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Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals
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We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix
ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch
DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of
the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical
results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and
the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical
anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes,
the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We
demonstrate that if the thickness of the DHFLC layer is about 50 μm, the detrimental effect of field-induced
rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light
modulator in the reflective mode is negligible.
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I. INTRODUCTION

High-speed, low-power-consuming light modulation is in
high demand for a variety of photonic devices used as building
blocks of displays and optical information processors. These
include tunable lenses, focusers, wave-front correctors, and
correlators [1–6].

Usually for such devices, in addition to fast switching times,
it is of crucial importance to have a 2π modulation so that
the phase can be smoothly tuned from zero to 2π . Liquid
crystal (LC) spatial light modulators (SLMs) are widely used
as devices to modulate amplitude, phase, or polarization of
light waves in space and time [7]. In LC SLMs, nematic liquid
crystals are among the most popular LC phases. However,
nematic LCs are known to have slow response time and,
in addition, this slow response gets worse if the LC layer
thickness increases in order to obtain the 2π phase modulation.
Therefore, much effort is currently being put forth to optimize
the various LC electro-optical modes for the high-speed light
modulation.

Ferroelectric liquid crystals (FLCs) represent an alternative
and promising chiral liquid crystal material that is charac-
terized by a very fast response time (a detailed description
of FLCs can be found, e.g., in Refs. [8,9]). Equilibrium
orientational structures in FLCs can be described as helical
twisting patterns where FLC molecules align on average along
a local unit director

d̂ = cos θ ĥ + sin θ ĉ, (1)
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where θ is the smectic tilt angle, ĥ is the twisting axis normal
to the smectic layers, and ĉ ⊥ ĥ is the c director. The FLC
director (1) lies on the smectic cone depicted in Fig. 1(a) with
the smectic tilt angle θ and rotates in a helical fashion about a
uniform twisting axis ĥ forming the FLC helix with the helix
pitch P . This rotation is described by the azimuthal angle
around the cone � that specifies orientation of the c director in
the plane perpendicular to ĥ and depends on the dimensionless
coordinate along the twisting axis

φ = 2π (ĥ · r)/P = qx, (2)

where q = 2π/P is the helix twist wave number.
Figure 1 illustrates the important case of a uniform lying

FLC helix in the slab geometry with the smectic layers normal
to the substrates and

ĥ = x̂, ĉ = cos �ŷ + sin �ẑ, E = Eẑ, (3)

where E is the applied electric field that is linearly coupled to
the spontaneous ferroelectric polarization

Ps = Ps p̂, p̂ = ĥ × ĉ = cos �ẑ − sin �ŷ, (4)

where p̂ is the polarization unit vector. This is the geometry
of surface-stabilized FLCs (SSFLCs) pioneered by Clark
and Lagerwall in Ref. [10] where they studied electro-optic
response of FLC cells confined between two parallel plates
subject to homogeneous boundary conditions and made thin
enough to suppress the bulk FLC helix. Figure 1(b) also
describes the geometry of deformed-helix FLCs (DHFLCs)
as it was originally introduced in [11]. The approach to light
modulation that uses the electro-optical properties of helical
structures in DHFLCs with subwavelength pitch also known
as the short-pitch DHFLCs will be of our primary concern.

In short-pitch DHFLC cells, the FLC helix is characterized
by a submicron helix pitch P < 1 μm and a relatively large
tilt angle θ > 30◦. The electro-optical response of DHFLC
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FIG. 1. (Color online) Geometry of (a) a smectic cone and (b) a
planar aligned FLC cell with a uniform lying helix.

cells exhibits a number of peculiarities that make them useful
for LC devices such as high-speed spatial light modulators
[12–16], color-sequential liquid crystal display cells [17], and
optic fiber sensors [18,19]. The effects caused by electric-field-
induced distortions of the helical structure underline the mode
of operation of such cells. In a typical experimental setup,
these effects are probed by performing measurements of the
transmittance of normally incident light through a cell placed
between crossed polarizers.

In this article our goal is to examine light modulation in
planar aligned short-pitch DHFLC (PADHFLC) cells with
a uniform lying FLC helix (the twisting axis is parallel to
the substrates) and the related physical characteristics. This
is the case that was studied theoretically in Refs. [20,21]
where the transfer matrix approach to polarization gratings was
employed to define the effective dielectric tensor of short-pitch
DHFLCs. In particular, it was found that, in contrast to the case
of vertically aligned DHFLCs [15,16], the in-plane optical
axes of PADHFLCs sweep in the plane of the cell under the
action of the applied electric field, thus producing changes in
the polarization state of the incident light. More generally, the
biaxial anisotropy and rotation of the optical axes induced by
the electric field in short-pitch DHFLC cells can be interpreted
as the orientational Kerr effect [15,16,21].

For a detailed experimental characterization of this effect,
we employ the experimental technique based on the Mach-
Zehnder interferometer that goes beyond the limitations of
the above mentioned standard experimental procedure and
provides additional information on the principal refractive
indices. Then we use the results as input parameters to study
light modulation in the DHFLC cell operating in both the
transmissive and reflective modes. Our investigation into the
effects of amplitude modulation is based on the results of
modeling of an axicon designed using the DHFLC spatial
light modulator in the reflective mode.

The axicon as a cylindrically symmetric optical element
that transforms an incident plane wave into a narrow beam of
light along the optical axis has a long history dating back to the
papers by McLeod [22,23]. Laser beams propagating through
axicons have two significant properties: (a) They generate a
line focus, where the on-axis intensity stays high over much
longer distances compared to focusing by conventional lenses,
and (b) they generate ringlike intensity profiles in the far field.
Both of these properties proved useful in many applications
such as atom guiding and trapping [24], annular focusing

in laser machining [25], generation of quasinondiffracting
Bessel-like beams [26–28], subdiffraction limit imaging [29],
and optical micromanipulation [30–32].

The layout of the paper is as follows. In Sec. II we introduce
our notation, describe the recent theoretical results [21] on the
effective optical tensor of short-pitch biaxial FLCs, and discuss
the orientational Kerr effect. Experimental details are given in
Sec. III, where we describe the samples and the setup employed
to perform measurements. The experimental data are fitted
using the expression for the effective optical tensor. Section IV
deals with modulation of light in the DHFLC cells in both
transmissive and reflective modes. Experimental results are
used to compute the amplitudes and phases of the components
of transmitted and reflected light waves. Deformed-helix FLC
spatial light modulator acting as an axicon is modeled as a two-
dimensional (2D) array of pixels which are DHFLC cells. In
order to study the effects of amplitude modulation, the intensity
distribution in the focal plane of the axicon is evaluated for
both DHFLC and ideal (no amplitude modulation) axicons. In
Sec. V we discuss the results and summarize. Technical results
are relegated to Appendixes.

II. ORIENTATIONAL KERR EFFECT

In this section we introduce notation and briefly discuss
the electro-optical properties of short-pitch DHFLC cells
described by the effective dielectric (optical) tensor εeff defined
in terms of averages over the distorted FLC helical structure
[20] (see Appendix A). For the geometry of a uniform lying
FLC helix [see Fig. 1(b)], we recapitulate the analytical results
for the optical tensor of a biaxial ferroelectric liquid crystal
with subwavelength pitch [21]. In the subsequent section these
results will be used to interpret the experimental data.

We consider a FLC layer of thickness D with the z axis
which, as is indicated in Fig. 1, is normal to the bounding
surfaces z = 0 and z = D and introduce the effective dielectric
tensor εeff describing a homogenized DHFLC helical structure.

For a biaxial FLC, the components of the dielectric tensor
ε are given by

εij = ε⊥δij + (ε1 − ε⊥)didj + (ε2 − ε⊥)pipj

= ε⊥(δij + u1didj + u2pipj ), (5)

where i,j ∈ {x,y,z}, δij is the Kronecker symbol, di (pi) is the
ith component of the FLC director (unit polarization vector)
given by Eq. (1) [Eq. (4)], ui = (εi − ε⊥)/ε⊥ = �εi/ε⊥ =
ri − 1 are the anisotropy parameters, and r1 = ε1/ε⊥ (r2 =
ε2/ε⊥) is the anisotropy (biaxiality) ratio. Note that, in the
case of uniaxial anisotropy with u2 = 0, the principal values
of the dielectric tensor are ε2 = ε⊥ and ε1 = ε‖, where n⊥ =√

με⊥ (n‖ = √
με‖) is the ordinary (extraordinary) refractive

index and the magnetic tensor of the FLC is assumed to be
isotropic with the magnetic permittivity μ. We also assume
that the medium surrounding the layer is optically isotropic
and is characterized by the dielectric constant εm, the magnetic
permittivity μm, and the refractive index nm = √

μmεm.
Assuming that the pitch to wavelength ratio P/λ is suffi-

ciently small, the effective dielectric tensor can be expressed in
terms of the averages over the pitch of the distorted FLC helical
structure. Explicit formulas for the components of the tensor
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are given in Appendix A. These formulas can be used to derive
the effective optical tensor of the homogenized short-pitch
DHFLC cell for both vertically and planar aligned FLC helices
[15,21].

We concentrate on the geometry of the planar aligned
DHFLC helix shown in Fig. 1(b). For this geometry, the
effective dielectric tensor can be written in the following
form [21]:

εeff =
⎛
⎝εh + γxxα

2
E γxyαE 0

γxyαE εp + γyyα
2
E 0

0 0 εp − γyyα
2
E

⎞
⎠, (6)

where, following Ref. [15], we have introduced the electric-
field parameter

αE = χEE/Ps (7)

proportional to the dielectric susceptibility of the Goldstone
mode [33,34]: χE = ∂〈Pz〉/∂E with Pz = Ps cos �.

The zero-field dielectric constants εh and εp that enter the
tensor (6) are given by

εh/ε⊥ = (nh/n⊥)2

= r
−1/2
2

{√
r2 + u1 cos2 θ

(
r2 − 1√
u + √

r2
+ u−1/2

)}
,

(8a)

εp/ε⊥ = (np/n⊥)2 = √
r2u, (8b)

u = u1 sin2 θ + 1. (8c)

Similar results for the coupling coefficients γxx , γyy , and
γxy read

γxx/ε⊥ = 3
√

r2/u

(
√

u + √
r2)2

(u1 cos θ sin θ )2, (9a)

γyy/ε⊥ = 3
√

r2u

(
√

u + √
r2)2

(u − r2), (9b)

γxy/ε⊥ = 2
√

r2√
u + √

r2
u1 cos θ sin θ. (9c)

Note that the simplest averaging procedure previously
used in Refs. [12,15,20] heavily relies on the first-order
approximation where the director distortions are described
by the term linearly proportional to the electric field. Quan-
titatively, the difficulty with this approach is that the linear
approximation may not suffice for accurate computing of the
second-order contributions to the diagonal elements of the
dielectric tensor (6). In Ref. [21] the results (6)–(9c) were
derived by using the modified averaging technique that allows
high-order corrections to the dielectric tensor to be accurately
estimated and improves agreement between the theory and the
experimental data in the high-field region.

The dielectric tensor (6) is characterized by the three
generally different principal values (eigenvalues) and the
corresponding optical axes (eigenvectors) as follows:

εeff = εzẑ ⊗ ẑ + ε+d̂+ ⊗ d̂+ + ε−d̂− ⊗ d̂−, (10)

εz = n2
z = ε(eff)

zz = εp − γyyα
2
E, (11)

ε± = n2
± = ε̄ ±

√
[�ε]2 + [γxyαE]2, (12)

where

ε̄ = (
ε(eff)
xx + ε(eff)

yy

)
/2 = ε̄0 + (γxx + γyy)α2

E/2, (13)

�ε = (
ε(eff)
xx − ε(eff)

yy

)/
2 = �ε0 + (γxx − γyy)α2

E/2, (14)

ε̄0 = (εh + εp)/2, �ε0 = (εh − εp)/2. (15)

The in-plane optical axes are given by

d̂+ = cos ψd x̂ + sin ψd ŷ, d̂− = ẑ × d̂+, (16)

2ψd = arg[�ε + iγxyαE]. (17)

From Eq. (6) it is clear that the zero-field dielectric tensor
is uniaxially anisotropic with the optical axis directed along
the twisting axis ĥ = x̂. The applied electric field changes the
principal values [see Eqs. (11) and (12)] so that the electric-
field-induced anisotropy is generally biaxial. In addition, the
in-plane principal optical axes are rotated about the vector of
electric field E ‖ ẑ by the angle ψd given in Eq. (17).

In the low-electric-field region, the electrically induced part
of the principal values is typically dominated by the Kerr-like
nonlinear terms proportional to E2,

n+ ≈ nh + 1

2nh

{
γxx + γ 2

xy

n2
h − n2

p

}
α2

E, (18a)

n− ≈ np + 1

2np

{
γyy − γ 2

xy

n2
h − n2

p

}
α2

E, (18b)

whereas the electric-field dependence of the angle ψd is ap-
proximately linear: ψd ∝ E [tan(2ψd ) ≈ 2ψd = γxyαE/�ε ∝
E]. This effect is caused by the electrically induced distortions
of the helical structure and bears some resemblance to the
electro-optic Kerr effect. Following Refs. [15,16], it will be
referred to as the orientational Kerr effect.

It should be emphasized that this effect differs from the
well-known Kerr effect, which is a quadratic electro-optic
effect related to the electrically induced birefringence in
optically isotropic (and transparent) materials [35]. Similar
to polymer stabilized blue phase liquid crystals [36,37], it is
governed by the effective dielectric tensor of a nanostructured
chiral smectic liquid crystal. This tensor is defined through av-
eraging over the FLC orientational structure (see Appendix A).

III. EXPERIMENT

In this section we present the experimental results on the
principal refractive indices and orientation of the in-plane
optical axis measured as a function of the applied electric
field in DHFLC cells.

A. Material and sample preparation

In our experiments we use the FLC mixture FLC-587
(from P. N. Lebedev Physical Institute of Russian Academy of
Sciences) as the material for the DHFLC layer. The FLC-587
is an eutectic mixture of the three compounds whose chemical
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FIG. 2. Chemical structure of the compound forming the aligning
layer.

structures are described in Ref. [15]. The phase transition
sequence of this FLC during heating from the solid crystalline

phase is Cr
+12 ◦C−−−→ Sm-C� +110 ◦C−−−−→ Sm-A� +127 ◦C−−−−→ Is, while

cooling from smectic-C� phase crystallization occurs around
−10 ◦C−15 ◦C. The spontaneous polarization Ps and the helix
pitch P at room temperature (22 ◦C) are 150 nC/cm2 and
150 nm, respectively.

The cell is sandwiched between two glass substrates
covered by indium tin oxide (ITO) and aligning films with
a thickness of 20 nm and the gap is fixed by spacers at
D = 50 μm. The geometry of the cells is schematically
depicted in Fig. 1(b).

High-quality planar alignment yielding a contrast ratio
up to 200:1 is achieved using 4,4′-oxydianiline dianhydride
(PMDA-ODA) as aligning layers. The chemical formula of
this polyimide after imidization is shown in Fig. 2.

The PMDA-ODA dissolved in dimethyl-formamide (the
concentration was about 0.2 wt. %) is spin coated onto the
ITO surface. The polyimide film then is dried on the ITO
substrate for 30–40 min at a temperature of 180 ◦C, and
subsequent imidization is done at a temperature within the
interval 275 ◦C−290 ◦C for about 1 h.

Following the method of Ref. [38], after cooling, the
polyimide films are rubbed with a cotton shred to provide the
aligning layers anisotropy. The FLC mixture is then injected
into the cells in the isotropic phase by capillary action.

Our task is to obtain regular helix alignment in the cell with
the helix axis parallel to the glass plates. For this purpose, the
FLC cell is subjected to an additional electrical training with
a square-wave function of maximum field amplitude ranging
from 5 to 9 V/μm and the frequency in the range between
0.5 Hz and 2 kHz [39]. The obtained alignment is inspected by
observing textures within the cell in a polarizing microscope.

B. Measurement of the azimuthal angle of the in-plane
optical axis

In our experiments we use a low-power He-Ne laser (λ =
632.8 nm) as a light source. Initially, without applied voltage,
the FLC cell is placed between the crossed polarizers and
rotated so as to minimize the transmission of normally incident
light. Then the cell is subjected to the time-varying voltage of
the symmetric square-wave form with a frequency of 40 Hz
and the amplitude ranges from zero to 100 V. Under the action
of the applied electric field, the in-plane optical axis rotates
about the normal to the substrates (the z axis) and its azimuthal
angle ψd changes.

The angle ψd characterizing the electric-field-induced in-
plane reorientation of the optical axis is measured by rotating
the cell around the z axis and detecting the angle where the
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FIG. 3. (Color online) Azimuthal angle ψd of the major in-plane
optical axis as a function of the electric field for the DHFLC cell
of thickness D = 50 μm filled with the FLC mixture FLC-587
[15]. The experimental points are marked by squares. The solid
line represents the theoretical curve computed from Eq. (17) with
Ps/χE ≈ 4.83 V/μm. The following are the parameters of the
mixture: n⊥ ≈ 1.52 (ε⊥ ≈ 2.3) is the ordinary refractive index,
n‖ ≈ 1.77 (ε‖ ≡ ε1 ≈ 3.13) is the extraordinary refractive index,
θ = 35.5◦ is the tilt angle, and r2 = 1.05 is the biaxiality ratio.

intensity of the transmitted light at positive voltages is minimal.
The experimental results for this angle obtained at different
values of the voltage amplitude are presented in Fig. 3.

C. Measurement of the principal in-plane refractive indices

In order to perform measurements of the principal values
of the in-plane refractive indices n+ and n− [see Eq. (12)], we
use the well-known experimental method that is based on a
Mach-Zehnder two-arm interferometer (it is detailed in many
textbooks such as [40]). In this method, as can be seen in
Fig. 4, a beam splitter divides a linearly polarized incident
light passed through the input polarizer into two paths and the
FLC cell is placed in the path of the sample beam. The sample
and reference beams are then recombined and pass through the
output polarizer so that the interfering beams after the polarizer
are collected by a photodiode.

Given the amplitude of the voltage and the corresponding
value of the principal axis azimuthal angle ψd , the polarizers
are rotated so that the polarization vector of the incident light
is either parallel or perpendicular to the optical axis. In both
cases, measurements giving the electrically controlled part of
the corresponding refractive index are performed during the
half-period of positive applied voltage. The results are shown
in Fig. 5.

D. Results

There are three optical characteristics of the DHFLC cell
that we measure in our experiments: the azimuthal angle of
the optical axis ψd and the electrically controlled parts of
two principal refractive indices �n± = n±(E) − n±(0). The
experimental data for the electric-field dependence of the
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FIG. 4. Experimental setup for measurements of the electrically controlled parts of the in-plane refractive indices of the DHFLC cell.

principal axis angle and �n± are presented in Figs. 3 and
5, respectively.

We can now use formulas for n± [see Eq. (12)] and ψd

[see Eq. (17)] to fit the experimental data. For this purpose, we
assume that the FLC mixture is characterized by the parameters
ε⊥ ≈ 2.3 (n⊥ ≡ no ≈ 1.52), ε‖ = 3.13 (n‖ ≡ ne ≈ 1.77), and
θ = 35.5◦. Then the fitting gives the values of ratios Ps/χE ≈
4.83 V/μm and r2 = ε2/ε⊥ = 1.05 that are regarded as
the fitting parameters. The theoretical curves are shown in
Figs. 3–5. Interestingly, the value of the biaxiality ratio differs
from unity and thus the optical anisotropy of the mixture
appears to be weakly biaxial.

Note that the fitted values of the zero-field refractive indices
are nh ≈ 1.67 and np ≈ 1.57. Figure 6 shows how the principal
refractive indices n± and nz change with the applied electric
field. It is clear that electric-field-induced optical anisotropy is
weakly biaxial with nz − n− � n+ − n−.

IV. LIGHT MODULATION IN DHFLC CELLS

In this section modulation of light in the DHFLC
cells studied in the previous section will be of our

primary concern. For both the transmissive and reflective
modes, the DHFLC modulator is found to be affected
by the presence of amplitude modulation. We study how
this modulation influences the transformation characteris-
tics of a DHFLC spatial light modulator operating as an
axicon producing a ring-shaped far-field distribution of
light.

A. Amplitudes and phases

Typically, in experiments dealing with the electro-optic
response of DHFLC cells, the transmittance of normally
incident light passing through crossed polarizers is measured
as a function of the applied electric field. In the case of normal
incidence, the transmission and reflection matrices can be
easily obtained from the results of Refs. [21,41,42] in the
limit of the wave vectors with vanishing tangential component
kp = 0. For our purposes, we need to write down the resultant
expression for the transmission matrix

T(ψd ) = t+ + t−
2

I2 + t+ − t−
2

Rt(2ψd )σ 3, (19)
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FIG. 5. (Color online) Electrically controlled differences of the principal in-plane refractive indices (a) �n+ [= n+(E) − n+(0)] and (b)
−�n− [= n−(0) − n−(E)] as a function of the square of the applied electric field. Solid lines represent the theoretical curves computed from
Eq. (12) using the parameters listed in the caption of Fig. 3.
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FIG. 6. (Color online) Electric-field dependence of principal refractive indices (a) n+ and (b) nz,−.

t± = 1 − ρ2
±

1 − ρ2± exp(2in±h)
exp(in±h), (20)

ρ± = n±/μ − nm/μm

n±/μ + nm/μm
, (21)

where

I2 =
(

1 0
0 1

)
, σ 3 =

(
1 0
0 −1

)
, (22a)

Rt(2ψd ) ≡
(

cos 2ψd − sin 2ψd

sin 2ψd cos 2ψd

)
, (22b)

and h = kvacD is the thickness parameter. Equation (19)
defines the transmission matrix linking the vector amplitudes
of incident and transmitted waves E0 and Etransm through the
standard input-output relation

Etransm = T(ψd )E0, Etransm =
(

E(transm)
x

E(transm)
y

)
. (23)

When the incident wave is linearly polarized along the x axis
(the helix axis) with

E0 =
(

E0

0

)
, (24)

the components of the transmitted wave can be written in the
form

E(transm)
x /E0 = Ax exp(iφx) = t+ − (t+ − t−) sin2 ψd,

E(transm)
y /E0 = Ay exp(iφy) = t+ − t−

2
sin(2ψd ),

(25)

where Ax,y and φx,y are the normalized amplitude and
phase of the corresponding complex amplitude component,
respectively. Then the transmittance coefficient describing the
intensity of the light passing through crossed polarizers is
given by

|Ay |2 = |t+ − t−|2
4

sin2(2ψd ). (26)

Note that, under certain conditions such as |ρ±| � 1, both the
transmission coefficients (20) and the transmittance (26) can
be approximated by simpler formulas

t± ≈ exp(i�±), �± = n±h, (27a)

t+ − t−
2

≈ sin(��/2) exp[i(�+ + �− + π )/2], (27b)

|Ay |2 ≈ sin2(��/2) sin2(2ψd ), (27c)

where �� = �+ − �− is the difference in optical path of
the ordinary and extraordinary waves known as the phase
retardation.

The complex-valued components of the transmitted plane
wave are thus characterized by the amplitudes and phases Ax,y

and φx,y given in Eq. (25). These can now be computed as a
function of the applied electric field by using our experimental
data combined with the results of fitting presented in Sec. III D.
Referring to Fig. 7, rotation of the optical axis combined with
electric-field-induced change in the phase retardation produces
variations of the amplitudes Ax and Ay with the electric field.

For the component parallel to the helix axis Ex , the
amplitude modulation, however, has a negligibly small effect
on the electric-field dependence of the phase φx . It turns out
that, despite amplitude modulation, this phase is close to �+:
φx ≈ �+.

From Eq. (27c) it might be concluded that the phase
of the component perpendicular to the helix axis φy is
given by (�+ + �− + π )/2. It should be noted that, in
the approximation described by Eq. (27a), when the factor
sin(��/2) changes its sign at the points where the amplitude
Ay (and Txy) is zero, the phase should experience jumplike
behavior with �φx = ±π . These jumps are not shown in Fig. 7
as, in real experiments, the amplitude Ay never reaches zero
due to scattering effects.

We have also computed the amplitudes and phases of the
reflected wave for the DHFLC cell operating in the reflective
mode with the mirror placed at the exit face of the cell. It
can be shown that, for the case of normal incidence, the
reflection matrix can be written as (details are relegated to
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FIG. 7. (Color online) Amplitudes (a) Ax and (b) Ay and phases (c) φx and (d) φy for the components of the transmitted light vector
amplitude Etransm/E0 computed as a function of the applied electric field in the transmissive mode.

Appendix B)

R(ψd ) = r+ + r−
2

σ 3 + r+ − r−
2

Rt(−2ψd ), (28)

r± = ρ± + ρ̃± exp(2i�±)

1 + ρ±ρ̃± exp(2i�±)
, ρ̃± = Rr − ρ±

1 − Rrρ±
, (29)

where Rr is the reflection coefficient of the mirror given by

Rr = ρr

1 − exp(2inrhr )

1 − ρ2
r exp(2inrhr )

, ρr = nr/μr − nm/μm

nr/μr + nm/μm
.

(30)

Here nr (μr ) and hr = kvacDr (Dr ) are the mirror refractive
index (magnetic permittivity) and the thickness parameter
(thickness) of the mirror, respectively.

In the reflective mode, for the incident wave (24), the input-
output relation

Erefl = R(ψd )E0, Erefl =
(

E(refl)
x

E(refl)
y

)
(31)

gives the components of the reflected wave

E(refl)
x /E0 = Ax exp(iφx) = r+ − (r+ − r−) sin2 ψd,

E(refl)
y /E0 = Ay exp(iφy) = − r+ − r−

2
sin(2ψd ).

(32)

The curves depicted in Fig. 8 as solid lines are computed
for the silver mirror of the thickness Dr = 0.15 μm, which
is characterized by the complex-valued refractive index
[43] nr ≈ 0.16 + 3.8i at the wavelength λ = 633 nm. The
magnitude and the phase of the reflection coefficient (30)

Rr = |Rr | exp(iφr ) then can be estimated at about |Rr | ≈ 0.97
and φr ≈ 43◦.

Alternatively, the reflective mode can be described in the
double-layer approximation, which is based on the assumption
of perfect reflection. It uses the transmission matrix (19) where
the thickness of the cell is doubled and D is replaced by 2D.
The results computed in this approximation are shown in Fig. 8
as dotted lines. Interestingly, for the amplitude modulation of
the component Ay , the exact and approximated results are in
excellent agreement. By contrast, the curves for the magnitude
of the component Ax [see Fig. 8(a)] noticeably differ from
each other. It comes as no surprise that the double-layer
approximation overestimates |Ax |.

Similar to the transmissive mode, the results for the phases
φx and φy can be easily understood in the limiting case
where |ρ±| are small and the reflection coefficients r± defined
in Eq. (29) are close to Rr exp(2i�±). From Eq. (32) it
can be inferred that φx ≈ 2�+ + φr and φy ≈ �+ + �− +
φr + 3π/2, whereas the double-layer approximation gives the
relations φx ≈ 2�+ and φy ≈ �+ + �− + π/2. The curves
plotted in Figs. 8(c) and 8(d) clearly show the phase shift
introduced by the mirror and the minus sign on the right-hand
side of Eq. (32) for the component Ay . It can also be seen that
phase modulation is about two times larger compared to the
case of the transmissive mode. So the electric field required to
reach 2π modulation is reduced by a factor of about 1.4.

B. Axicon

The liquid crystal spatial light modulators are extensively
used for formation of light wave fields with a specified
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FIG. 8. (Color online) Amplitudes (a) Ax and (b) Ay and phases (c) φx and (d) φy for the components of the reflected light vector amplitude
Erefl/E0 computed as a function of the applied electric field in the reflective mode. Dotted lines represent the curves computed from Eq. (25)
with the double-layer thickness (D is replaced by 2D). Solid curves are evaluated using the reflection matrix (28) and Eq. (32).

spatial distribution of intensity. The above discussed effects of
amplitude modulation may affect the quality of the resulting
light field. In order to estimate how these effects influence a
reflective DHFLC modulator, we have modeled the DHFLC
SLM as a 2D array of 256 × 256 pixels each of an area of
200 × 200 μm2. It should be noted that in our model the
electric field is assumed to be uniform. In our case, the pixel
size to cell thickness ratio is large enough for this assumption
to be justified.

In our calculations we assume that the incident wave is
linearly polarized along the helix axis (x axis) and the phase
distribution in the plane of the modulator is equivalent to the
phase profile of an axicon given by

φx(x0,y0) = −�axicon
ρ0

R
, ρ0 =

√
x2

0 + y2
0 , (33)

where k = 2π/λ is the wave number, f is the focal length, R is
the axicon radius, and �axicon is the phase modulation depth of
the axicon. The x component of the light field in the focal plane
of lens can be computed from the Fresnel-Kirchhoff diffraction
formula taken in the far-field (Fraunhofer) approximation (see,
e.g., Ref. [44])

Ex(x,y) =
exp

[
ikf + ik(x2+y2)

2f

]
iλf

∫ ∞

−∞

∫ ∞

−∞
Ax(x0,y0)

× exp

[
iφx(x0,y0) − ik

f
{xx0 + yy0}

]
dx0dy0.

(34)

The amplitude and phase distributions Ax(x0,y0) and
φx(x0,y0) that enter the integrand on the right-hand side of
Eq. (34) are approximated as follows: (a) We recast the phase
profile of an axicon characterized by the specified depth of
modulation into the steplike form with the step height equal
to 2π ; (b) the spatial phase distribution is then discretized
along the coordinates x and y with �x = �y = 200 μm so
that each pixel is characterized by the constant phase equal to
the value of φx in its center; (c) for each value of the phase
φx , we compute the corresponding value of the amplitude Ax

and derive the discretized distribution of the amplitude. The
final step involves using the standard fast Fourier transform
technique [45] to evaluate the integral on the right-hand side
of Eq. (34).

Figure 9 shows the phase and amplitude distributions that
were computed for the modulation depth �axicon equal to
16π . The intensity distribution in the focal plane and the
corresponding x dependence of the intensity are presented
in Figs. 10 and 11, respectively. In Fig. 11 the case of the
DHFLC axicon (dashed line) [see Fig. 10(a)] is compared with
the curve (solid line) computed for an ideal axicon without
amplitude modulation [see Fig. 10(b)]. The latter implies
that the amplitude Ax(x0,y0) is assumed to be constant. For
the curves depicted in Fig. 11, the loss of power caused by
amplitude modulation can be estimated to be below 5%.

Note that the results shown in Figs. 9–11 are computed at a
DHFLC cell thickness taken to be about 50 μ m. We have also
found that when the thickness of the DHFLC cells is halved,
reducing the thickness results in an increase of the power loss
that can be estimated at about 11%.
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FIG. 9. Profiles of (a) phase φx and (b) amplitude Ax in the transverse plane of the DHFLC spatial light modulator. Grayscale with 256
levels of gray encodes the values of φx and Ax ranging from zero (black) to 2π and unity (white), respectively.

V. DISCUSSION AND CONCLUSION

In this paper we have studied optical properties of the
planar aligned DHFLC cells (geometry shown in Fig. 1) that
govern modulation of light in such cells. In our experiments
we have combined the experimental data for the electric-field
dependence of in-plane optical axis orientation characterized
by the azimuthal angle ψd (see Fig. 3) with the experimental
technique based on the Mach-Zehnder interferometer to
measure the principal refractive indices as a function of the
electric field (see Fig. 5).

A general expression for the effective optical tensor of a
DHFLC cell derived in Ref. [21] [see Eq. (6)] was used to
fit the experimental curves. The obtained parameters of the
FLC mixture FLC-587 show that this material is a weakly
biaxial FLC. Similarly, the resulting electric-field dependence

of the principal effective refractive indices of the DHFLC cell
plotted in Fig. 6 clearly indicate electric-field-induced optical
biaxiality of the effective dielectric tensor (6). Note that optical
biaxiality of the smectic-C∗ phase was previously reported in
Refs. [46–48].

Note that our theoretical analysis assumes an ideal (undis-
torted) bookshelf structure of smectics layers in DHFLC cells
[see Fig. 1(b)]. This assumption is justified by the fact that,
in contrast to the case of SSFLCs, in DHFLC cells, chevron
structures and related zigzag defects [49] have never been
observed and reported in the literature, whereas the photos of
perfect chevron-free textures formed in DHFLC cells can be
found, e.g., in Refs. [15,39,50].

All the DHFLCs that have been developed by our group and
used in our experiments are 100% composed of molecules with
rigid molecular cores (the chemical structure of DHFLC-587

FIG. 10. Grayscale representation of the intensity distribution in the focal plane of (a) the DHFLC and (b) ideal (no amplitude modulation)
axicons operating in the reflective mode. The cell thickness is about 50 μm.
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of x for the DHFLC and ideal operating in the reflective mode. The
solid line represents the distribution computed for the case of an
ideal axicon without amplitude modulation. The cell thickness is
about 50 μm.

is described in Ref. [15]). So, in our case, the well-known
condition for the formation of chevron-free structures [51,52],
which requires the concentration of molecules with rigid
molecular cores in an FLC mixture to exceed a certain limiting
value, is satisfied. This can be one of the reasons why the
chevron structures appear to be suppressed in the DHFLC
cells. Interestingly, similar molecular structures have recently
been found to be favorable for the de Vries type of FLC [53]
and thus the DHFLCs under consideration could be of the de
Vries type. Nevertheless, it should be stressed that additional
research is needed to unambiguously identify the nature of
the observed chevron-free structure of smectic layers in the
DHFLC cells. Such a study is beyond the scope of this paper.

We have analyzed modulation of light in the DHFLC
cell under consideration by computing the amplitudes and
phases of the components of the light wave transmitted
through (reflected from) the cell in the transmissive (reflective)
mode described using the transfer matrix approach [21].
It has been found that, in addition to phase modulation,
electric-field-induced birefringence and rotation of the in-
plane optical axes generally result in the effects of amplitude
modulation. Additionally, we have calculated the far-field
intensity distribution formed by the DHFLC spatial light
modulator operating as an axicon. From a comparison between
the results obtained for the ideal (no amplitude modulation)
axicon and the DHFLC modulator, it can be concluded that
the characteristics of the DHFLC axicon are very close to the
ones of the ideal axicon. In particular, for a cell thickness of
about 50 μm the power loss due to amplitude modulation is
estimated at about 5%, whereas it increases up to 11% for
the halved thickness. For many applications, such values of
power loss can be regarded as acceptable. Note that, according
to Ref. [54], the vortex light-wave fields shaped in the form
of certain curves, which are of importance for efficient laser
micromanipulation, can be generated using the 2D array made
up of at least 128 × 128 amplitude-phase diffractive elements.

In addition, the typical response time of the DHFLC
modulator based on FLC-587 is known to be around 100 μs
at a phase shift equal to π [17]. So it might be concluded
that all essential prerequisites are in place for elaboration
of the DHFLC spatial light modulator operating almost as
the ideal axicon at a phase modulation frequency of about
1 kHz.
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APPENDIX A: EFFECTIVE DIELECTRIC TENSOR

According to Ref. [20], the effective dielectric tensor

εeff =

⎛
⎜⎝

ε(eff)
xx ε(eff)

xy ε(eff)
xz

ε(eff)
yx ε(eff)

yy ε(eff)
yz

ε(eff)
zx ε(eff)

zy ε(eff)
zz

⎞
⎟⎠ (A1)

can be expressed in terms of the averages

ηzz = 〈
ε−1
zz

〉 = ε−1
0

〈[
1 + u1d

2
z + u2p

2
z

]−1〉
, (A2)

βzα = 〈εzα/εzz〉 =
〈
u1dzdα + u2pzpα

1 + u1d2
z + u2p2

z

〉
, (A3)

where 〈· · ·〉 ≡ 〈· · ·〉φ = (2π )−1
∫ 2π

0 · · · dφ and α ∈ {x,y}, as
follows:

ε(eff)
zz = 1/ηzz, ε(eff)

zα = βzα/ηzz,

ε
(eff)
αβ = 〈

ε
(P )
αβ

〉 + βzαβzβ/ηzz,
(A4)

where 〈ε(P )
αβ 〉 are the components of the averaged tensor 〈εP 〉,

〈
ε

(P )
αβ

〉 =
〈
εαβ − εαzεzβ

εzz

〉

= ε0

〈
δαβ + u1dαdβ + u2pαpβ + u1u2qαqβ

1 + u1d2
z + u2p2

z

〉
, (A5)

qα = pzdα − dzpα, α,β ∈ {x,y}, (A6)

describing effective in-plane anisotropy that governs propaga-
tion of normally incident plane waves. The general formulas
(A2)–(A6) give the zeroth-order approximation for homoge-
neous models describing the optical properties of short-pitch
DHFLCs [15,20].

APPENDIX B: DERIVATION OF THE
REFLECTION MATRIX

In this Appendix our task is to derive the reflection matrix
(28) for the plane wave normally incident on the DHFLC cell
whose exit face is covered with a thin reflecting layer (mirror).
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For this purpose we use the transfer matrix approach in the
form presented in Refs. [21,42,55]. We begin with the 4 × 4
transfer matrix

W =
(

W11 W12

W21 W22

)
= WFLCWr , (B1)

where Wij are 2 × 2 block matrices, expressed as a product of
the transfer matrices of the FLC cell WFLC and the mirror Wr .
Given the transfer matrix (B1), the transmission and reflection
matrices T and R, respectively, can generally be computed
from the formulas (see, e.g., Ref. [21])

T = W−1
11 , R = W21W−1

11 (B2)

that relate T and R with the block matrices W11 and W21.
Applying Eq. (B2) to the case of light normally impinging

upon the FLC layer characterized by the dielectric tensor (10)
gives the transmission matrix

TFLC = [
W(FLC)

11

]−1

= Rt(ψd)

(
t

(FLC)
+ 0

0 t
(FLC)
−

)
Rt(−ψd), (B3)

t
(FLC)
± = 1 − ρ2

±
1 − ρ2± exp(2in±h)

exp(in±h), (B4)

ρ± = n±/μ − nm/μm

n±/μ + nm/μm
, (B5)

where Rt(ψd) is the rotation matrix [see Eq. (22b)], which is
identical to the matrix given in Eq. (19). The corresponding
result for the reflection matrix reads

RFLC = W(FLC)
21

[
W(FLC)

11

]−1

= σ 3Rt(ψd)

(
r

(FLC)
+ 0
0 r

(FLC)
−

)
Rt(−ψd), (B6)

r
(FLC)
± = ρ±

1 − exp(2in±h)

1 − ρ2± exp(2in±h)
. (B7)

For the reflecting layer, the results

Tr = [
W(r)

11

]−1 = TrI2, (B8a)

Tr = 1 − ρ2
r

1 − ρ2
r exp(2inrhr )

exp(inrhr ), (B8b)

Rr = W(r)
21

[
W(r)

11

]−1 = Rrσ 3, (B8c)

Rr = ρr

1 − exp(2inrhr )

1 − ρ2
r exp(2inrhr )

, ρr = nr/μr − nm/μm

nr/μr + nm/μm

(B8d)

can be obtained from the above formulas for the FLC layer by
replacing {n+,n−,h = kvacD} with {nr,nr ,hr = kvacDr}.

For a nonabsorbing FLC material, the unitarity relations
imply the symmetry conditions [21][

W(FLC)
ii

]T = W(FLC)
ii ,

[
W(FLC)

21

]T = −W(FLC)
12 , (B9)[

W(FLC)
11

]† = σ 3W(FLC)
22 σ 3, (B10)[

W(FLC)
21

]† = −σ 3W(FLC)
21 σ 3, (B11)

where a dagger and the superscript T denote Hermitian conju-
gation and matrix transposition, respectively. The conditions
(B9) can now be used to express the block matrix W11 in terms
of the transmission and reflection matrices as

W11 = W(FLC)
11 W(r)

11 + W(FLC)
12 W(r)

21

= [
W(FLC)

11 + W(FLC)
12 Rr

]
T−1

r

= T−1
FLC

[
I2 − RT

FLCRr

]
T−1

r . (B12)

Equation (B12), combined with the relation (B2), immediately
gives the transmission matrix in the general form

T = Tr

[
I2 − RT

FLCRr

]−1
TFLC. (B13)

Similarly, using the symmetry relations (B10) and (B11), we
can obtain the following result for the block matrix W21:

W21 = W(FLC)
21 W(r)

11 + W(FLC)
22 W(r)

21

= [
W(FLC)

21 + W(FLC)
22 Rr

]
T−1

r

= σ 3[T†
FLC]−1{σ 3Rr − [σ 3RFLC]†}T−1

r . (B14)

Substituting formulas (B12) and (B14) into Eq. (B2) gives the
resulting expression for the reflection matrix in the following
form:

R = σ 3[T†
FLC]−1{σ 3Rr − [σ 3RFLC]†}

× [
I2 − RT

FLCRr

]−1
TFLC. (B15)

Formulas (B13) and (B15) are quite general. In particular,
they can be applied to any nonabsorbing uniformly anisotropic
layer represented by the FLC material. For the case of normal
incidence, from Eqs. (B3)–(B8) it follows that, similar to the
matrices TFLC(ψd ) and RFLC(ψd ), the matrices T(ψd ) and
R(ψd ) can be recast into the following factorized form:

T(ψd ) = Rt(ψd )T(0)Rt(−ψd ), (B16a)

R(ψd ) = Rt(−ψd )R(0)Rt(−ψd ). (B16b)

The matrices T(0) and R(0) are diagonal and can be easily
computed. After algebraic manipulations, it is not difficult to
derive the analytical expression for the transmission matrix
given in Eqs. (28)–(30).
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