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Universality and scaling in two-step epitaxial growth in one dimension
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Irreversible one-dimensional (1D) epitaxial growth at small coverages via the recently suggested two-step
growth protocol [Tokar and Dreyssé, Surf. Sci. 637-638, 116 (2015)] has been studied with the use of the kinetic
Monte Carlo and the rate-equation techniques. It has been found that similar to the two-dimensional (2D) case the
island capture zones could be accurately approximated with the Gamma probability distribution (GD). Coverage
independence of the average island sizes grown at the first step that was also found in two dimensions was
observed. In contrast to 2D case, the shape parameter of the GD was also found to be coverage-independent.
Using these two constants as the input, an analytical approach that allowed for the description of the commonly
studied statistical distributions to the accuracy of about 2% has been developed. Furthermore, it was established
that the distributions of the island sizes and the interisland gaps grown via the two-step protocol were about 50%
narrower than in the case of nucleation on random defects, which can be of practical importance. Equivalence
between the GD shape of the island size distribution in the scaling regime and the linear dependence of the
capture numbers on the island size in the rate-equation approach has been proved.
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I. INTRODUCTION

Scaling behavior of various size distributions measured in
the kinetic Monte Carlo (KMC) studies of the irreversible
epitaxial growth has been the subject of extensive study over
the past three decades [1–8]. It has been established that under
the standard growth setup (SGS) when the atoms are deposited
on an initially clean surface in a single run at a constant
deposition rate, the scaling observed was only approximate
[1–3,5–9]. This does not undermine its significance because,
as we know from the renormalization group theory, the
deviations from scaling may provide such vital information
as the critical indexes [10]. Thus, it may be hoped that the
approximate character of the scaling in the epitaxial growth
means that the simulated systems are close to criticality, but
some relevant variables still deviate from their critical values.
Identification of the variables and accounting for the deviations
from scaling could lead to the development of the growth
theory similar to the renormalization group description of the
critical phenomena.

Despite continuing efforts, however, a theory of this kind
has not yet been developed. A major obstacle to theoretical
description of the growth under the SGS poses the necessity
to account for the island nucleation that takes place during
the whole deposition run (see Refs. [3,5] and references
therein). The intertwining of the nucleation and the aggregation
phenomena makes the growth process extremely intricate, so
that even in the one-dimensional (1D) case its theoretical
description poses highly nontrivial problems [5].

As will be shown below, the two-step growth setup (2SGS)
[11] where the island nucleation is restricted mainly to the
first growth step with the second step being dominated by the
aggregation, the aggregation behavior became much simpler.
This is because in the absence of nucleation the capture zone
distribution (CZD) [3] remains unchanged at least in the case
of the point islands. So when the average island size becomes
sufficiently large and the finite-size statistical fluctuations
become negligible, the island size distribution (ISD) scales
as the CZD [12]. This simplifies the identification of relevant

variables that hamper the scaling behavior at the second growth
step.

The aim of this paper is to study the irreversible growth in
the 2SGS in the precoalescence regime in 1D models and to
show that the growth can be accurately described with the use
of only two constants: the average size of the islands nucleated
at the first growth step and the shape parameter of the Gamma
distribution (GD) that characterizes the CZD and the gap size
distribution. This is the main empirical finding of our study.
Previously [11], we established similar result for the 2SGS
in two dimensions. But, first, the topology of 1D and two-
dimensional (2D) spaces is very different, so the two findings
though similar are independent. Second, the shape parameters
of the GDs in two dimensions were coverage-dependent, while
in one dimension the shape parameter has universal value for
all sufficiently small values of the coverage. The existence
of simple analytic expressions for size distributions is very
convenient from both theoretical and experimental points of
view. Such expressions have been suggested for the growth
under the SGS [13], but their adequacy has been questioned
[14–17]. The great accuracy of description of the KMC data
provided by the GD in 2D case in Ref. [11] and in the 1D
case studied in the present paper is an important argument in
favor of the 2SGS. Additionally, the method affords narrower
distributions of both the capture zones and of the gap size
distributions (in the 1D case), which can be of interest for
practical applications.

Furthermore, we will show that the scaling of size distri-
butions takes place when the deposition to diffusion rate ratio
is equal to zero, the average number of atoms in the island
is infinite and the spatial island extent remains constant, thus
identifying the relevant variables responsible to the deviations
from scaling.

The material is distributed as follows. In the next section
we explain our models and notation and present results of
our KMC simulations. In Sec. III we derive the results of
the second-step growth in the framework of two analytic
approaches; in Sec. IV we will discuss a possibility of
experimental verification of our predictions, and in the last
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V. I. TOKAR AND H. DREYSSÉ PHYSICAL REVIEW E 92, 062407 (2015)

section we briefly summarize the obtained results and discuss
their relevance to the development of the scaling theory for the
SGS.

II. TWO-STEP GROWTH IN 1D MODELS

A. The models

The models of irreversible epitaxial growth are conven-
tionally characterized by an integer number i defined as one
less than the minimal number of atoms needed to nucleate
a stable island [2,3]. In the present study we will restrict
ourselves only to the most frequently studied case i = 1
when islands are nucleated at the meeting of two atoms.
After nucleation, the island can only catch the atoms and
grow but detachment of atoms is forbidden. With the usual
restriction to the solid-on-solid growth [3] the morphology of
1D islands from the point of view of growth kinetics can be
fully characterized by a single parameter, the island diameter
which in one dimension coincides with the length l of the
chain of the sites on the substrate covered by the island. This
is because the deposited atom can either impinge directly on
the island with the probability equal to the ratio of the sum of
the island diameters to the total number of sites on the substrate
Pimp or be deposited at the bare substrate with the probability
1 − Pimp.

Islands of different morphologies can be described with the
use of the effective aspect ratio

r = h/l, (1)

where h is an effective island height calculated as the ratio of
the island size s to its diameter: h = s/ l. The extreme cases
are the submonolayer islands with h = 1 when all atoms are
deposited directly on the substrate in the chain of length l, so
that the aspect ratio r = 1/s is at its minimum, and the point
islands when the island diameter is equal to only one site l = 1
so the aspect ratio is at its maximum r = s. The aspect ratio
for islands of arbitrary morphologies is contained within these
limits

1/s � r � s. (2)

The majority of our simulations will be made within the
simpler point-island model (PIM), but the submonolayer case
will also be discussed to gain insight into the complications
brought about by this more realistic case [2–4]. The model
with chainlike islands can describe some experiments on the
growth of the monatomic islands [18,19], in particular, those
growing at the steps of the vicinal surfaces (see Refs. [20,21]
and references therein). We will discuss this possibility in more
detail in Sec. IV.

B. KMC simulations

1. 2SGS protocol and physical parameters

At the first step of the 2SGS a small quantity of adatoms,
which we will characterize by the initial coverage θ0, are
simultaneously placed at the substrate at random positions.
Experimentally this can be achieved by a fast deposition
at low substrate temperature when the surface diffusivity is
negligible. Then the atoms are allowed to diffuse (the substrate
temperature can be raised, if necessary) nucleating stable
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FIG. 1. (a) Symbols: the shape parameter of the GD Eq. (11)
fitted to the KMC data on the CZD for the point (�) and extended
(�) islands; �, the data for extended islands fitted to the GD with the
shifted argument Eq. (14); the lines are guides to the eye. (b) Points:
average sizes of the extended chainlike islands nucleated from the
initial random deposition with coverage θ0; horizontal solid line:
universal island size Eq. (4) for PIM.

dimer islands when meeting another mobile atom or attaching
themselves to already nucleated islands. In the absence of the
deposition flux the diffusivity rate alone defines the time scale
in the system. So as long as the diffusion constant D is nonzero
its precise value does not matter.

When all mobile monomers disappear, an ensemble of small
islands of average size s0

av and the density

N0 = θ0/s
0
av (3)

arises. That terminates the first growth step. A remarkable fact
noted previously in the two-step growth in two dimensions is
that s0

av very weakly depends on θ0. For example, in the case of
the PIM the simulated average sizes of the nucleated islands
were of practically the same size

s0
av = 2.756 ± 0.001 (4)

for seven values of the initial coverage in the range

3 × 10−3 � θ0 � 0.3. (5)

The value of s0
av is shown in Fig. 1 by thin horizontal line

because the statistical errors are too small to be shown
on the scale of the drawing. For comparison also shown
are the values of s0

av for extended submonolayer islands.
Here the finite island size grows with coverage. This is usually
associated with the approach to the coalescence regime (which
is absent in the PIM). Within the 2% accuracy level chosen by
us in the present study the nucleated extended islands have
approximately the same value of s0

av ≈ 2.76 for θ0 � 0.1. We
expect that our results obtained with the use of PIM could be
applied at this level of accuracy also to the extended islands of
different morphologies (not necessarily the linear chains) up
to the coverage θ0 ≈ 0.1.

At the second growth stage the experimental setup is
practically the same as in the SGS, namely, the deposition
of atoms at some constant rate F . The essential difference is
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that the diffusion to deposition rate ratio

R = D/F (6)

should be chosen in such a way that the nucleation of
new islands at the surface were virtually nonexistent. To
achieve this in our simulations, the growth parameters where
chosen to be close to those typically found in metal epitaxy
[3,7,20,22,23], namely, the deposition flux F = 0.003 ML/s,
the deposition temperature T = 250 K, the activation energy of
diffusion Ed = 0.25 eV. The diffusion constant was calculated
according to the standard formula [3]

D = ν exp(−Ed/kT )/q, (7)

where k is the Boltzmann constant, q = 2 the substrate
coordination number, and ν = 1012 Hz the attempt frequency.
This choice led to the value of

R ≈ 1.5 × 109 (8)

roughly in the middle of the typical experimental range 105 <

R < 1011 [7]. The value is large enough to ensure the absence
of nucleation in all our second step growth simulations to a
very good precision. Smaller values of R could have been used
at the adopted level of accuracy (∼2%), especially at larger
island densities, but this question has not been investigated.
The systems simulated were chosen to be of rather large sizes
of 5−10 × 105 sites. But this was only to gather sufficiently
good statistics to which end the simulation was additionally
repeated multiple times to grow up to ∼107 islands. The finite-
size problems that are common under the SGS [2] did not
appear in our 2SGS because at the first growth step many atoms
are deposited at once. In one dimension their movements are
restricted by the left and right neighbors, so they are never
able to traverse the whole system, as is the case when the
atoms are deposited one by one. Thus, the finite system as
effectively “seen” locally by an adatom is indistinguishable
from an infinite one.

To test the quality of the requirement of no nucleation on
the second step with the growth parameters chosen, a test
simulation of the second step growth with θ0 = 0.03 and θ = 1
in the PIM was performed. The number of islands at the end
of the second step was augmented only by 0.2%. But in the
majority of our simulations the maximum coverage θ was an
order of magnitude smaller.

2. The scaling analysis

In the case of the irreversible growth the scaling hypothesis
postulates that the ISD within each universality class (char-
acterized by i, the island morphology, etc.) can be described
with the use of a function f (x) defined according to the relation
[1–3]

Ns = θ

s2
av

f (x = s/sav), (9)

where Ns is the density of islands of size s, θ the total
surface coverage and sav the average island size. We omit
the dependence on i and other parameters because in the
present paper only the i = 1 case for point and linear chain
islands will be studied, so in Eq. (9) s � 2. Also, because
the scaling is expected only in some asymptotic limit at some
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FIG. 2. Schematic drawing showing three point islands (A, B,
and C) separated by two gaps A1 and A2. Also shown is the CZ of
island B of size ACZ � (A1 + A2)/2.

specific “critical” values of the growth parameters (see the
Introduction), we, following many authors, will plot the ISD
data in the form of f (x) derived from Eq. (9) in order to
visualize the scaling and/or its absence.

The physics of the scaling behavior is greatly simplified
in our 2SGS where nucleation is restricted only to the first
growth step. If further restriction to the precoalescence stage
is adopted in the case of extended islands (the phenomenon
is absent in the PIM), the number of islands in the system
will remain fixed throughout the whole second stage. In the
PIM this further means that the distribution of interisland gaps,
hence of the CZs, remains unchanged, because unlike in two
dimensions, in the 1D case the CZs can be easily defined from
purely geometric considerations (see Fig. 2). In the case of
extended islands this will be fulfilled to a good approximation
in the precoalescence regime.

The first step of the 2SGS was simulated at seven values of
the initial coverage in the range given by Eq. (5) both for PIM
and the chainlike islands. The distributions of gap and capture
zone sizes as obtained in the simulations at θ0 = 0.03 are
shown in Fig. 3 for PIM. We did not show the extended island
data because at this and smaller values of the initial coverage
the data virtually coincided. A more interesting observation
was that both the CZDs and gap size distributions data at
small θ0 could be accurately described with the use of a
dimensionless scaling function

G(A) = g(y = A/Aav)/Aav, (10)

where G is either the gap or the CZ size distribution, g the
corresponding scaling function, A the gap or CZ size, and Aav

its average value. It is to be noted that unlike in the SGS,
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FIG. 3. KMC data for size distributions of interisland gap size
(◦) and the island capture zones (×) for coverage θ = 0.03. Statistics
were gathered over ∼107 islands. Thin solid lines are fits to the GD
Eq. (11) with βGS � 2.19 and βCZ � 4.32.
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in our case the scaling of the CZDs immediately implies the
ISDs scaling at the late second-step stage of growth when sav

attain large values, as will be discussed in detail in Sec. III A
below.

More important is the observation, which is our main
empirical finding in this paper, that, as can be seen from Fig. 3,
both scaling distributions could be accurately fitted to the
GD [24]

Pλ(y) = λβ

�(β)
yβ−1e−λy (11)

with λ = β when the scaling variable y as in Eq. (10) is used.
Now, from Fig. 2 it is seen that if we assume that the gaps

between neighbor islands are not correlated, the probability
distribution of the CZs (CZDs) can be obtained from the sum
of two random variables that is distributed as the convolution
of two gap size distributions (the contribution from the island
size is constant in the PIM). But according to Fig. 3 the gaps
satisfy the GD, and the convolution of two GDs is again a GD
with the shape parameter equal to the sum of the individual
shape parameters (see Ref. [24]). Hence, the shape parameters
should satisfy

βCZ = 2βGS. (12)

This equality is satisfied by the simulated values to the
accuracy better than 2% (see caption to Fig. 3). We note
that in the case of randomly distributed nucleation centers the
gaps are distributed according to the exponential distribution,
which is a particular case of the GD with βr

GS = 1. In this
case Eq. (12) gives βr

CZ = 2. Because the relative width
of the GD (dispersion to mean ratio) is defined solely by
its shape parameter as β−1/2 [24], the CZDs, gap size
distributions, and, as a consequence, the asymptotic ISDs (see
Sec. III A) are about 50% narrower than in the random island
distribution √

βGS

βr
GS

=
√

βCZ

βr
CZ

=
√

4.32

2
� 1.47. (13)

In addition, the distributions are more symmetric because the
skewness of the GD scales with β also as the inverse square
root [24] and thus is 50% smaller in the 2SGS in comparison
with the random case. This may be of practical importance for
the growth of nanoisland ensembles.

As can be seen from Fig. 1(a), at larger values of the
initial coverage the values of βCZ for extended and point
islands diverge. While the PIM values remain constant within
the statistical errors, the values for extended islands grow
with coverage, thus violating the universality picture. To
establish empirically the relevant variable that is responsible
for the discrepancy, in Fig. 1(b) we plotted the average island
size values, which behave qualitatively exactly like βCZ for
extended islands. This can be qualitatively understood with the
use of the notion of the CZ with exclusion [25]. In Ref. [25]
it was shown that if there exists the island neigborhood
where other islands cannot be present, the CZD retains the
GD shape but with larger value of the shape parameter β.
The PIM and the extended island model differ in that the
average linear size l of the point islands is equal to one site
irrespective of the coverage. Because of this and of the growth

kinetics adopted (see Sec. II B 1), the minimum possible
average CZ is also trivially equal to unity A(x)

min = 1. This is
the part of the CZ where the CZD should be zero. Extended
islands, on the other hand, have A(x)

min = 3 because the smallest
island with lmin = 2 should be surrounded by at least one empty
site at each side to form a CZ. Thus, on average the minimum
CZ in this case will be A(x)

min = s0
av + 1. Thus, the CZD at

small values of y = A/Aav will be suppressed on average
in the case of extended islands for A � s0

av + 1. In the PIM
this phenomenon is absent. The function that will be almost
zero up to s0

av + 1 ≈ 3.76 will have its effective value of the
power-law behavior β enhanced in comparison with the PIM
case.

To heuristically account for this in the scaling theory
the following change of variables in the scaling ansatz was
attempted:

y = A

Aav
→ y = A − �l

Aav − �l
, (14)

where

�l = A(x)
av − A(x)

min. (15)

The shift in Eq. (15) is zero for the point islands because
the island of any size occupies only a single lattice site, as
explained above. In the case of extended 1D islands, however,

�lext = s0
av − 2. (16)

With the ansatz given by Eqs. (14)–(15) it was possible to fit
the KMC simulation data for extended islands with roughly
the same universal value of βCZ ≈ 4.32 as the PIM data
[see Fig. 1(a)]. Thus, we have empirically established that
the average nucleated island size deviation from its minimum
value Eq. (16) can be used as the relevant variable defining
deviation of the CZD from its scaling asymptotics.

III. ANALYTIC TREATMENT OF THE SECOND
STEP GROWTH

The scaling behavior of the CZDs and gap size distributions
discussed above is fully developed already at the first growth
step because at the second step the geometry of the system
remains unchanged due to suppressed nucleation. In contrast,
the scaling behavior of the ISDs can be observed only at the
second growth step because at the first step the islands do not
grow beyond very small sizes. By the definition of 2SGS, at the
second step the deposition should be so slow that the nucleation
was practically nonexistent and the growth was dominated by
the aggregation. Because in this case the deposited atoms are
distributed among a fixed number N0 [see Eq. (3)] of already
existing islands, the average island size grows linearly with
the deposition time as

sav = s0
avθ/θ0 = s0

av(1 + F t/θ0). (17)

The second equality follows from the fact that in the two-step
growth θ = θ0 + F t . On the other hand, sav is an experimen-
tally measurable quantity, so in studying the evolution it is
possible to use sav as the evolution parameter instead of time,
as will be done in the next subsection.
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A. Probabilistic approach

In the absence of nucleation the evolution of the ISD can be
viewed as the distribution of deposited atoms between fixed
number of islands in proportion to the sizes of their CZs.
This purely probabilistic problem appears also in the case of
inhomogeneous nucleation at impurities studied and solved in
Ref. [12]. The solution reads

Nj = 1

Aav

∫ ∞

0
dyg(y)

(javy)j

j !
exp(−javy). (18)

Here j is the number of atoms in the islands that nucleated
inside the CZs of impurities with the CZD g(y = A/Aav).
As is seen, there exists a nonvanishing density N0,1 of
“islands” containing zero or one atom. These cases describe
the impurities that did not catch any atoms at all or caught only
one atom. As we argued in Ref. [11], the second step growth is
a particular case of the inhomogeneous growth with the islands
nucleated at the first step playing the role of the impurities. In
principle, we could apply Eq. (18) to our problem by assuming
that in our case each impurity has already caught on average s0

av
atoms but not less than two. Then by taking the initial atomic
distribution N0

s from our first step simulations and assuming
that the number of atoms caught initially is independent of the
CZ size we could solve our problem of the second step growth
by probability theory means as the sum of two independent
random variables that is obtained as the convolution of two
distribution Eq. (18) and N0

s .
We, however, will adopt a simpler and, arguably, more

accurate route by noting that in the i = 1 case under the
study the freshly nucleated islands contain exactly two atoms.
The s0

av = 2.76 arises from the fact that some islands catch
additional atoms after their nucleation. It is reasonable to
assume that the probability of an atom to be trapped in the
interisland gap is proportional to the gap size, and, as a
consequence, the probability for an island to catch this atom is
proportional to the size of its CZ (see Fig. 2). Thus, similar to
the impurity case we may consider the growth as the capture
of deposited atoms by the CZs that already contain two atoms
as

Ns�2 = 1

Aav

∫ ∞

0
dyg(y)

[(sav − 2)y]s−2

(s − 2)!
e−(sav−2)y. (19)

Now substituting here g(y) of the Gamma type with the shape
parameter βCZ one gets [11]

N̄s = [(1 + ξ−1)βCZ (1 + ξ )j jB(βCZ,j )]−1|j=s−2, (20)

where ξ = βCZ/(sav − 2); the bar over the density means that
it is normalized to unity. This is done by multiplying Ns [cf.
Eq. (9)] with

Aav = 1/N0 = s0
av/θ0 � sav/θ ; (21)

the last equality in Eq. (21) reflects the absence of the
nucleation at the second growth step.

The ISDs calculated with the use of this formula are
presented in Fig. 4 in the scaling form of Eq. (9). As is
seen, the KMC simulations data are accurately reproduced
for all relevant values of the average island size. Visually the
asymptotic scaling distribution is reached already at sav � 10

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

f
(x

)

x = s/sav

FIG. 4. Island size distributions during the two-step growth at
three coverages. Filled squares, KMC simulations at θ = θ0 = 0.03;
empty squares—θ = 0.05; black circles, θ = 0.1. Dashed lines are
drawn through the points calculated according to Eqs. (20) and/or
(40), and the thin solid line is the GD [Eq. (11)] (for further
explanations see the text).

at θ = 0.1. This conclusion can be rigorously substantiated
with the use of the Laplace method. Indeed, Eq. (18) can be
cast in the form of the Laplace integral as

Ns = (sav − 2)s−2

(s − 2)!

∫ ∞

0
dyg(y)

e2y

y2
exp[−sav(y − x ln y)],

(22)

where x = s/sav. With the use of the standard means and
Eq. (9) one arrives at the expected result

f (x) = g(x) + O(1/sav), (23)

where higher terms of the asymptotic expansion can be
calculated with the use of explicit formulas given in Ref. [26].
But in the present paper we will restrict ourselves to the
observation that Eq. (23) gives a rigorous proof that the average
island size is a relevant variable in the scaling approach and
that exact scaling can be attained only for infinitely large sav.
Still, as can be seen from Fig. 4, the approach to asymptotic
distribution is very fast and the scaling concept can be useful
already starting from a rather modest average island sizes of
about 10 atoms. For clarity the KMC data for higher coverages
are not shown because on the scale of the figure they all
consist of the points with the abscissa values x = s/sav with
sav calculated according to Eq. (17) and the points lying at the
solid curve corresponding to the GD [Eq. (11)].

B. Rate equations

The probabilistic approach allowed us to account for the
dependence of the ISD on the average island size and to show
that the scaling behavior takes place only at infinitely large
value of sav. The dependence on the diffusion to deposition
rates ratio R, however, was missing. But the rate equations
that describe the KMC data in a qualitatively correct way do
depend on both rates [2–4]. Thus, the question arises whether
our probabilistic approach is compatible with the rate-equation
approach. Below we will prove this using the simplest version
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of the rate equations [2,3]

dn

dt
= F − 2Dσ1n

2 − Dn
∑
s�2

σsNs, (24)

dN2

dt
= D(σ1n

2 − nσ2N2), (25)

dNs

dt
= Dn(σs−1Ns−1 − σsNs), s > 2, (26)

where Ns is the density of islands of size s � 2, n the density
of mobile monomers, σs is a capture number that describes
the rate of attachment of mobile monomers to islands of
size s [27]. In these equations we, following many authors
(see, e.g., Ref. [4]), neglected for simplicity the direct im-
pingement terms corresponding to the events when the atoms
are deposited directly on the island, though these processes
were present in the KMC simulations. The approximation,
however, should be good at small island concentration when
the surface is mostly empty, especially in the point island case
when the island themselves occupy only one site. In the case
of large island concentration the direct impingement may
contribute significantly to the islands growth rates. In such
cases the direct impingement terms should be added in Eqs.
(24)–(26) [3]. But in the present paper we will restrict our
study only to the small concentrations.

As is known, at large values of R the system at the
aggregation stage enters into the quasistationary regime when
diffusing monomers form almost time-independent profiles
[2–4]. In terms of the rate equations this picture arises when the
monomer density becomes small so that the quadratic terms
in Eqs. (24) and (25) responsible for the island nucleation
become much smaller than the aggregation terms. Nonetheless,
in contrast to 2SGS, in the SGS the island nucleation cannot
be neglected during the whole deposition run. The new islands
appear all the time and the ISD at small island sizes remains
only about two times smaller than at its maximum value [2,3].
This makes the ISD be very broad and asymmetric. Solutions
of Eqs. (24)–(26) for this case have been extensively studied
in the literature (the bibliography can be found in Ref. [3]) so
we will not discuss them here.

In contrast to the SGS case, in the 2SGS we demand that at
the second step R is set to so a large value that the nucleation
could be completely neglected. In this case we may discard
quadratic in n terms from Eqs. (24)–(25). With the use of new
evolution parameter

τ = D

∫ t

0
n(t)dt, (27)

Eqs. (25)–(26) can be rewritten as

dN2

dτ
= −σ2N2, (28)

dNs

dτ
= σs−1Ns−1 − σsNs, s > 2. (29)

As is seen, Eqs. (28) and (29) constitute a closed set of linear
evolution equations that in many cases admit closed-form
solutions. For example, if the capture numbers are time-
independent, the set can be solved with the use of the Laplace
transform. In extensive KMC simulations in Refs. [6,9] it was

shown that in the SGS the capture numbers do depend on time
in the case of the extended islands. But CZs in SGS are also
time-dependent due to the continuing nucleation. So assuming
that the dependence is fully due to this fact we may assume
that in our case capture numbers are constant.

Next we need to pose the initial-value problem at the
beginning of the second growth step. To do this, we could
take the values of island densities Ns(τ1) at the end of
the first growth step at some value τ = τ1 which could be
found by integration of Eqs. (24)–(26) from τ = 0 to τ = τ1.
Three obstacles make this route quite difficult. First, Eq. (24)
cannot be linearized with the substitution (27), so numerical
integration would be necessary. Second, this would diminish
the usefulness of the linearization of the rate equations at the
second growth step. Third, we would need the values of capture
numbers which in the presence of nucleation cannot be given
a simple geometric interpretation so full many-body problem
need be solved to find their values [27,28].

To overcome the difficulties we once again resort to the
observation made by us in Ref. [29] that the ISDs can be fully
characterized by the average island size sav that effectively
can replace the evolution parameter (t or τ ). Thus, as in
Sec. III A we assume that the aggregation starts from the
freshly nucleated islands of size two as

N2(sav = 2) = θ0/s
0
av, Ns>2(sav = 2) = 0. (30)

Thus, we consider that the aggregation starts at some τ ′
1

when all islands are the dimers and further evolution follows
Eqs. (28) and (29) with the initial values being given in Eq.
(30). Because Eqs. (28) and (29) are autonomous and because
neither of the evolution parameters will interest us in the future,
we shift the initial value of the parameter τ by τ ′

1 and assume
that the initial values are imposed at τ = 0. Now, with the use
of the Laplace transform

Ñs(z) =
∫ ∞

0
e−τzNs(τ ), (31)

Eqs. (28) and (29) can be cast in the form

(z + σ2)Ñ2(z) = θ0/s
0
av,

(32)
(z + σs)Ñs(z) = σs−1Ñs−1(z).

As is easily seen, all Ñs(z) can be found from Eqs. (32)
recursively as

Ñs(z) = θ0

s0
avσs

s∏
k=2

σk

z + σk

. (33)

The Laplace transform in Eq. (33) is a rational function in z

so the inverse transform could be computed analytically
provided the values of the capture numbers were known.
Following many authors (see, e.g., Refs. [6,30–34]) let us
assume that the capture numbers can be approximated by a
linear function of the island size as

σs = as + b, (34)

where a and b are some constants. The liner dependence is
easily justified with the use of the notion of the CZs [3,6,30].
If the capture number is proportional to the size of the CZ and
the island size in its turn is proportional to the capture number,
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then the capture number is proportional to the island size due
to the transitivity of the proportionality relationship. With the
choice [Eq. (34)] of the capture numbers, Eq. (33) can be cast
into the form

Ñs(z) = N0

aj + ac

j∏
l=0

(al + ac)
j∏

k=0

1

z + ak + ac

∣∣∣∣∣
j=s−2

,

(35)

where we shifted the indexes by two with respect to Eq. (33)
and introduced the new constant

c = 2 + b/a. (36)

By construction, parameter a cannot be equal to zero. There-
fore, all singularities in variable z in Eq. (35) are simple poles,
and the residues in the last product needed for the calculation
of the inverse Laplace transform can be found as

e−bτ

j !aj

j∑
k=0

(
j

k

)
e−aτk(−1)k = e−bτ

j !

(
1 − e−aτ

a

)j

. (37)

Next we transform the first product in Eq. (35) by iterating the
identity for the Gamma function

�(v + 1) = v�(v) (38)

as
j−1∏
l=0

(l + c) = �(j + c)/�(c)
j→∞∼ jc, (39)

where the large-j asymptotic behavior was taken from
Ref. [35]. It is to be noted that the left-hand side of this
equation does not make sense for j = 0, while the right-hand
side is equal to unity. But j = 0 corresponds to case s = 2
in Eq. (35), and in this case the product is equal to unity.
Thus, the right-hand size of Eq. (39) comprises all values of
j . Unifying Eqs. (37)–(39) in the expression for the inverse
Laplace transform of Eq. (33) the expression for the ISD

N̄s = C1e
−λ1j [jB(c,j )]−1|j=s−2 (40)

can be obtained. With the use of Eq. (37) parameters C1,
λ1, and c in this equation could be easily expressed through
the unknown parameters a,b, and τ . To express the latter in
terms of some physical quantities, we would need to solve
the nonlinear Eq. (25) which is a nontrivial task. Instead,
in the Appendix we show how C1, λ1, and c can be related
to experimentally observable quantities with the use of the
normalization condition for N̄s and the definition of sav and that
the resulting expression coincides with Eq. (20) obtained in the
probabilistic approach, provided the parameter c in Eq. (40) is
equal to βCZ .

It should be noted that the origin of the parameter b in
Eq. (34) is not completely clear. If the capture number is
proportional to the size of the CZ and the island size at large
s is also proportional to this size, then b should be zero.
In this case βCZ will acquire value 2 [see Eq. (36)], which
coincides with the shape parameter for randomly distributed
islands [see discussion following Eq. (12)]. This would be a
natural zero-order approximation in a mean-field treatment
of the problem. Thus, the nontrivial value of b has to be

attributed to interatomic correlation effects. Because b/a in
Eq. (36) is equal to βCZ − 2 = 2.32 and is of the same order
of magnitude as the mean-field contribution, we conclude that
the many-body correlations are quite strong here, which is
typical for 1D systems.

Thus, Eqs. (28) and (29) can exactly reproduce the results
based on the probability theory that is essentially exact when
the number of the CZs is fixed, i.e., when island nucleation
is suppressed. The latter will obviously violate the scaling
because the scaling function g(y) in Eqs. (19) and (23) will
change with time and/or coverage [9]. The corrections to
scaling due to the omitted terms in Eqs. (24)–(26) can in
principle be found as nonlinear corrections to the exactly
known solutions of the linear equations (28) and (29) in
the framework of some perturbative approach. We leave this
nontrivial problem for future study.

Two conclusions that can be drawn from the results of
this section should be stressed. A less important conclusion is
that our results confirm the qualitative reasoning of Ref. [1]
that the deviations from the linear dependence of the capture
numbers on the island size usually observed in the SGS (see,
e.g., Refs. [3,6,9]) can be attributed to the fragmentation. In
the absence of the fragmentation in our 2SGS the dependence
is strictly linear.

More important conclusion concerns the rate-equation
approach itself. From the probabilistic theory of Sec. III A
it can be concluded that the ISD at large coverage will always
reproduce the CZD that arises from the deposition at the
first step. But this distribution can in principle correspond
to arbitrarily placed dimer islands (e.g., if instead of our
instant deposition method we used some other technique). As
follows from Eq. (23), at the second step we will see the ISD
corresponding to this CZD. But in the rate-equation approach
all such ISDs will be characterized by the same initial value
condition [Eq. (30)]. Thus, irrespective of the initial CZD
the final ISD will be always the GD. This paradox is easily
explained by the mean-field character of the rate equations
when spatial correlations between islands are neglected. Thus,
we conclude that in the general case of arbitrary CZDs a more
sophisticated approach capable to take into account the spatial
correlations should be used [36]. In particular, the dependence
of the capture numbers on the capture area distribution revealed
in Ref. [32] ought to be taken into account.

IV. EXPERIMENTAL SUGGESTIONS

One of reasons for the popularity of the notions of
universality and scaling in physics are the invariance properties
they reveal in physical data. In practice this means that
theoretical predictions can be made that do not depend on
some of experimental conditions, thus simplifying the task
of their verification. As is discussed below, the values of the
diffusion constant, of the deposition flux, and of the 1D surface
coverage are not easily controlled in model realizations of the
1D growth. But our predictions about the average island sizes,
the GD nature of probability distributions of several geometric
quantities, as well as the values of the shape parameter of the
GDs are universal in broad ranges of the growth conditions
and thus admit experimental verification even in the absence
of detailed knowledge of the growth parameters.
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Theoretical predictions on 1D growth can be experimentally
verified in the framework of 2D epitaxy on the vicinal surfaces
with sufficiently straight step edges that can play the role of
the 1D “surfaces” [22,37,38]. The realization of the 2SGS
however, is not straightforward because it is not clear neither
how to perform the instant random deposition at the step
edge at the first growth step nor how to afford the constant
deposition rate at the second step. The second task seems to
be simpler because all we need is that adatoms at the steps
reach the 1D islands before the next deposited adatom reaches
the step edge. This in principle is achievable by adjusting the
deposition rate to be so small that the time intervals between the
adatoms landing at the same or nearest neighbor terraces were
sufficiently long for the previously deposited atom had time to
be attached to the existing step islands. On the other hand, the
second-step growth is not very interesting physically. In the
previous section we showed that the physics of the growth is
quite transparent and easily comprehensible in the framework
of the standard probability theory. Moreover, it can be
described with an accuracy of about 2% within simple analytic
approach.

The results of the growth during the first step, however,
are not as easily grasped. We were not able to find easy
explanations neither to why the average island size is in-
dependent of the initial coverage θ0 in a broad range of its
variation both in 1D and in 2D [11], nor why the interisland
gaps and CZs are distributed according to the GD with
the coverage-independent shape parameter in one dimension.
Presumably, this is a consequence of complex many-body
kinetics that would require similarly complex many-body
treatment within the formalisms developed in Refs. [27,28].
Therefore, experimental check of these predictions would be
of interest.

Realization of the 1D first-step growth in the 2D epitaxy
could be attempted as follows, at least in some systems. We
first note that the adatoms at the step edges are bound more
strongly than the adatoms at the terraces because of higher
coordination. This was confirmed by both ab initio calculations
and experimental data in the case of the Ag/Pt(997) system (see
Ref. [20] and references therein). Therefore, at sufficiently low
temperature the detachment from the edge will be suppressed
and the atoms will behave as in a true 1D system. Stronger
binding at the edges can also lead to higher diffusion barrier to
the edge diffusion. Therefore, at sufficiently small temperature
the diffusion at the terraces can be much faster than along the
steps. In this case the necessary number of atoms can
be deposited at the vicinal surface at sufficiently high rate.
There they will quickly reach the step edges and stay attached
to them with the edge diffusion remaining negligible during the
whole deposition run (2D deposition plus terrace diffusion).
Now, by either annealing the system at the deposition tem-
perature for a sufficiently long time or by slightly raising the
substrate temperature to not violate the irreversibility of the
step binding, it should be possible to experimentally realize
the nucleation stage of the 2SGS on the step edges. Ab initio
or least calculations could be of use in finding an appropriate
system, and the growth parameters at which the scenario just
described could be realized with sufficient precision in order
to adequately represent the first-step growth protocol.

V. CONCLUSIONS

In this paper we studied the irreversible epitaxial growth
in one dimension with the use of the KMC and the 2SGS.
We showed that in contrast to the 2D case studied earlier
[11], the behavior in one dimension is much simpler. In
particular, in the low-coverage range usually associated with
the precoalescence growth regime the shape parameter of the
GD that characterized the CZDs was found to be independent
of the initial seed coverage, unlike in the 2D case. Also, at
the second growth step the simple 1D geometry of the CZs
has made inoperative the mechanism of the narrowing of the
ISDs due to the CZ boundary curvature that we saw in 2D
case. As a result, the ISDs changed their form only at lower
coverages attaining at higher coverages the universal GD shape
with a universal value of the shape parameter. The results of
the simulations at the second step for all coverages from the
smallest to the largest ones could be compactly described with
the use of simple analytic formulas with the accuracy of about
2%. The description comprised gap size distributions, CZDs,
and ISDs, i.e., all distributions that are usually studied in the
irreversible growth models and are measurable experimentally
[20]. We established, in particular, that the universal value of
the shape parameter of the Gamma probability distribution
that describes the CZDs is more than two times larger than the
value corresponding to the randomly distributed nucleation
centers. This means that the distributions of the island sizes
and interisland gaps are about 50% narrower than in the case
of random nucleation. This is similar to the 2D case [11] and
may be of interest for the growth of nanostructures of practical
interest.

From an experimental point of view the universality of
the CZDs and ISDs in the 2SGS in one dimension, i.e.,
their independence from the growth parameters in wide
ranges of their variation and the simple analytic shape of
the Gamma probability distribution, makes the 1D two-step
growth especially convenient for experimental verification
of the model. While in 2D growth or in 1D SGS the
deviations of the ISDs and CZDs from those predicted by
simulations can be explained by the errors in the values of the
parameters, the parameter independence of the 1D two-step
growth makes such an explanation untenable and allows for
definite conclusions about the adequacy of the model to be
drawn.

In our analytic approach we showed that a perfect scaling
of the ISDs can be achieved only asymptotically for very large
islands and very large values of R. Because in experiments
both quantities are always finite, calculation of corrections to
scaling is a task of practical interest. The finite-size corrections
can in principle be calculated with the use of the Laplace
method [26]. The solution of the problem of finite R is
not as straightforward. A possible approach can be based
on the observation that at finite R the nucleation cannot
be fully suppressed. So the finite-R contributions can be
sought as perturbative corrections due to the nucleation terms
quadratic in n that were omitted in our treatment. Using
analytic solutions of the linear problem as the zero-order
approximation one can in principle be able to calculate at least
the lowest order terms. Of course, the rate equations are not
exact but they usually describe the behaviors in a qualitatively
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correct way [3]. So after having established the qualitative
form of the finite-R corrections from the rate equations one
can further improve the description by fitting it either to
the exact KMC simulations or by invoking a more rigorous
approach [27].

It has to be stressed that in our study we used both the
models and the rate equations that are conventionally used in
the growth studies [2–4], only instead of the SGS, the 2SGS
protocol has been used. But because the microscopic physics
of the growth in both cases is the same, our approach should
be applicable with some modifications also to the study of
the scaling under the SGS [2–5,9]. To this end it would be
necessary to first establish the scaling limit. In the simplest
case of the PIM the KMC simulation results at large values
of R and sav could be numerically interpolated to the infinite
values of these quantities [6]. Then the appropriate asymptotic
expansion around this limit should be developed to reproduce
the behavior at physical values of R and sav. The results of
the asymptotic fit to the simulated data in Ref. [2] suggest that
nontrivial values of the “critical indexes” could be expected.
Thus, it may be hoped that with appropriately defined scaling
limit and relevant variables it will be possible to build a scaling
theory of the SGS along the lines discussed in the present
paper.

APPENDIX: ISD AT THE SECOND GROWTH STEP

In this Appendix we show how to calculate parameters C1

and λ1 in Eq. (40) using the normalization of the ISD and an
expression for sav. To this end we first note that the sum over the
island sizes in Eq. (40) from s = 2 to infinity is equivalent to
the sum over j starting from j = 0. With the use of the explicit
expression of the Beta function through the Gamma functions
with subsequent use of the integral representation for �(β + j )
and the factorial representation for �(j ) the following identity

can be established:
∞∑

j=0

e−λ1j�(j + c)/j !

=
∫ ∞

0

∞∑
j=0

(e−λ1u)juc−1e−udu/j !,

×
∫ ∞

0
exp[−(1 − e−λ1 )u]uc−1 du = �(c)/(1 − e−λ1 )c.

(A1)

Thus,
∞∑

s=2

N̄s = C1/(1 − e−λ1 )c = 1 (A2)

[see Eq. (40)]. Taking derivative of Eq. (A1) with respect to
−λ1 and remembering that j = s − 2 another condition is
obtained:

∞∑
s=2

(s − 2)N̄s = C1ce
−λ1/(1 − e−λ1 )c+1 = sav − 2. (A3)

From Eqs. (A2) and (A3) one gets

λ1 = ln

(
1 + c

sav − 2

)
(A4)

and

C1 = [1 + (sav − 2)/c]−1. (A5)

Thus, ISD in Eq. (40) can be fully characterized with the
use of only two quantities: sav and c. For consistency with
the probabilistic expression Eq. (20) we should identify c in
Eq. (40) with βCZ . As to the average island size, one can use
either sav directly, in the case when experimental data provide
its value, or make use of Eq. (17) to express it through other
experimental quantities.
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