa, G. Pajak, and T. Wydro, Phys. Rev. E 76, 011703

(2007).

062503-9

http://dx.doi.org/10.1103/PhysRevLett.92.145506
http://dx.doi.org/10.1103/PhysRevLett.92.145506
http://dx.doi.org/10.1103/PhysRevLett.92.145506
http://dx.doi.org/10.1103/PhysRevLett.92.145506
http://dx.doi.org/10.1103/PhysRevLett.92.145505
http://dx.doi.org/10.1103/PhysRevLett.92.145505
http://dx.doi.org/10.1103/PhysRevLett.92.145505
http://dx.doi.org/10.1103/PhysRevLett.92.145505
http://dx.doi.org/10.1103/PhysRevLett.93.237801
http://dx.doi.org/10.1103/PhysRevLett.93.237801
http://dx.doi.org/10.1103/PhysRevLett.93.237801
http://dx.doi.org/10.1103/PhysRevLett.93.237801
http://dx.doi.org/10.1038/430413a
http://dx.doi.org/10.1038/430413a
http://dx.doi.org/10.1038/430413a
http://dx.doi.org/10.1038/430413a
http://dx.doi.org/10.1103/PhysRevLett.24.1041
http://dx.doi.org/10.1103/PhysRevLett.24.1041
http://dx.doi.org/10.1103/PhysRevLett.24.1041
http://dx.doi.org/10.1103/PhysRevLett.24.1041
http://dx.doi.org/10.1103/PhysRevLett.30.778
http://dx.doi.org/10.1103/PhysRevLett.30.778
http://dx.doi.org/10.1103/PhysRevLett.30.778
http://dx.doi.org/10.1103/PhysRevLett.30.778
http://dx.doi.org/10.1051/jphys:01977003802014900
http://dx.doi.org/10.1051/jphys:01977003802014900
http://dx.doi.org/10.1051/jphys:01977003802014900
http://dx.doi.org/10.1051/jphys:01977003802014900
http://dx.doi.org/10.1103/PhysRevA.10.1881
http://dx.doi.org/10.1103/PhysRevA.10.1881
http://dx.doi.org/10.1103/PhysRevA.10.1881
http://dx.doi.org/10.1103/PhysRevA.10.1881
http://dx.doi.org/10.1103/PhysRevE.85.031705
http://dx.doi.org/10.1103/PhysRevE.85.031705
http://dx.doi.org/10.1103/PhysRevE.85.031705
http://dx.doi.org/10.1103/PhysRevE.85.031705
http://dx.doi.org/10.1103/PhysRevLett.45.1000
http://dx.doi.org/10.1103/PhysRevLett.45.1000
http://dx.doi.org/10.1103/PhysRevLett.45.1000
http://dx.doi.org/10.1103/PhysRevLett.45.1000
http://dx.doi.org/10.1088/0953-8984/20/46/463101
http://dx.doi.org/10.1088/0953-8984/20/46/463101
http://dx.doi.org/10.1088/0953-8984/20/46/463101
http://dx.doi.org/10.1088/0953-8984/20/46/463101
http://dx.doi.org/10.1103/PhysRevLett.89.185701
http://dx.doi.org/10.1103/PhysRevLett.89.185701
http://dx.doi.org/10.1103/PhysRevLett.89.185701
http://dx.doi.org/10.1103/PhysRevLett.89.185701
http://dx.doi.org/10.1063/1.475067
http://dx.doi.org/10.1063/1.475067
http://dx.doi.org/10.1063/1.475067
http://dx.doi.org/10.1063/1.475067
http://dx.doi.org/10.1103/PhysRevE.81.062701
http://dx.doi.org/10.1103/PhysRevE.81.062701
http://dx.doi.org/10.1103/PhysRevE.81.062701
http://dx.doi.org/10.1103/PhysRevE.81.062701
http://dx.doi.org/10.1103/PhysRevE.83.011701
http://dx.doi.org/10.1103/PhysRevE.83.011701
http://dx.doi.org/10.1103/PhysRevE.83.011701
http://dx.doi.org/10.1103/PhysRevE.83.011701
http://dx.doi.org/10.1103/PhysRevE.76.011703
http://dx.doi.org/10.1103/PhysRevE.76.011703
http://dx.doi.org/10.1103/PhysRevE.76.011703
http://dx.doi.org/10.1103/PhysRevE.76.011703


NASCIMENTO, HENRIQUES, VIEIRA, AND SALINAS PHYSICAL REVIEW E 92, 062503 (2015)

[17] M. J. de Oliveira and A. M. F. Neto, Phys. Rev. A 34, 3481
(1986).

[18] S. K. Ma, Modern Theory of Critical Phenomena (W. Benjamin,
New York, 1976).

[19] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals
(Oxford University Press, New York, 1993).

[20] As shown in Refs. [21] and [22], the general form of an
anisotropic interaction between biaxial molecules involves two
biaxiality parameters. For simplicity, here we deal with a special
limit which, in the notation of Ref. [23], corresponds to λ = γ 2

and allows us to work with a single biaxiality parameter.
[21] G. R. Luckhurst et al., Mol. Phys. 30, 1345 (1975).
[22] G. R. Luckhurst and S. Romano, Mol. Phys. 40, 129 (1980).
[23] A. M. Sonnet, E. G. Virga, and G. E. Durand, Phys. Rev. E 67,

061701 (2003).
[24] T. A. Witten and P. Pincus, Structural Fluids: Polymers,

Colloids, Surfactants (Oxford University Press, New York,
2004), Chap. 2.

[25] The parameters S and η introduced in Eq. (13) are, respec-
tively, proportional to the parameters q and η defined in
Eqs. (2.68) and (2.69) in Ref. [19]. In our case, comparison
between Eqs. (2) and (13) indicates that S ranges from −1
to 2, while η ranges from min(−| ± S − 4|, − 2 − 2� − S) to
max(|4 ± S|,2 + 2� + S). There has actually been a plethora of

notations introduced in the last decades to denote second-rank
orientational order parameters for biaxial nematics, as reviewed
in Ref. [26]. In particular, it can be shown (see p. 746 in Ref. [26])
that our parameters S and η (which are essentially parameters
a and b in Ref. [26]) correspond to linear combinations of the
four scalar order parameters S, D, P , and C (see Ref. [9])
built from a Cartesian representation of the ordering supertensor.
Specifically, our S is built from a linear combination of S and
U in Ref. [9], while our η is built from a linear combination
of P and C, with the prefactor of C in the combination being
proportional to our �. (Note that Ref. [26] adopts the notation
S, U , P , and F for what are essentially the parameters S, D, P ,
and C in Ref. [9].)

[26] R. Rosso, Liq. Cryst. 34, 737 (2007).
[27] E. F. Gramsbergen, L. Longa, and W. H. de Jeu, Phys. Rep. 135,

195 (1986).
[28] X. Zheng and P. Palffy-Murhoray, Discrete Cont. Dynam. Syst.

B 15, 475 (2011).
[29] E. Akpinar, D. Reis, and A. M. Figueiredo Neto, Eur. Phys. J. E

35, 50 (2012).
[30] E. Akpinar, D. Reis, and A. M. Figueiredo Neto, Liq. Cryst. 39,

881 (2012).
[31] L. Q. Amaral, O. R. Santos, W. S. Braga, N. M. Kimura, and

A. J. Palangana, Liq. Cryst. 42, 240 (2015).

062503-10

http://dx.doi.org/10.1103/PhysRevA.34.3481
http://dx.doi.org/10.1103/PhysRevA.34.3481
http://dx.doi.org/10.1103/PhysRevA.34.3481
http://dx.doi.org/10.1103/PhysRevA.34.3481
http://dx.doi.org/10.1080/00268977500102881
http://dx.doi.org/10.1080/00268977500102881
http://dx.doi.org/10.1080/00268977500102881
http://dx.doi.org/10.1080/00268977500102881
http://dx.doi.org/10.1080/00268978000101341
http://dx.doi.org/10.1080/00268978000101341
http://dx.doi.org/10.1080/00268978000101341
http://dx.doi.org/10.1080/00268978000101341
http://dx.doi.org/10.1103/PhysRevE.67.061701
http://dx.doi.org/10.1103/PhysRevE.67.061701
http://dx.doi.org/10.1103/PhysRevE.67.061701
http://dx.doi.org/10.1103/PhysRevE.67.061701
http://dx.doi.org/10.1080/02678290701284303
http://dx.doi.org/10.1080/02678290701284303
http://dx.doi.org/10.1080/02678290701284303
http://dx.doi.org/10.1080/02678290701284303
http://dx.doi.org/10.1016/0370-1573(86)90007-4
http://dx.doi.org/10.1016/0370-1573(86)90007-4
http://dx.doi.org/10.1016/0370-1573(86)90007-4
http://dx.doi.org/10.1016/0370-1573(86)90007-4
http://dx.doi.org/10.3934/dcdsb.2011.15.475
http://dx.doi.org/10.3934/dcdsb.2011.15.475
http://dx.doi.org/10.3934/dcdsb.2011.15.475
http://dx.doi.org/10.3934/dcdsb.2011.15.475
http://dx.doi.org/10.1140/epje/i2012-12050-9
http://dx.doi.org/10.1140/epje/i2012-12050-9
http://dx.doi.org/10.1140/epje/i2012-12050-9
http://dx.doi.org/10.1140/epje/i2012-12050-9
http://dx.doi.org/10.1080/02678292.2012.686637
http://dx.doi.org/10.1080/02678292.2012.686637
http://dx.doi.org/10.1080/02678292.2012.686637
http://dx.doi.org/10.1080/02678292.2012.686637
http://dx.doi.org/10.1080/02678292.2014.981604
http://dx.doi.org/10.1080/02678292.2014.981604
http://dx.doi.org/10.1080/02678292.2014.981604
http://dx.doi.org/10.1080/02678292.2014.981604



