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Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments
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Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of
a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation
based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is
species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of
linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In
addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the
same strain field equation. This is the same energy functional that is often used to model elastic effects in binary
alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression
for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic
scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend
to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some
continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys
systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic
contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct
calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that
elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects
are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical
to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.
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I. INTRODUCTION

Many modern material systems consist of alloys of two
or more species. Applications of such alloy systems include
semiconductor systems for new optoelectronic devices [1],
oxides for optical and electronic applications [2], hydrogen
storage systems [3], and more. Different species typically
have different lattice constants leading to elastic strain, which
can significantly impact the performance and stability. Of
particular interest is the strain-driven formation and self-
organization of heterostructures such as quantum dots for
semiconductor systems [4–7]. It is therefore of paramount
importance to develop models that properly describe the effect
of strain in alloy systems.

The challenge in modeling alloys is that the total energy
of an alloy system depends on the composition. This com-
positional dependence is hard to characterize and a common
approach is to assume a species-dependent bond lengths and
bond energies. This allows one to separate the total energy
into the chemical and elastic parts. The alternative is to work
with just the total energy. This is usually not tractable and
the separation allows one to construct tractable models. In the
case of alloys of lattice mismatched elements, the difference
in lattice spacing introduces compositionally dependent strain.
This is not simply characterized by modeling the response of
the material to applied stress. These alloys retain a stress-free
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strain. This strain is determined as the deviation of the bond
lengths from their equilibrium values. However, if the bond
lengths in the bulk are environmentally dependent, it would not
be possible to decompose the energy into chemical and elastic
parts. Fortunately an environmentally independent bond length
appears to be a reasonable approach to modeling microscopic
strain in alloys (see Tsao [8], page 94).

In this paper we revisit the issue of modeling of elastic
energy of a binary alloy. The models for elastic energy of alloys
fall under two broad categories, namely continuum models and
discrete or atomistic models. Reality being that alloys are made
of discrete atoms, a fully atomistic description would be the
model of choice. However, for practical reasons continuum
models are often preferred.

Continuum models aim to characterize the alloy in terms
of macroscopic quantities. These macroscopic quantities must
vary slowly on the atomistic scale for a continuum model
to be consistent. For an alloy, the concentration field does
not in general vary slowly on the atomistic scale. However,
one can introduce an average concentration, which can be
constructed to vary smoothly on atomistic scales. It is apparent
that for alloys one can make good predictions of coarse-grained
displacement fields using continuum theory.

However, the issue of deducing the elastic energy using
continuum theory is more difficult. A common starting point
is to choose the reference lattice for the alloy in accordance
to Vegard’s law based on the average concentration. Vegard’s
law states that the average lattice spacing of an alloy varies
linearly with concentration (see Ref. [8]). A second but more
important assumption is that the stress-free strain of a uniform
alloy in this reference state is zero. Under these assumptions,
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it can be shown [9,10] that for a nonuniform isotropic alloy
the elastic energy can be written as

WC = η2E

1 − ν

∫
V

(θ − θ0)2dV. (1)

In Eq. (1), η is the effective misfit, E is Young’s modulus,
ν is the Poisson ratio, θ is the composition field of the
alloy, and θ0 is its average. This formulation has been used
to study a wide range of problems including strain-driven
morphological instabilities, spinodal decomposition, segrega-
tion, and microstructure evolution in metal and semiconductor
alloys [5–7,10,11]. The formula given by Eq. (1) implies that
nonuniformity of the alloy will result in an increase in elastic
energy. For this reason, it is often suggested that contributions
to the free energy that arise from atomistic misfit stabilize an
alloy or equivalently that intermixing will lower the elastic
energy of the alloy.

While Vegard’s law in itself is known to be true for some
systems [12,13], it is a statement about the average lattice
spacing of alloys. In particular it does not exclude the existence
of microscopic stress free strain with respect to the reference
lattice. Using a Keating model it has been argued (e.g., Tsao
[8]) that for alloys there is microscopic strain even when the
alloy atoms are placed in a lattice given by Vegard’s law. Thus,
the stress-free strain is not zero even when the composition
appears to be macroscopically uniform. The energy stored in
the springs has been used as an estimate for the contribution
to the elastic energy due to this microscopic strain (e.g., Tsao
[8]). The strain energy associated with this microscopic strain
can be considered the elastic contribution to the enthalpy of
mixing, H . Then one could posit (e.g., de Fontaine [14] or
Ren et al. [15]) that the total elastic energy of the alloy can be
written as

W = WC + H. (2)

The atomistic scales are captured by H , whereas WC is used
for the continuum scales. This is only true in the presence of a
clear separation of scales. In many time-dependent problems
there is a range of scales, especially as the system coarsens. For
example, in a finely mixed alloy the dominant contribution will
come from H , while the microscopic strain energy will lessen
in favor of WC as the alloy coarsens. In fact, we will present
results that suggest that the total elastic energy, WC + H , can
actually decrease as the system coarsens. Importantly, this
means that elastic interactions that arise from atomistic misfit
can destabilize an alloy; in other words, they will enhance
segregation.

We are not the first to consider some of the issues discussed
here. For example, Eshelby [16] argued that for materials
whose internal energy is elastic in origin the disordered state is
unstable. On the other hand, from Cahn [9] it would seem that
the disordered state is stable. De Fontaine [14] calls this the
elastic energy paradox. This paradox has also been observed
by Cook and de Fontaine [17] and Khachaturyan [18] (see
Chap. 13). The physical origin of both the continuum elastic
energy and the atomistic elastic enthalpy is the same: different
atomistic sizes of the alloy species. We shall see that the
source of confusion is in treating them separately. They are
both elastic energies, but they are operating on different length
scales.

There is some experimental evidence that atomistic misfit
will destabilize alloys. In the case of thin film growth of a
Si-Ge alloy on Si, Cullis et al. [19] present experimental
evidence that lateral segregation occurs to lower strain. In
metallurgy, Hume-Rothery, Mabbott, and Evans [20], based
on experimental observations, proposed the “15% rule,” which
states that binary solid solutions are very difficult to form if
the atomic size factor exceeds ∼15%. Eshelby [16] asserted
that this rule was a consequence of elastic instability of the
disordered state. In related work, King [21] suggests that
certain alloys based on copper are unstable due to atomistic
size effects. Furthermore, Woodilla and Averbach [22] report
that the critical temperature for spinodal decomposition in
experiments with Au-Ni is ∼220◦, whereas Golding and Moss
[23] used Cahn’s approach and predicted it to be ∼0◦ C. Ren
et al. [15] surmise that if the enthalpy term was included it
would raise this prediction to more closely match experimental
observations.

In this paper, we start with a well-known atomistic model
for a binary alloy in which the bond energy is based on
harmonic springs connecting atoms. The atoms are placed
on a simple square lattice with springs connecting nearest and
next-to-nearest neighbors with the equilibrium lengths being
species dependent. First, we derive the discrete equations for
the displacement field and establish that if one coarse-grains
these equations one will recover the usual continuum equations
of elasticity. This calculation reveals that continuum theory
does a good job at predicting average strain fields. Based
on the form of the discrete elastic energy one can propose
a continuum version of the elastic energy and recover a
well-known and well-used elastic energy, which we will
denote WC . Furthermore, we establish that the Euler-Lagrange
equations associated with WC yield the continuum equations
that were derived from coarse-graining the atomistic equations.
In addition, if we consider the case where continuum equations
are isotropic, the elastic energy of our alloy takes the same form
as Eq. (1).

However, a direct calculation of the elastic energy of the
atomistic model in mechanical equilibrium reveals that its
behavior can be quite different from its continuum counterpart
and the key results of this paper are the following:

(1) This calculation demonstrates that the elastic energy
is anisotropic and scale dependent. Indeed, the calculation
shows that in order to evaluate the elastic energy one needs to
understand the behavior of the concentration field on all scales
ranging from the atomistic to the continuum. The calculation
shows that expressions like Eq. (1) can only be valid when the
system is almost completely segregated.

(2) Furthermore, it also shows that the elastic energy can
be changed by rearrangements at the atomistic scale that would
not affect the continuum concentration field. Segregation at the
atomistic scale can lower the elastic energy and segregation
is preferred over intermixing if one accounts for the atomistic
scale details. This is not captured by the continuum theory,
which not only does not distinguish between the different
configurations with microscopic segregation (due to lack of
resolution) but in fact predicts the opposite.

(3) Our work demonstrates that it is critical to include
the microscopic arrangements in any elastic model to achieve
even qualitatively correct behavior. Specifically, we show that
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the enthalpy of mixing H depends both on the direction
and wave number of the alloy’s compositional variations. It
is important to note that lack of microscopic information is
a direct consequence of the assumption that the stress-free
strain in the reference lattice is zero. We demonstrate that even
though the average stress-free strain in the reference lattice is
zero the strain energy is not.

Interestingly, in the modeling of heteroepitaxial growth
inclusion of any sort of elastic contribution to the enthalpy
of mixing is largely ignored (e.g., Spencer et al. [5] or Shenoy
et al. [7]). For models of spinodal decomposition (e.g., Cahn
[9]), the enthalpy of mixing that includes the microscopic
strain is not explicitly included but it can be argued that it is
implicitly included in the free-energy term (see the discussion
in the footnote on page 1478 of Ref. [10]). Even when enthalpy
of mixing is included it is assumed to be a function of the
macroscopic concentration field (i.e., H = H (θ )). However,
in view of our discrete calculation it follows that H must
depend on the atomistic details of the alloy and among other
things must be scale-dependent.

Our calculations below are based on a ball and spring
model but we surmise that they are valid for real materials
as well. To provide justification of this assertion we also
present calculations using density-functional theory applied to
periodic Si-Ge. For example, we consider three-dimensional
checkerboard patterns with cubes of Si alternated with cubes
of Ge in which the size of the cubes is varied. The calculations
show that as the sizes of the cubes are increased the elastic
energy is reduced—in agreement with the ball and spring
model. Other arrangements of alloys were also considered
and these also make it clear that the elastic energy will depend
on the atomistic details of the alloy.

II. ATOMISTIC ALLOY MODEL

We consider a binary alloy with lattice mismatch (say Si-Ge
for ease of exposition) and use a ball and spring model on a
simple square lattice in two dimensions with lattice spacing
a with periodic boundary conditions. The periodic domain
is assumed to be a square domain of N × N lattice sites.
The atoms are connected by Hookean springs between nearest
and next-nearest neighbors with spring constants KL and KD ,
respectively. For simplicity and ease of calculation the spring
constants KL and KD are chosen to be independent of the
type of bond (Si-Si, Ge-Ge, or Ge-Si). However, for the Si-Ge
system this is a reasonable assumption for the elastic constants
for the two species [24]. The displacement of an atom at site
(�,j ) from the reference configuration is denoted (u�,j ,v�,j ).
Each site on the lattice will be occupied by either a Si or Ge
atom (see Fig. 1) and we use the following indicator function
to denote the atom type at site (�,j ):

θ�,j =
{

1 if (�,j ) if site contains a Ge atom

0 if (�,j ) if site contains a Si atom
.

The equilibrium Si-Si and Ge-Ge bond lengths are denoted as
as and ag , whereas the bond length between a Si and a Ge atom
is taken to be 1

2 (as + ag). In this way the relative unstrained
bond length between atoms at sites (� + n,j + m) and (�,j ) is

FIG. 1. (Color online) The schematic of the ball and spring model
when the atoms are located on the reference configuration.

given by

f�+n,j+m = as − a + asμ(θ�,j + θ�+n,j+m)/2, (3)

where

μ = (ag − as)/as. (4)

The total elastic energy can then be written as

W = W (u,v,θ ) = 1

2

N−1∑
�=0

N−1∑
j=0

(
wL

�,j + wD
�,j

)
. (5)

In this expression, the summand is the total elastic energy in
springs connected to the atom at site (�,j ), where

wL
�j = KL

2

∑
n∈{1,−1}

(δu�+n,j )2 + (δv�,j+n)2,

wD
�j = KD

4

∑
n,m∈{−1,1}

(nδu�+n,j+m + mδv�+n,j+m)2,

and

δu�+n,j+m = u�+n,j+m − u�,j − f�+n,j+m,

δv�+n,j+m = v�+n,j+m − v�,j − f�+n,j+m.

The model we choose is simple enough to be tractable but
with the ability to incorporate the discrete nature of the alloy
and to account for the microscopic arrangement of the atoms
in an alloy. In most models it is typically assumed that the alloy
remains in mechanical equilibrium as it evolves. This means
that we need to evaluate the elastic energy, W , when the system
is in mechanical equilibrium. The equilibrium displacement
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field satisfies

∂W

∂u�,j

= 0 and
∂W

∂v�,j

= 0.

In other words

2KL(u�+1,j − 2u�,j + u�−1,j )

+KD(u�+1,j+1+ u�−1,j+1+ u�+1,j−1+ u�−1,j−1 − 4u�,j )

+KD(v�+1,j+1 + v�−1,j−1 − v�+1,j−1 − v�−1,j+1)

= μas[KL(θ�+1,j − θ�−1,j )

+KD(θ�+1,j+1 + θ�+1,j−1 − θ�−1,j+1 − θ�−1,j−1)]

(6)

and

2KL(v�,j+1 − 2v�,j + v�,j−1)

+KD(v�+1,j+1+ v�−1,j+1+ v�+1,j−1+ v�−1,j−1− 4v�,j )

+KD(u�+1,j+1 + u�−1,j−1 − u�+1,j−1 − u�−1,j+1)

= μas[KL(θ�,j+1 − θ�,j−1)

+KD(θ�+1,j+1 + θ�−1,j+1 − θ�+1,j−1 − θ�−1,j−1)].

(7)

It is easy to see from Eq. (5) that ∂2W

∂u2
�,j

, ∂2W

∂v2
�,j

> 0 and W → ∞
as u�,j ,v�,j → ±∞, hence the solution to Eqs. (6) and (7) is
the unique minimizer of the W . Later in this paper we shall
evaluate W when the displacement field satisfies Eqs. (6) and
(7). However, now it is useful to look at the continuum limit
of these equations.

III. CONTINUUM LIMIT

For alloys, θ can vary on the scale of the lattice and cannot
be used as a continuum variable. Instead we appeal to a coarse-
grained value:

θ̄�,j =
∑
�′,j ′

AR(� − �′,j − j ′)θ�′,j ′ with
∑
�′,j ′

AR = 1,

where AR is an averaging kernel and R is a length
scale over which the averaging takes place (e.g.,
AR(�,j ) = C exp[−(�2 + j 2)/R2], where C−1 =∑

�,j exp[−(�2 + j 2)/R2]). Since the coarse-grained
variables are smooth functions of the lattice site, we can
introduce a smooth function � such that θ̄�,j = �(a�,aj ).

A. The displacement field

We apply the coarse-graining operation to the equations
governing the displacement field (i.e., Eqs. (6) and (7)).
Since the equations of mechanical equilibrium are linear, it
is clear that the coarse-grained variables (ū�,j ,v̄�,j ) satisfy
the same equations as the atomistic system. However, unlike
their atomistic counterparts the coarse-grained variables vary
slowly over atomistic scales such that ū�,j = U (a�,aj ) and
v̄�,j = V (a�,aj ), where U and V are smooth functions. We
can consequently make use of approximations such as

ū�+1,j − 2ū�,j + ū�−1,j ≈ a2Uxx

to find that continuum variables satisfy the following equa-
tions:

KLUxx +KD(Uxx +Uyy +2Vxy) = (ag−as)(2KD+KL)�x,

KLVyy +KD(Vxx +Vyy +2Uxy) = (ag − as)(2KD+KL)�y.

(8)

Therefore, continuum theory can predict the coarse-grained
displacement field in terms of the coarse-grained concentration
field. Finally, we point out that for the case KL = 2KD the
system Eq. (8) corresponds to isotropic elasticity. This is seen
by noting that the above equations represent the constitutive
relation between the stress and the strain and collecting the
elasticity tensor (see Refs. [10,25]).

B. Continuum elastic energy

The elastic energy is a quadratic function of the displace-
ment field and accordingly it is not a simple matter to apply the
coarse-graining operation to W and express the result in terms
of the coarse-grained variables. Instead, what can be done is
to use approximations, such as

θ�+1,j − θ�,j ≈ a�x, (9)

and replace the atomistic value of θ by its continuum value,
�. Given that the atomistic values are not necessarily smooth
functions of the lattice site, approximations of the type given
by Eq. (9) could be rather poor.

Nevertheless, if we apply this procedure to the atomistic
energy [Eq. (5)], we arrive at the following continuum version
of the elastic energy:

WC = 1

2

∫ [
(KD + KL)

(
S2

xx + S2
yy

) + 2KDSxxSyy

+ 4KDS2
xy

]
dxdy, (10)

where S = E − E0,

Ejk = 1

2

(
∂Uj

∂xk

+ ∂Uk

∂xj

)
and

E0 = 1

a

(
as − a + (ag − as)� 0

0 as − a + (ag − as)�

)
.

We remark that E0 is sometimes called the stress-free strain. It
should be emphasized that Eq. (10) is a commonly used model
(e.g., Refs. [5–7]). In addition, the Euler-Lagrange equations
for WC give rise to the equations for continuum elasticity
Eq. (8). By this we mean

δWC = 0 ⇒
2∑

k=1

∂

∂xk

∂WC

∂Uj,k

= 0

will yield Eq. (8).
By following the same approach as Cahn [9], we will com-

pute the elastic energy of an alloy in mechanical equilibrium
for the isotropic case (KL = 2KD). We consider a periodic
region of size 2π × 2π , and we find

WC = W + W̃C,
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where

W = 4KD(as − a + �0(ag − as))
2(2π )2/a2

and

W̃C = 4

3
KD

(
μas

a

)2 ∫∫
(�(x,y) − �0)2 dxdy,

where �0 = average value of �. We note that W is
the “DC” contribution (direct current or nonoscillating) to
WC and W̃C is the contribution from the compositional
variations. Notice that by adjusting the lattice spacing a of
the reference configuration we can make W = 0. This value
is a = as + �0(ag − as) and is sometimes called Vegard’s
law. An important conclusion from this continuum formu-
lation is that the elastic energy is zero for a homogenous
alloy whose reference lattice spacing satisfies Vegard’s law.

IV. ELASTIC ENERGY IN THE ATOMISTIC CASE

It should be pointed out that here we are closely following
the calculations of Cahn [9]. In this section we apply his
approach to discrete equations while he considered continuum
equations.

Since we are in the periodic setting it is useful to expand
various quantities in a discrete Fourier series. For example,

θ�,j = 1

N2

N−1∑
n=0

N−1∑
m=0

θ̂m,ne
iα(m�+nj ), (11)

where α = 2π/N and θ̂m,n is the discrete Fourier transform
of θ�,j . Furthermore, we will for now restrict our calculations
to the case KL = 2KD , in which case the continuum limit is
isotropic. Applying the discrete Fourier transform to Eqs. (6)
and (7) and solving for the transformed displacement field we
find

ûm,n =
{

0 n = m = 0
−2μas iθ̂m,n cos2(nα/2) sin(mα)

4−cos(mα)−cos(nα)−2 cos(mα) cos(nα) otherwise
(12)

and

v̂m,n =
{

0 n = m = 0
−2μas iθ̂m,n cos2(mα/2) sin(nα)

4−cos(mα)−cos(nα)−2 cos(mα) cos(nα) otherwise,
(13)

where ûm,n and v̂m,n are the discrete Fourier transforms of u�,j

and v�,j , respectively.
Our goal is now to calculate the total elastic energy of

the ball and spring model when the system is in mechanical
equilibrium. To that end, it is useful to define the average value
of θ :

θ0 =
N−1∑
n=0

N−1∑
m=0

(m,n)
=(0,0)

θm,n.

Now it is worth noting that θ0 = θ̂0,0. In view of the two
formulas above [Eqs. (12) and (13)] it is apparent that each
component of the displacement field has mean zero. Therefore,
in mechanical equilibrium we have

W (u,v,θ ) = W (0,0,θ0) + W (u,v,θ − θ0) ≡ W + W̃ ,

where W = N24KD[as − a + θ0(ag − as)]2. The first term,
W , represents the contribution to the elastic energy if the
material was of a uniform concentration. The second term,
W̃ , results from the compositional variations. We compute W̃

using Parseval’s formula combined with Eqs. (12) and (13). A
lengthy calculation reveals

W̃ = KD(asμ)2

N2

N−1∑
n=0

N−1∑
m=0

(m,n)
=(0,0)

G(αm,αn)|θ̂m,n|2, (14)

where

G(x,y) = T (x,y)

8(4 − cos x − cos y − 2 cos x cos y)2

and

T (x,y) = 196 − 87[cos x + cos y] + 4[cos 2x + cos 2y]

+ cos 3x + cos 3y

− 42[cos(x − y) + cos(x + y)]

+ 2[cos(2x + 2y) + cos(2x − 2y)]

+ 11[cos(2x + y) + cos(x + 2y)

+ cos(2x − y) + cos(x − 2y)]

+ cos(x − 3y) + cos(3x − y) + cos(x + 3y)

+ cos(3x + y).

Since G(2π − kx,ky) = G(kx,2π − ky) = G(2π − kx,2π −
ky)=G(kx,ky) it is enough to consider G(kx,ky) for 0 < kx �
π and 0 < ky � π .

Notice that W̃ does not depend on a but W does. In fact, we
can relax our alloy by changing a: If we pick a = as(1 + θ0μ)
(Vegard’s law), then W = 0. For the remainder this value of a

will be used. Therefore, the elastic energy of the relaxed alloy
is W̃ .

The dependence of W̃ on θ can be gleaned from Fig. 2. Note
that W̃ is a weighted sum of the G(kx,ky) with weights |θ̂ |2.
Different regions of the k space represent different aspects
of composition profiles. For example, an alloy that is finely
intermixed on an atomic scale has weights |θ̂ |2 concentrated
near (kx,ky) = (π,π ), while for an alloy with variations on
continuum length scales the weights are concentrated near
(kx,ky) = (0,0). It therefore follows from Fig. 2 that finely
mixed alloys have more elastic energy than those that are
segregated. Moving along from (π,π ) to (0,0) corresponds
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FIG. 2. (Color online) A plot of G(kx,ky) for the case KL =
2KD (KD = 1).

to coarsening patterns with checkerboard symmetry. The
fact that G(π,π )/G(0,0) = 3/2 indicates that intermixing
can significantly increase the elastic energy. Interestingly, it
also follows that fine line patterns (along kx = 0 or ky = 0
axis) have even less elastic energy for the case where the
constants KL and KD are related by KL = 2KD . Although
these cases can be viewed as different regions of k space,
typical composition profiles would of course have weights in
all regions and no separation of scales. Thus, Fig. 2 also points
to the difficulty relying on formulas like Eq. (2), since it is clear
that the elastic energy depends on the details of the atomistic
arrangement over the full range of length scales.

As mentioned above, the behavior near (kx,ky) = (0,0)
describes an alloy with variations on continuum length scales
and we note that

G(αx,αy) = 4

3
+ 3x4 − 10x2y2 + 3y4

9(x2 + y2)
α2 + O(α4), (15)

which means the limit lim(kx ,ky )→(0,0) G(kx,ky) is well defined
and equal to 4

3 . This is consistent with the assertion that the
case KL = 2KD recovers isotropic elasticity. Furthermore, if it
assumed that θ�,j is a continuum variable (i.e., |θ̂m,n| is strongly
concentrated at the origin), then

lim
α→0

W̃ = 4kD(asμ)2

3N2

N−1∑
n=0

N−1∑
m=0

(m,n)
=(0,0)

|θ̂m,n|2

= 4

3
kD(asμ)2

N−1∑
�=0

N−1∑
j=0

(θ�,j − θ0)2. (16)

Therefore, the model is anisotropic on small scales and
isotropic on large scales. The anisotropy of ball and spring
models on atomistic scales has been discussed in Refs. [17,26].

A. Anisotropic continuum limit

We note that for KL 
= 2KD the continuum limit becomes
anisotropic. It is well known (see Ref. [10], page 1447) that in
this case the function G(kx,ky) is a homogeneous function of
order 0 near the origin and lim(kx ,ky )→(0,0) G(kx,ky) is not well

FIG. 3. (Color online) A plot of G(kx,ky) for KL = KD = 1.

defined giving rise to the cusp-like behavior near the origin
(see Figs. 3 and 4).

The nature of G makes it difficult to make claims about the
relative amount of elastic energy in the different scales for a
wide range of values of KL and KD . However, the behavior
along the diagonal is relatively robust, as can be seen in Fig. 5.
In addition, we can establish that for arbitrary KL and KD one
has limα→0 G(π,π )/G(α,α) = (KL + 4KD)/(KL + 2KD) >

1, which suggests that the tendency for finely mixed systems
to have a greater elastic energy than a segregated one persists.

B. Elastic enthalpy of mixing

If we compare Eqs. (14) and (16), it is evident that if one
ignores the microscopic scales of the concentration field (i.e.,
by only considering the Fourier modes near the origin) then the
discrete elastic energy is consistent with the continuum elastic
energy. But more importantly the discrete and continuum cases
are different because the continuum elastic energy fails to
account for the contribution of the microscopic scales. The
reason the coarse grained displacement field does not suffer
from this fate is that the microscopic strain fields average

FIG. 4. (Color online) A plot of G(kx,ky) for KL = 3KD

(KD = 1).
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FIG. 5. A plot of G(k,k)/G(0,0) vs. k for different values of
λ = KL/KD .

out. Since the energy is a quadratic quantity, the microscopic
contributions do not cancel when averaged.

As can be inferred by Tsao [8], atomistic variations of
the alloy concentration lead to microscopic strain whose
contribution to the elastic energy can be referred to as the
elastic contribution to the enthalpy of mixing, H . Therefore,
it follows from Eq. (14) that H is determined by both
the direction and wavelength of the Fourier modes of the
microscopic concentration field. Furthermore, it appears that
H cannot be a function of the average concentration unless
some simplifying approximations are made. This can be done
in one setting, namely if one assumes that the alloy is in
local thermodynamic equilibrium. In this case one has, in
principle, H = H (�,T ). However, when the alloy is not in
local thermodynamic equilibrium, as is the case in epitaxial
growth or spinodal decomposition, then H 
= H (�,T ), and
then H will be determined by details at the atomistic scale.
Unfortunately this information is completely lost during coarse

graining. This points to the difficulty of modeling elastic
energy using continuum theory.

The following example is useful in elucidating some of
the issues discussed above. Consider a binary alloy arranged
on a checkerboard pattern as shown in Fig. 6 [θ�,j = 1

2 (1 −
(−1)�+j )]. We have chosen the lattice spacing of the reference
configuration to be in accordance with Vegard’s law [a =
1
2 (as + ag)]. Clearly then on a continuum scale the alloy
can be considered homogeneous �(x,y) = �0 with �0 =
1
2 . Consequently, the widely used continuum formulation
[Eq. (1)] predicts that the elastic energy is zero. On the other
hand, it is clear that there will be elastic energy in the bonds
due to the fact that the atoms on this lattice do not correspond to
their equilibrium bond length. The continuum approximation
ignores the microscopic stress fields. This is fine for the coarse-
grained displacement field as the microscopic fields average
out. However, when computing the energy the microscopic
fields do not average out.

Now one could of course assert that the energy associated
with the microscopic strain, calculated above as W̃ in Eq. (14),
is the enthalpic component H of the elastic energy and in
many respects it is. However, we will now argue that it
cannot be simply characterized by the continuum value of the
concentration. This can be seen as follows: suppose we now
coarsen the checkerboard (see Fig. 6) so that the length scale is
2 atomistic units. Clearly on the continuum scale the alloy can
still be considered homogeneous and [Eq. (1)] still predicts
that the elastic energy is zero. However, if we appeal to Fig. 2
we can infer that the elastic energy of the 2 × 2 checkerboard
will be smaller than that of the 1 × 1 checkerboard, but the
continuum value of the alloy concentration has not changed.
Therefore, we conclude that the elastic mixing enthalpy of
a binary alloy cannot be characterized in terms of the alloy
concentration alone. Of course, Fig. 2 makes this quite clear.

FIG. 6. (Color online) The figure on the left shows two microscopic arrangements that yield the same continuum alloy concentration
(shown on the right). The upper-left-hand figure shows a 1 × 1 checkerboard pattern, whereas the lower one is a 2 × 2 pattern.
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V. DENSITY FUNCTIONAL THEORY

To explore the broader applicability of the ideas discussed
above, we perform DFT calculations for Ge-Si (with a zinc-
blende lattice). All results presented here were obtained with
the FHI-AIMS code [27]. This is an all-electron full potential
DFT code that uses numeric atom-centered orbitals as its basis
set. We have carefully tested convergence of our results with
respect to the basis set, and the density of the (numerical)
integration mesh, and have used parameters as they are
implemented in FHI-AIMS in the default setting “tight” [27].
We use GGA-PBE for the exchange-correlation functional
[28]. All calculations were done with supercells with periodic
boundary conditions, and the geometric configurations are
fully relaxed.

Before we discuss the DFT results we note that one cannot
simply repeat the calculation done in the case of the ball and
spring model. The reason is that DFT provides one with the
total energy for a given configuration, which has no clear
separation between bond and elastic energy. However, for Si
or Ge bulk and Si-Ge in a perfect unstrained lattice the only
contribution to the energy is the chemical bond energy. If we
assume that each atom forms exactly four bonds with its nearest
neighbors (which is reasonable for a zinc-blende structure),
we can estimate the Si-Si, Ge-Ge, and Si-Ge bond-strengths
EB

Si, EB
Ge, and EB

SiGe as follows: We calculate the energy of
a bulk system with Ntotal atoms, subtract the energy of Ntotal

isolated atoms, and divide this number by 2Ntotal. In a strained
system, the elastic contribution Eel is defined as the difference
between the total energy of the strained system and the sum of
all nearest-neighbor bonds. This definition of Eel is consistent
with assuming that during the mechanical relaxation the bond
energy remains the same while the elastic energy changes and
that the total energy is the sum of elastic and bond energies.
All of our calculations are at T = 0, so there are no entropic
contributions.

We calculated the bond energies for systems where all
atoms are in a lattice with the optimized lattice constants
aSi,aGe, and aSiGe. The optimized lattice constants are cal-
culated by optimizing three different configurations. The first
consists purely of Si atoms. The second purely of Ge atoms.
The third system used to calculate aSiGe consists of 50% Si
and 50% Ge arranged in an alternating fashion so that all
bonds in the zinc-blende structure are Si-Ge bonds and are
configurationally equivalent to one another under periodic
boundary conditions. Thus, the uniform lattice spacing of the
optimized structure yields the aSiGe lattice spacing. The three
different bond strengths are calculated in a similar manner.
The results are shown in Table I. For all lattice constants we
find that EB

Si is stronger than EB
Ge, while EB

SiGe is in between.
But a closer inspection of the numbers reveals that EB

SiGe is

TABLE I. Bond strengths EB (in eV) calculated with DFT.

Lattice constant EB
Si EB

Ge EB
SiGe

1
2 (EB

Si + EB
Ge)

aSi 2.677 2.176 2.431 2.426
aSiGe 2.661 2.213 2.442 2.437
aGe 2.608 2.227 2.420 2.418

FIG. 7. (Color online) The atom arrangements for the density-
functional calculations. The figure on the right shows the NC = 1
checkerboard pattern, whereas the one on the left shows the NC = 64
pattern.

2 to 5 meV stronger than the average of EB
Si and EB

Ge for
all lattice constants. This implies that simple bond counting
arguments predict that a perfectly intermixed Si-Ge system
is always preferred, regardless of whether the system has the
lattice constant aSiGe, is compressed to aSi, or is stretched to
aGe.

Now we proceed to understand the system with elastic
effects. For this we consider various configurations of a
Si0.5Ge0.5 alloy. We compare bulk alloy composition profiles
that resemble a three-dimensional checkerboard, where each
“checker-unit” consists of 1, 8, or 64 atoms of the same type
(i.e., all Si or all Ge) occupying a cubic region in space (see
Fig. 7). This corresponds to moving along the diagonal for
G (see Fig. 2). We do this by placing the configuration in a
zinc-blende lattice with reference lattice constant aSi or aSiGe

and then optimizing the structure.
Table II summarizes the DFT results. �Etot is the difference

in the total energy(Etot that includes bond and elastic energies)
for systems with checker units that consist of NC atoms and
a checkerboard with NC = 1. For a system with the lattice
constant aSi (which is most relevant for Ge deposition on Si) we
find that the checkerboard with NC = 8 is preferred by 1 meV
per atom (over a system with NC = 1), and that one with NC =
64 is preferred by 4 meV per atom. For the lattice constant
aSiGe, the coarser system with NC = 64 is also preferred, but
only by 1 meV.

The numbers for �Eel(NC) = Eel(NC) − Eel(NC = 1)
represent the change in energy per atom after correcting for the
fact that simple bond-counting arguments favor intermixing
and should be considered the true elastic contribution due to
coarsening. For example, for a system with NC = 8, half of
the bonds are converted from being Si-Ge bonds to being

TABLE II. �Etot and �Eel for different values of NC . Energy
changes (in meV) are with respect to a system with NC = 1 (a perfect
zinc-blende structure).

NC �Etot(aSi) �Etot(aSiGe) �Eel(aSi) �Eel(aSiGe)

1 0 0
8 −1 1 −6 −4
64 −4 −1 −11 −8
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either Si-Si or Ge-Ge bonds, and one can show that �Eel =
�Etot − 1/2EB

Si − 1/2EB
Ge + EB

SiGe. Since the average of the
Si-Si and Ge-Ge bond is 5 meV weaker than the Si-Ge bond
(cf. Table I), intermixing is preferred by 5 meV per atom for
this system. Similarly, for a system with NC = 64, �Eel =
�Etot − 2/3EB

Si − 2/3EB
Ge + 4/3EB

SiGe, and intermixing is
preferred by 7 meV per atom. �Eel then represents the fact
that elastic contributions have to overcome this favoring of
intermixing. The results confirm that elastic effects favor
segregation.

We further note that the numbers given in Tables I and II
are real numbers. The units are in eV. The accuracy of the DFT
calculations is at best of the order of meV. Therefore, we have
rounded the results to three significant digits past the decimal
point (i.e., meV). In Table II we then report differences, and
these are given in meV.

In addition we have done DFT calculations where we
considered Si0.5Ge0.5 systems with alternating layers of Si
and Ge. These layers are periodic in two dimensions and have
layer thicknesses 1 and 2. The layers are oriented along the
(100) direction, and consist of a bilayer of Si and Ge. For these
systems we also find that a thicker layer is preferred by 1 meV
(2 meV) when the system has the lattice constant aSi (aSiGe).
This trend continues for thicker layers (but additional changes
are less pronounced).

VI. HETEROEPITAXIAL THIN FILMS

We now consider a strained flat film of thickness T of pure
Ge on a semiinfinite substrate of pure Si. This case has a free
surface unlike the periodic cases discussed above. According
to continuum theory, the total elastic energy will be

W = Cμ2AT,

where C depends on the elastic properties and A is the area of
the film. Now suppose that Si and Ge mix perfectly in such a
way that the film has a fraction θ0 of Ge. The film now has a
thickness T/θ0 and an effective misfit of μ(θ0) = θ0μ [7]. By
continuum theory the total elastic energy is

W (θ0) = θ0W.

Therefore, according to continuum theory, the total elastic
energy is reduced by intermixing. In view of the previous
discussion this is not expected to be true for the ball and spring
model. To that end, we performed a numerical calculation
using the method in Ref. [29] to calculate the elastic energy of
the ball and spring with KL = 2KD and μ = 0.04. The film is
40 monolayers thick and consists of an equal number of Si and
Ge atoms. We considered four cases in which the atoms are
arranged in checkerboard patterns, where the only difference
is that the scale of the pattern changes (see Fig. 8). On the finest
scale, each square consists of exactly one atom. For a reference
state we computed the total elastic energy of a thin film with
20 monolayers of pure Ge on a substrate of pure Si. Note that
the total number of Ge atoms is the same in each of the four
cases and in the reference state. We note that the reference
configuration corresponds to θ0 = 1 with a film thickness of
20 layers and all the checkerboard patterns in the continuum
model are equivalent to θ0 = 0.5 with a film thickness of 40
layers. The normalized elastic energy is the total elastic energy

FIG. 8. (Color online) The eight-atom checkerboard pattern.
There are 64 (8 × 8) atoms in each checkerboard.

divided by the elastic energy of the reference state. The results
are summarized in Table III. As noted above for the continuum
theory the reference configuration has lower elastic energy.
However, when microscopic segregation is accounted for in
the discrete elastic model a segregated configuration is seen
to lower elastic energy over both the reference state and a
random mixture of θ0 = 0.5 (the continuum equivalent). It is
in particular worth noting that the elastic energy predicted
for the continuum case is a factor of two smaller than the
discrete case. This is due to the fact that the discrete alloys
have longitudinal variations in the concentration profile and
hence have an induced strain field in the substrate that decays
slowly. This slow decay of the strain field particularly in the
case of random mixtures was observed previously in Ref. [29]
for the ball and spring model. The homogeneous continuum
case, however, has zero strain in the substrate leading to a
significantly lower elastic energy in comparison to the random
mixture.

It is also clear that the total elastic energy significantly
increases as the length scale of the pattern decreases. This
indicates that intermixing actually increases the elastic energy
for this ball and spring model in the setting of strain thin films.

VII. CONCLUSIONS

We have considered the behavior of the elastic energy of the
binary alloys using both an atomistic model (ball and spring)
and density-functional theory. Our ball and spring calculation
indicates that finely mixed alloys have more elastic energy
than those that are more coarsely mixed. This is due to the
presence of microscopic strain. The more finely mixed the
alloy becomes the more difficult it is for it to elastically
relax (the system is frustrated). The important consequence
of these observations is that intermixing will actually increase
the strain energy of alloy and not lower it as predicted by
continuum theories without enthalpic contributions. One may

TABLE III. Normalized total elastic energy.

1-atom checkerboard 1.241
2-atom checkerboard 1.050
4-atom checkerboard 0.976
8-atom checkerboard 0.947
Random arrangement 1.012
Continuum theory 0.500
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speculate that this is an artifact of the ball and spring model
but calculations with DFT support our conclusions.

We mention that some of the difficulties faced using
continuum models can be somewhat mitigated by including
an elastic component to the enthalpy of mixing. However,
this would be quite challenging since we have shown that
the elastic energy of an alloy is in fact dependent on
the microscopic rearrangements of the atoms—information
typically lost in continuum models. In many applications the
atomic arrangement is constantly changing both its scale and
the degree of anisotropy, making it difficult to assess the elastic
energy in terms of average values of the composition. Simply

put, the elastic energy of a material cannot be determined
by the alloy concentration alone—much more information
is needed. One possibility currently being explored is the
use of something like an H measure but with length-scale
information.
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