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Statistical mechanics of unsaturated porous media
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We explore a mean-field theory of fluid imbibition and drainage through permeable porous solids. In the
limit of vanishing inertial and viscous forces, the theory predicts the hysteretic “retention curves” relating the
capillary pressure applied across a connected domain to its degree of saturation in wetting fluid in terms of known
surface energies and void space geometry. To avoid complicated calculations, we adopt the simplest statistical
mechanics, in which a pore interacts with its neighbors through narrow openings called “necks,” while being
either full or empty of wetting fluid. We show how the main retention curves can be calculated from the statistical
distribution of two dimensionless parameters λ and α measuring the specific areas of, respectively, neck cross
section and wettable pore surface relative to pore volume. The theory attributes hysteresis of these curves to
collective first-order phase transitions. We illustrate predictions with a porous domain consisting of a random
packing of spheres, show that hysteresis strength grows with λ and weakens as the distribution of α broadens,
and reproduce the behavior of Haines jumps observed in recent experiments on an ordered pore network.
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I. INTRODUCTION

Unsaturated porous media are ubiquitous in geophysical
and industrial processes. They include, for example, soils
partially filled with water, fuel cells, or oil reservoirs holding
several gas and liquid phases. The principal challenge is to
predict imbibition and drainage, viz. how fluid penetrates
into—or emerges from—a porous solid matrix upon applying
a macroscopic gradient in the pressure p� of the wetting liquid
relative to the ambient pressure pg . In general, porous solids
delimit a complex void network consisting of a large number of
small individual pores interconnected through several narrow
openings (Fig. 1). When a porous sample traps one kind of
liquid at a volume fraction θ , a simple measure of its partial
filling state is the degree of saturation S ≡ θ/(1 − ν), where ν

is the solid volume fraction of the dry sample.
Because the capillary energy of a pore depends upon the

saturation state of its connected neighbors, the establishment
of a local equilibrium derives from many-body interactions
similar to those handled by statistical mechanics [1], such as
lattice gases [2], neural networks [3,4], bird flocks [5], and
spin glasses [6,7]. In this context, we propose a mean-field
theory of fluid retention in porous media partially filled with a
connected wetting fluid.

In this regime, the porous network exhibits a nonlinear
hysteretic behavior, whereby an applied macroscopic capillary
pressure ψ ≡ pg − p� delivers a higher saturation when ψ

rises to expel the wetting liquid than when ψ is reduced
to imbibe the sample. The relation S = f (ψ) then includes
two limiting “main fluid retention curves” that describe,
respectively, the imbibition of an initially dry porous solid
S = fw(ψ) and the draining of a completely saturated sample
S = fd (ψ).
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Analyses capturing this phenomenon typically adopt one
of two approaches. The objective of the first is to describe
the porous medium on a scale large enough for practical
applications. To that end, this traditional approach uses
partial differential equations (PDEs) that incorporate retention
curves as a constitutive law. The second approach exploits
recent progress in direct numerical simulations and three-
dimensional x-ray tomography to observe geometry and
behavior of a smaller sample.

To establish the constitutive retention behavior of the
medium, the first approach models unsaturated porous media
as a collection of independent pores described, for example,
as a bundle of capillary tubes [8], or by analogy with
other physical processes like magnetism [9–11] or neural
networks [12]. Notably, Poulovassilis [13] and Mualem [14]
invoked the “ink-bottle” effect, whereby the total liquid content
of a single bulging pore at a given ψ is greater if capillarity
thwarts expulsion of the liquid, than it is when the liquid is
drawn into the bulge. This observation recognized the role
played by connected pores in setting the local saturation, but
mainly attributed hysteresis to a distribution in pore size, rather
than to the collective behavior that we now explore.

In the independent pore model, parameters are ultimately
fitted to experimental data. For example, to characterize the
water retention of soils, Van Genuchten [15] put forth a
convenient expression with five parameters. The latter include
the liquid volume fraction θs at saturation, its residual value θr

after the liquid ceases to percolate between the two boundaries
across which ψ is applied, a characteristic capillary pressure
ψa , and two exponents that are adjusted to reproduce the shape
of the fluid retention curve. If this simple model does not
capture data satisfactorily, other mathematical forms of the re-
tention curve are chosen to minimize the number of additional
empirical parameters needed to describe the entire range of S

from saturation to complete dryness [16]. In the terminology
of wet granulation [17], this range begins with the “funicular”
regime near saturation, where percolation allows ψ to be felt
through most of the liquid. It then transitions to the “pendular”
regime, where liquid congregates near grain contacts [18].
Finally, liquid films condense or evaporate from surfaces
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FIG. 1. (Color online) Section from the x-ray computed tomog-
raphy (CT) of an unsaturated porous soil aggregate, with superim-
posed qualitative identification of pore volumes vp , pore wettable
surface area ap , and neck area an. Continuous and dotted blue (white)
lines show, respectively, air-water interfaces and boundaries between
two connected water-filled pores. Continuous and dotted orange (light
gray) lines mark, respectively, pore surface area in contact with water
or air. Photo courtesy of Valérie Pot.

within the porous solid [19]. Hysteresis is typically handled
by fitting different parameters for imbibition and drainage.

Traditionally, once established experimentally across a
macroscopic sample, retention curves are used to predict the
effective permeability K� of the porous medium to the wetting
fluid in terms of its saturated value K0, for example through
the integral models of Burdine [20], Brooks and Corey [21],
or Mualem [22,23]. Retention curve and permeability are
incorporated into PDEs like that of Richards [24], which
combines Darcy’s law and mass conservation to predict the
evolution of S over space and time. Other treatments also
include effects such as “non-Darcy” inertial behavior [25].
The PDEs are then solved subject to boundary conditions for
drainage or imbibition [26], which account for the relative
roles of viscous, inertial, and capillary forces at and near the
free surface of the porous medium.

Unfortunately, experiments show that, if a large sample is
subject to a pressure drop imposed across distant boundaries,
the resulting hysteresis is more complicated than based upon
the two unique “main” retention curves S = fd (ψ) and S =
fw(ψ). For example, if capillary pressure decreases before
the sample drains completely, the overall degree of saturation
follows a path in the S vs ψ diagram that invades the region
between fd and fw [13,27–29]. Although the function f (ψ)
appears continuous upon reversal, its derivative is not, and a
new path S = f (ψ) is opened each time the rate of change of
ψ switches sign. In general, this “return-point memory” [30]
predicates the current state of a large sample on details of
its past history, which complicates an already challenging
numerical integration [31,32].

To address this difficulty, other treatments subsume hystere-
sis by introducing constitutive expressions that include state
variables other than ψ and S, such as microscopic interface
curvature [33], or by involving dynamic relaxation [34].
Averaging procedures based on moments of the Boltzmann
equation [35] or methods consistent with thermodynamics [36]
are then employed to build macroscopic governing equations
for the evolution of these variables in space and time from
physics at the microscopic scale [37–39]. However, to solve
practical problems, the averaging still requires a measurable
closure, such as a retention curve, to capture the constitutive
behavior of the system.

The second approach begins with a detailed geometric
description of the porous medium. Like direct numerical
simulations, this method aims at reproducing the retention
behavior by integrating on the pore scale PDEs that incorpo-
rate capillary, inertial, and viscous forces [26,40–43]. Other
treatments operate on an intermediate scale to handle uneven
fluid distribution, for example, in the pendular regime [44]. To
interpret the complex ramification of pore networks, a fertile
literature invokes percolation theories that handle collec-
tive interactions naturally [45–47]. However, the percolation
framework, while fruitful in describing geometrical domain
size and shape, does not directly account for surface energies
and displacement work, unlike the approach outlined here.

Recent experimental techniques, such as x-ray microto-
mography, have the potential to inform numerical simulations
by revealing the internal liquid distribution among pores
within a solid matrix in detail [48–53]. Here a challenge is
to relate the complex microscopic geometry of triple contact
lines where gas, solid, and liquid meet to the macroscopic
behavior of the porous medium [54]. Because the location
and structure of these contact lines are affected by surface
roughness and impurities that are difficult to discern or control,
data interpretation and reproducibility are challenging [55].

As with other complex multiphase flows, the choice among
the two approaches is mandated by overall system size.
Because direct numerical simulations or three-dimensional
experiments are rarely large enough to handle realistic ap-
plications, a formulation based on PDEs remains of practical
interest. However, the complicated history-dependent hystere-
sis observed on macroscopic samples has called into question
the meaningfulness of the retention curve and the judiciousness
of describing the filling state of an unsaturated porous media
by the degree of saturation alone [33,56].

Several fundamental questions therefore persist. Are the
traditional retention curves S = f (ψ) meaningful? If so, at
what scale? Can they be derived from porous geometry and
surface energies? What causes sudden “Haines jumps” in
capillary pressure and fluid speed that are observed as a
pressure gradient or a flow rate are imposed on macroscopic
boundaries of the system [57]?

To address these questions, we explore a framework that
underscores collective interactions of pores in unsaturated per-
meable solids. Without parametric fitting, the theory predicts
the behavior of the main fluid retention curves for a porous
domain of known geometry and surface energies. To present
the analysis as clearly as possible, we deliberately adopt the
simplest mean-field statistical mechanics and illustrate it with
generic examples. Specifically, we adopt an “Ising model”
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FIG. 2. (Color online) Pore geometry characterization for a
porous assembly of identical spheres. (a) Single pore wedged between
an irregular tetrahedron of four spheres. The contribution of the top
sphere to the wettable pore area is orange (light gray). Three spheres
in the foreground delimit the dry neck cross section of index i = 1.
Cartesian coordinates of the four spheres relative to their diameter and
measured from their barycenter are (x,y,z) = (0.05,−0.50,0.26);
(−0.50,0.05,−0.36); (−0.14,0.46,0.51); (0.58,−0.01,−0.42). For
this pore, λ0 � 5.23 and α0 � 3.20. (b) Section through centers of
the three darker spheres showing traces of three of the four dry neck
cross-sectional area an,i , wettable pore surface area ap0 and pore
volume vp0 .

that characterizes the state of a single pore as being either
full or empty of wetting fluid. Adjacent pores interact through
the narrow openings or “necks” that connects them (Fig. 2),
either by possessing a gas-liquid interface if their filling states
are different or by not having one if they contain the same
fluid.

We begin with a derivation of the theory. We then show
how hysteresis of the main imbibition and drainage curves
is associated with collective first-order phase transitions in
the void network. To illustrate how the geometry of pores
and necks affects hysteresis, we consider generic statistical
distributions of these quantities, and we examine the collective
behavior of a porous medium created by a dense packings
of spheres. Finally, by identifying viscous forces as the
mechanism that absorbs the “latent energy” released in the
phase transitions, we predict recent observations of Haines
jump by Armstrong and Berg [58] with an ordered pore
network.

II. MEAN-FIELD THEORY

We consider a void space of mean volume fraction (1 − ν)
delimited by internal surfaces of a porous solid, filled with two
immiscible wetting and nonwetting fluids. For convenience,
we refer to these fluids as a liquid and a gas, although the
nonwetting fluid may also be a liquid. Although the theory
could be extended to a hydrophobic situation such as mercury
porosimetry [59,60], thereby reversing the sign of capillary
pressure, we illustrate it with hydrophilic solids relevant to
fuel cells and soils.

The void space consists of many pores of volume vp and
wettable surface area ap interconnected to N adjacent pores
of index i by narrow “necks” of interfacial area an,i (Fig. 2).
For simplicity, we adopt the Ising model [1] and assume that
pores contain only gas or liquid, with known surface energies
γs�, γ�g , and γgs of the solid-liquid, liquid-gas, and gas-solid
interfaces, respectively. Consistent with this framework, we
assign a binary filling state variable σ to each pore, whereby
σ = +1 denotes a pore full of gas, while σ = −1 denotes one
with liquid only.

This Ising framework ignores liquid films. Therefore, it
does not capture their role in the “hydraulically connected
transition zone” found in evaporative drying [61,62]. However,
it is relevant to “capillary pumping” [63].

We begin by evaluating the energy 
E(−σ → +σ ) that
must be supplied to a pore to change its state from −σ to +σ .
Without loss of generality, we calculate the amount 
E(−1 →
+1) that is needed to empty out a pore initially full of liquid.
This energy input has three contributions. The first two are
independent of the state of neighboring pores. They include
the volume work

W = −
∫ 0

vp

(p� − pg)dv = −ψvp (1)

that integrates infinitesimal energies needed to counteract the
net pressure (p� − pg) = −ψ resisting the substitution of a
gas for a liquid of volume shrinking from vp to zero. The
second is the energy required to lift the liquid from the wetted
pore surface of area ap,

�p = (γgs − γs�)ap = γ�gap cos θc, (2)

where θc is the static contact angle at the triple line where
solid, liquid, and gas meet.

The third and most notable contribution to 
E depends on
the filling of all N connected pores of index i. If the adjacent
pore i has no liquid (σi = +1), then emptying the pore of
interest involves the “exothermic” destruction of a gas-liquid
interface. If instead pore i is full (σi = −1), then the process
entails the “endothermic” creation of a new such interface.
Overall, the energy required is a sum over all adjacent pores,

�n = −
N∑

i=1

σiγ�gan,i , (3)

A similar argument shows that, for the opposite transformation
(σ = +1 → σ = −1), all signs are flipped in Eqs. (1)–(3).
Therefore, in general, 
E(−σ → +σ ) = (W + �p + �n)σ .
With the convenient (and inconsequential) choice of a ground
state at σ = 0 halfway between a completely filled or a
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completely empty porous domain, the energy of a single pore
is then E(σ ) = (1/2)
E(−σ → +σ ), or

E(σ ) = 1

2

[
−ψvp + γ�g cos θcap −

∑
i

γ�gan,iσi

]
σ. (4)

In the mean-field theory [1], σi is approximated by the
domain-average filling state σ̄ , recognizing that the relative
fluctuation in σ among adjacent pores is small if their
number is large. Unlike problems of granular mechanics,
what matters here is pore space contained outside the solid
matrix. Therefore, in this article, an overbar denotes the
volume average of any state quantity over the domain of total
void volume V = ∑

vp. With the self-consistent mean-field
assumption σi � σ̄ , Eq. (4) then becomes

E(σ ) = 1
2 [−ψvp + γ�g cos θcap − γ�ganσ̄ ]σ, (5)

where an ≡ ∑
an,i is the total cross-sectional area of all necks

connected to the pore of interest. In a disordered porous
material, vp, ap, and an are random. For a crystal of identical
pores, they instead possess discrete values.

In the framework of statistical mechanics, we consider a
large ensemble of identical, yet distinguishable, copies of
a porous sample. Each copy has a distinct distribution of
filling states. Copies with similar total energy in Eq. (5) form
a microstate with Bose-Einstein statistics (i.e., there is no
limitation on the number of pores holding a given filling state).
Then, to maximize the entropy of the system at equilibrium,
the probability to find a pore at the filling state σ , subject
to the constraints of a given ensemble-average energy and a
normalized probability, conforms to the Maxwell-Boltzmann
distribution [1],

Pr(σ ) = 1

Z
e−βE(σ ), (6)

where β is a Lagrange multiplier and Z is the partition function

Z = e−βE(+1) + e−βE(−1). (7)

The expected filling state in the pore of interest is then

〈σ 〉 =
∑

σ=±1

σ Pr(σ )

= tanh

[
β

2
(γ�ganσ̄ + ψvp − γ�gap cos θc)

]
, (8)

where 〈ϕ〉 denotes the ensemble-average of any state quantity
ϕ over all copies of the sample. This expression suggests how
the problem should be made dimensionless. First, we define a
characteristic length �̄0 based on the mean dry volume of Np

pores in the domain,

�̄0 ≡ v̄1/3
p0

=
⎛
⎝ 1

Np

Np∑
i=1

vp0i

⎞
⎠

1/3

, (9)

in which the subscript 0 represents the dry void geometry.
Then the dimensionless capillary pressure can be written

ψ ′ ≡ ψ�̄0/γ�g. (10)

Similarly, the dimensionless specific neck cross section rela-
tive to pore volume is

λ ≡ an�̄0/vp (11)

and the specific wettable pore surface area is

α ≡ ap�̄0/vp, (12)

such that Eq. (8) becomes

〈σ 〉 = tanh[(β ′/2)(λσ̄ + ψ ′ − α cos θc)], (13)

where β ′ ≡ βγ�gvp/�̄0. [Because we only use �̄0 to make
capillary pressure dimensionless, other convenient definitions
are possible. For media with a wider distribution in vp, it would
be prudent to adopt a �̄0 that is not as skewed toward larger
populations of small pores as Eq. (9)].

In Appendix A we show that β ′ is a very large number in the
limit of small inertial and viscous forces. In other words, the
porous medium exhibits “frozen disorder” [64]. This lets us
simplify the hyperbolic tangent in Eq. (13), which effectively
becomes the Heaviside function H(ψ ′ − ψ ′

c) jumping from
−1 to +1 at a dimensionless threshold pressure,

ψ ′
c = α cos θc − λσ̄ . (14)

Then, in a domain where pores and necks are not uniform, the
domain-average expected filling state is

〈σ 〉 =
∫ ∞

λ=0

∫ ∞

α=0
〈σ 〉Fdλdα =

∫∫
H(ψ ′ − ψ ′

c)Fdλdα,

(15)
where F (λ,α) is the normalized joint distribution function by
volume of λ and α in Eqs. (11) and (12), such that

dv = V Fdλdα (16)

is the elementary pore volume distributed within the domain of
total void volume V that has λ ∈ [λ,λ + dλ] and α ∈ [α,α +
dα].

For an ergodic system at equilibrium,

σ̄ = 〈σ 〉, (17)

so that Eq. (15) can be written

σ̄ = I(σ̄ ,ψ ′; θc), (18)

where I is the integral function

I(σ̄ ,ψ ′; θc) ≡
∫∫

�+
Fdλdα −

∫∫
�−

Fdλdα, (19)

and �+ and �− are complementary nonintersecting regions
filling the parameter space (λ,α) and satisfying

�± ⇔ λσ̄ + ψ ′ − α cos θc ≷ 0. (20)

Meanwhile, because σ = ∓1 for pores filled with liquid and
gas, respectively, the domain-average σ̄ is related to the liquid
volume fraction through

θ = (1 − ν)(1 − σ̄ )/2, (21)

or, equivalently, S = (1 − σ̄ )/2. A stable solution of Eq. (18)
yields a point on the retention curve of θ vs ψ ′.
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FIG. 3. (Color online) (a) Retention curves of degree of saturation S = (1 − σ̄ )/2 vs dimensionless capillary pressure ψ ′ for a hypothetical
foam of identical spherical pores on a square lattice of solid volume fraction ν = 0.3, having single-valued λ0 = 1.530 . . . and α0 = 4.735 . . . .
For the contact angle θc = 50◦ of this example, λ � 1.73 and α � 4.74 (Appendix E). Arrows show directions of changes in ψ ′. (b) Draining
transition in (λ, α) space. For this foam, F is a δ function centered on the square symbol. The dashed line marks the border in Eq. (20) between
domains �+ below the line and �− above, with ψ ′ = 0. The red (light gray) line L− is the corresponding border for the draining phase
transition, which occurs when ψ ′, rising in the direction of the red arrow, reaches ψ ′

−. (c) As ψ ′ decreases in the direction of the blue (dark
gray) arrow, it eventually reaches the wetting transition at ψ ′

+ � 1.31.

III. PHASE TRANSITION AND HYSTERESIS

We now illustrate how the theory predicts hysteretic
retention curves and first-order phase transitions. The latter
arise as a saturated sample abruptly drains most of its
liquid or, conversely, as a dry one suddenly jumps toward
saturation. To that end, we examine the simplest case of
an ordered hypothetical “foam” with single-valued vp, ap,
and an, consisting of identical hollow spherical pores with
circular necks carved from a solid on a regular cubic lattice.
(A hexagonal close-packed crystal of solid spheres is analyzed
in Appendix H. )

For this foam, because F is a normalized δ function located
at (λ,α) (square symbol in Fig. 3), the two integrals on the right
of Eq. (19) are unity if the δ function belongs to the domain of
integration and zero otherwise. Therefore, their combination
can only take one of three values (−1,0,+1).

To derive the resulting retention curves [Fig. 3(a)], consider
first an initially saturated sample with σ̄ = −1 and ψ ′ = 0
[dashed line in Fig. 3(b)], for which the entire (λ,α) space is
occupied by �− [Eq. (20)]. At small capillary pressure, the δ

function at (λ,α) remains within �− until ψ ′ reaches

ψ ′
− ≡ α cos θc + λ. (22)

Then, because I = −1,∀ ψ ′ < ψ ′
−, Eq. (18) is satisfied and,

consequently, σ̄ = −1 remains its stable solution throughout
the range ψ ′ < ψ ′

−. However, for ψ ′ > ψ ′
−, σ̄ = −1 ceases

to be a solution, forcing the system to jump to the other
state σ̄ = +1 marked by an open triangle in Fig. 3. In short,
the porous domain remains saturated until ψ ′ reaches ψ ′

−.
A similar argument [Fig. 3(c)] implies that a sample having
initially σ̄ = +1 and ψ ′ → ∞ stays dry as ψ ′ is progressively
decreased within the range ψ ′

+ < ψ ′ < +∞, where

ψ ′
+ ≡ α cos θc − λ. (23)

Because ψ ′
+ < ψ ′

−, an initially saturated sample with
σ̄ = −1 transitions abruptly to the other solution σ̄ = +1 of
Eq. (18) as ψ ′ increases beyond ψ ′

−. Conversely, an initially
dry sample jumps to saturation as ψ ′ falls below ψ ′

+. In short,
the porous domain with single-valued λ and α undergoes a

hysteresis loop marked by two abrupt phase transitions with

S = fd (ψ ′) = H(ψ ′
− − ψ ′),

(24)
S = fw(ψ ′) = H(ψ ′

+ − ψ ′),

for drainage and imbibition, respectively [Fig. 3(a)]. Note that
the singularity of ∂S/∂ψ ′ at ψ ′

± is a consequence of the mean-
field and Ising assumptions. In a physical system, the derivative
should not change sharply, but continuously. If one constructed
a more elaborate Potts statistical mechanics [65] on groups
of m pores, as suggested in Appendix B, then the greater
number of available energy states would produce transitions
with rounded edges.

Because these transitions arise as an external field (viz.
the capillary pressure ψ ′) passes through a critical point
at which the total system energy per unit void volume
H ≡ (1/V )

∑
E(σi) is discontinuous, they are classified as

“first-order” phase transitions [30].
In this ordered geometry, the “air-entry potential,” i.e., the

capillary pressure at which a saturated sample begins to drain,
is ψ− = γ�g(α cos θc + λ)/�̄0. Meanwhile, the dimensionless
separation 
ψ ′ ≡ (ψ ′

− − ψ ′
+) between the two transition

pressures is a measure of hysteresis strength,


ψ ′ = 2λ. (25)

Without geometrical disorder, Eqs. (11) and (25) thus imply
that hysteresis strength grows as the neck area relative to the
(2/3) power of the pore volume.

IV. COLLECTIVE BEHAVIOR IN A DISORDERED
MEDIUM

Traditional treatments regard unsaturated porous media as
a collection of independent pores, each acting as a separate
domain, and each having an individual critical capillary
pressure for imbibition and another for drainage. In that view,
a pore contributes to decreasing the average retention of the
whole medium by emptying once its own critical pressure is
reached; conversely, upon wetting the medium, each pore fills
up after ψ decreases below another, lower threshold [14].

We explore an alternative approach underscoring the
collective nature of pore interactions seen in experiments
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FIG. 4. (Color online) Contour plot of F (λ,α) for the random
packing shown in the inset with 20 000 spheres forming 123 914 pores
at ν � 0.604 (detail in Fig. 2). The Delaunay triangulation outlined
in Appendix B yields �̄0/d � 0.389, λ̄0 � 3.81, and ᾱ0 � 3.55. For
a contact angle θc = 50◦, λ̄ � 4.32. The open square marks the
“center of mass” of F defined in Eqs. (C1) and (C2). The white
solid line of slope σ−/ cos θc and intercept ψ ′

−/ cos θc is the boundary
between the regions �+ and �− in Eq. (20) when the mesoscopic
domain undergoes its draining phase transition at ψ ′

− � 4.98 and
σ− � −0.925 (S � 0.96). The white dashed line is the wetting phase
transition with ψ ′

+ � 0.35 and σ+ � +0.820 (S � 0.09). The solid
and dashed lines (respectively L− and L+ in Fig. 3) mark the
corresponding transitions for a hypothetical porous medium with
single-valued pore and neck sizes having the same mean λ̄ and ᾱ.

[66–68]. Specifically, the self-consistent integral formulation
of Eqs. (18)–(20) implies that the entire unsaturated porous
domain contributes collectively to its equilibrium solution,
rather than as a superposition of individual transitions. In
our mean-field analysis, pores are interconnected to the bulk
filling index σ̄ through the necks they each possess. Therefore,
the hysteresis of our retention curve is determined by the
distribution function F , rather than by averaging retention
curves of individual pores.

To show how such collective behavior arises in the statistical
mechanics, we now consider a porous domain with frozen

disorder embodied in a broader distribution F (λ,α), which we
illustrate with a random dense packing of spheres obtained in
numerical simulations (Fig. 4). Appendix B outlines how F

is calculated from the diameter of spheres and the position of
their centers.

Unlike the crystal example in Sec. III, the integral function
I no longer takes on discrete values, but adopts instead a
sigmoidal shape. Figure 5 illustrates the search for solutions to
Eq. (18) by superposing I vs σ̄ and the diagonal representing
the ergodic condition 〈σ 〉 = σ̄ . In general, there can be one,
two, or three solutions at intersections of the sigmoidal and
diagonal lines in Figs. 5(b) and 5(c).

To establish whether any solution is stable, we must first
determine causality among state variables. On the one hand, the
mean filling state σ̄ determines the regions �± of integration
of I or, in short, σ̄ ⇒ I. Conversely, ergodicity implies that
knowledge of the expected filling state 〈σ 〉 = I leads to
knowledge of σ̄ , i.e., 〈σ 〉 ⇒ σ̄ . By determining whether the
domain returns to a solution upon small excursions away from
it, these causal relations indicate that, out of three solutions, the
middle one is unstable, while the others at low and high filling
are both stable. (Instability of the middle solution explains
why we ignored σ̄ = 0 in the example of Sec. III.)

Consider an initially saturated domain (σ̄ = −1) without
capillary pressure (ψ ′ = 0) [Fig. 5(b)]. Here λσ̄ + ψ ′ −
α cos θc < 0,∀ (λ,α), so that �− represents the entire (λ,α)
space shown in Fig. 4, and I = −1. This saturated state is
a single solution of Eq. (18) represented by the lower left
corner in Fig. 5(b). As capillary pressure is increased, the I
curve shifts leftward, until one, then two, new intersections
arise beside the lower left solution near σ̄ ∼ −1. Yet, because
this solution is stable, any other solution is ignored and the
domain remains near saturation. However, as ψ ′ increases,
the sigmoidal curve eventually moves too far leftward to
intersect the diagonal near saturation. At the pressure ψ ′

−
(solid triangle), the whole domain undergoes a first-order phase
transition whereby σ̄ changes sign and jumps to the dryer
solution on the upper right (open triangle). Figure 5(a) traces
the resulting path in the diagram of S vs ψ ′.

Now consider the draining process, which begins with a
stable σ̄ → +1 as ψ ′ → ∞ [Fig. 5(c)]. As capillary pressure
is progressively released, dry states remain stable until the

FIG. 5. (Color online) (a) Imbibition and drainage retention curves charting degree of saturation vs dimensionless capillary pressure for
the distribution F (λ,α) in Fig. 4 and θc = 50◦. (b) Integral I and domain-averaged expected filling state 〈σ 〉 vs σ̄ as ψ ′ is increased from zero
(I, black line) to its value ψ ′

− � 4.98 at the draining phase transition, beyond which the filling state jumps from σ̄− � −0.925 (or S− � 0.963,
solid triangle) to σ̄ � +1 (open triangle), as I (left sigmoidal line) no longer intersects the diagonal to satisfy Eq. (18). (c) The corresponding
graphs of I and 〈σ 〉 vs σ̄ as ψ ′ is decreased from +∞ to ψ ′

+ � 1.31 at the wetting transition (open to solid circles) with σ̄+ � 0.820 (or
S+ � 0.090).
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sigmoidal curve at ψ ′ = ψ ′
+ intersects the diagonal at only one

point (open circle). At lower capillary pressures, the domain
must then jump to its other solution closer to saturation (solid
circle).

As with the crystal in Sec. III, the theory suggests that
the transition pressure upon wetting is greater than that upon
draining, ψ ′

− > ψ ′
+, so hysteresis arises once again. However,

as Appendix C shows, the difference 
ψ ′ ≡ ψ ′
− − ψ ′

+ is
always smaller with a broadly distributed F than with single-
valued λ and α,


ψ ′ ≡ ψ ′
− − ψ ′

+ < 2λ̄. (26)

Meanwhile, the form of Eq. (20), which marks the border
between the domains �− and �+ in the (λ,α) parameter space,
implies that the air entry potential ψ ′

− shifts toward higher
values as ᾱ increases, consistent with the ordered example in
Eqs. (22) and (23).

Figure 6 confirms these trends with retention curves
calculated from artificial distributions F (λ,α) having a simple
analytical form. In short, increasing the mean λ̄ strengthens
the hysteresis; i.e., it widens the gap between imbibition and
drainage curves without shifting their midposition along the
pressure axis [in Fig. 6(b), compare curves for larger λ̄ with
the base case]. In contrast, increasing the mean ᾱ translates
the midposition toward higher ψ ′ without affecting hysteresis
strength [Fig. 6(a), as ᾱ is raised]. Last, spreading F attenuates
hysteresis (see curves for “wider F ”). However, doing so along
the α axis mitigates hysteresis more than along λ, to the point
that hysteresis and both abrupt transitions disappear altogether
with a sufficiently wide Fα [Fig. 6(a), retention curve marked
“wider Fα”].

Even in the example of Figs. 4 and 5 with monodisperse
spheres, the retention curves exhibit a more gradual draining
and wetting transitions than in Sec. III, as the F (α,λ) is no
longer a δ function. More generally, a wider particle-size
distribution (PSD) should induce greater spread in F and
therefore less hysteresis and a more gradual transition roll-off.
Then, for example, this theory suggests that a sand with
relatively narrow PSD should have significant hysteresis.
However, if the same sand also included fine particles, the
strength of its hysteresis should be diminished.

Because the theory is built upon actual areas and volumes
through λ and α, it tacitly accounts for interface deformations
caused by a contact angle θc �= π/2, in addition to the
explicit cos θc appearing in Eq. (20). However, it is difficult
to determine the distribution F (λ,α) with complicated gas-
liquid interfaces. Instead, it is more straightforward to find
its counterpart F0(λ0,α0) on a dry sample (which is roughly
equivalent to θc = π/2). Then one can estimate how a contact
angle �= π/2 affects interface area and pore volume. As
Appendix E shows, unless λ0 is relatively large, values of
θc < π/2 mainly affect λ by raising it uniformly, as estimated
in Eq. (E4), thereby exacerbating hysteresis strength.

V. CRITICAL DISORDER

Ji and Robbins [69] and Sethna et al. [30] emphasized
the role of randomness and scale in disordered systems of
interconnected sites. In this section, we suggest that the

FIG. 6. (Color online) Dependence of retention curves S =
S(ψ ′) on F (λ,α), illustrated with artificial normalized γ

distributions of the form F = Fλ × Fα , where Fλ ∝ (λ −
dλ)aλcλ−1 exp{−[(λ − dλ)/bλ]cλ} for λ > dλ and zero otherwise, and
Fα ∝ (α − dα)aαcα−1 exp{−[(α − dα)/bα]cα } for α > dα and zero
otherwise. Insets show the corresponding contours of F (λ,α). Vertical
arrows and lines mark, respectively, wetting and draining phase
transitions. (a) White arrows show how hysteretic retention curves
are affected by an increase in the mean value of α from ᾱ � 1.7 to
4.7 (respective phase transitions represented by dotted and dashed
lines), while keeping λ̄ � 1.7 and the standard deviations sλ and sα of
Fλ and Fα at 0.32. The retention curve without hysteresis (black line
without a phase transition) is obtained from F in the “no hysteresis”
inset having ᾱ � 4.7, a wider sα = 0.72, and the same Fλ as above.
(b) From lowest to highest insets: “base case” for Fα = Fλ, with
sλ = sα = 0.32 and λ̄ � 1.2 (solid transition lines); case of a “wider
Fλ,” with sλ = 0.42 (dashed transition lines); case of a “larger λ̄,”
where λ̄ alone is increased to 1.7 from the base case (dotted lines).

magnitude of geometrical disorder matters to the retention
characteristics of unsaturated porous media.

Although these authors considered random fluctuations in
applied field, rather than our frozen disorder in pore and
neck geometry, their Hamiltonians resembled our Eq. (4).
Specifically, their H played the role of our ψ , their Jij was our
γ�gan,i , and their random field fi (or hi) was our γ�gap cos θc.
They then defined the parameter R as the ratio of the full
width at half maximum of their Gaussian distribution of fi

to the fixed magnitude of their J . Translated to our nomen-
clature, this relative randomness R represents approximately
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R ∼= 2
√

2 ln(2)sα cos θc/λ̄, where sα is the standard deviation
of α.

Notably, those authors found a critical relative disorder
R = Rc in the applied field below which a draining system
undergoes a single abrupt “avalanche” similar to our collective
phase transitions in Fig. 5. As they increased R toward its
critical value, their magnetic equivalent of our S vs ψ ′ curve
became progressively less abrupt, eventually leading to a
smooth curve beyond Rc and to percolationlike behavior of
the system [70–75]. For R > Rc, their simulations broke down
into a myriad fractal domains similar to capillary fingering [76]
and undergoing multiple avalanches with sizes exhibiting a
power-law distribution [64,77].

Experiments conducted on artificial porous media with
weak geometrical disorder [58,78,79] confirm the sharp
transition behavior observed at small R [30,69]. In our
analysis, the critical disorder marks the disappearance of
abrupt transitions, which arises as Fα widens in Fig. 6(a). This
occurs roughly when sα � 0.72 and λ̄ � 1.2 or, equivalently,
when Rc � cos θc. Whereas the relatively ordered media
shown in Figs. 4–6 undergo relatively abrupt transitions as
their relative disorder lies below Rc, a more complicated fractal
behavior of liquid penetration, albeit with a smoother retention
curve, is expected as F widens along α. In short, experiments
on weakly disordered systems may not behave like porous
media with high disorder.

VI. MESOSCOPIC DOMAIN

Although Ji and Robbins [69] and Sethna et al. [30] noted
avalanches of wide spatial extent below the critical disorder,
experiments [58,80] and simulations [81] at relatively weak
disorder suggest that invasion events only involve mesoscopic
domains with limited number of successive nearest neighbors.
To estimate the size of this domain, we calculate in Appendix D
the probability Prc(m) that the mth nearest neighbor has the
same filling state as the original pore of index m = 0. Then a
measure of the mesoscopic domain size is the value of m where
Prc(m) approaches zero. If tortuosity of the porous medium is
known [82,83], then m can be converted to a correlation length.
We find

Prc = (1 − S)m+1 + Sm+1. (27)

As expected, Prc decays with m ever more slowly as the
system becomes either dry or saturated. Equation (27) also
indicates that the mesoscopic domain is smallest for S = 1/2.
Meanwhile, the integral scale

mc =
∫ ∞

m=0
Prcdm = −

[
S

ln S
+ 1 − S

ln(1 − S)

]
(28)

is a more objective measure of the correlation neighbor index
mc at which Prc has decayed substantially. For the dense
spherical packing with retention behavior in Figs. 4 and 5,
mc− � 25 and mc+ � 10 at the draining and wetting transitions
S− and S+, respectively. Here imbibition occurs in a smaller
mesoscopic region than drainage. Because both mc− and mc+
just fit within the simulation shown in Fig. 4, the inset illus-
trates how small a mesoscopic domain of identical spheres can
be. Such small mesoscopic size challenges volume averaging.
In practice, the latter also requires a limited magnitude of

capillary pressure gradients, particularly if these are directed
along the flow, u� · ∇ψ > 0, an unstable configuration that
triggers the onset of fingering [84], like unfavorable pressure
gradients in a boundary layer.

Because our framework, like equilibrium thermodynamics,
does not directly involve space or time, it needs insight on ram-
ification of the mesoscopic domains upon which it is built. For
example, our estimate of the correlation index in Eq. (28) could
be refined using percolation theory. Although the latter also
invokes statistical mechanics, its objectives differs from ours.
By focusing on pore geometry, percolation theory predicts how
size and shape of connected liquid clusters obey power laws in
the difference between the degree of saturation S and a critical
value beyond which the first infinite cluster spans the entire
system [85]. Here our aim is instead to predict the hysteretic
relation between S and applied capillary pressure ψ , which
also exhibits critical phase transitions that are no longer purely
geometrical. Nonetheless, for a gas-liquid mixture, percolation
theory complements our analysis by predicting the minimum S

at which individual pores feel the gradient ∇ψ imposed on the
liquid across distant boundaries [86]. For mixtures of two liq-
uids [58], ψ propagates instead throughout the system, as both
components can sustain negative pressures. In that case, perco-
lation theory could lend insight into the geometrical structure
of liquid clusters within the mesoscopic domain, thus refining
Eq. (28). [However, unlike percolation models tracking only
the minority phase, our analysis must involve interpenetrating
clusters of both phases, for example, yielding a mesoscopic
domain size in Eq. (28) that is symmetric in S and 1 − S.]

VII. HAINES JUMPS

Because our equilibrium theory ignores time and gradients,
it considers infinitesimal increments in capillary pressure and
fluid saturation up to irreversible first-order phase transitions
of drainage or imbibition, thereby only addressing the limit
of negligible inertial and viscous forces. Nonetheless, we take
here a first step toward nonequilibrium by considering rapid
fluid rearrangements called “Haines jumps” [77], which we
associate with dissipation of the latent energy released in phase
transitions.

For inertial forces to be significant [87], the Weber number
We ≡ ρ�u

2
��̄0/γ�g typically exceeds unity [88], where u� is

a characteristic interstitial flow speed of a wetting fluid of
density ρ�. For example, inertial forces become significant
only if water seepage during the wetting or draining transitions
produces a speed u� � 1 m/s in a sand bed with �̄0 ∼ 50 μm.

Neglecting viscous forces mandates lower capillary num-
bers Ca ≡ μ�u�/γ�g < 10−5 [89] based on the dynamic
viscosity μ� of the wetting fluid and, therefore, much lower
speeds. (An alternative definition Ca∗ lets rapid fluid mobiliza-
tion occur when Ca∗ ∼ O(1) [90].) Then we expect viscosity to
play a role during Haines jumps seen in experiments [52,80,91]
and numerical simulations [55]. Conversely, we do not expect
viscosity to matter during the slower, reversible redistribution
of fluid [92], which Berg et al. [52] also observed for a
substantial fraction of the displaced volume, and which we
interpret as the reversible approach to a phase transition.

In this context, we apply our analysis to recent mea-
surements of fluid speed by Armstrong and Berg [58].
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FIG. 7. Time history of water speed recorded by Armstrong and
Berg [58] as nonwetting decane intrudes at a flow rate 2 nl/min
(symbols), and predicted by Eqs. (33) and (34) (line). The geometry of
this experiment yields ν � 0.349, α0 � 12.17, λ0 � 0.567, and �0 �
26.2 μm. With a periodic unit cell volume of Vcell � 277 13 μm3, the
equivalent particle diameter is d � 26.4 μm. Viscosities were μ� �
8.910−4 kg/m s (water) and μg � 8.410−4 kg/m s (decane) [93]
with γ�g � 0.051 J/m2 [94]. From images in Ref. [58], we infer
θc � 54◦ and find |L′| = λ � 0.627, yielding u0 � 0.705 m/s and
τ0 � 37 μs. The predicted peak mean speed is �4.7 cm/s.

Their experiments had a viscosity ratio μ′ ≡ μg/μ� of the
nonwetting and wetting fluids that renders viscous fingering
unimportant [76]. Because their artificial pore network had
no geometrical disorder (R � Rc), phase transitions should
be sharp. As expected, sudden Haines jumps arose as water
was drained by injecting immiscible nonwetting decane at
controlled flow rates. Unlike the air-water system in which the
gas cannot hold tensile stresses, negative pressures percolated
through both liquids at any S. Therefore, our theory should
hold even at low water saturation. Because the porous solid
medium was etched into glass on a hexagonal pattern with
uniform pores and necks, its retention curves possessed the
Heaviside shape in Fig. 3. From its known geometry and
contact angle (quoted in the caption of Fig. 7), we calculate
λ � 0.627 using Eq. (E4). Such relatively small λ should also
produce modest hysteresis.

To predict the behavior in Haines jumps, we first calculate
the total energy H in a unit volume of the mesoscopic domain
by summing Eq. (5) over all pores. For this monodisperse
network, it is, in dimensionless form,

H′ = (σ̄ /2)(−ψ ′ + α cos θc − σ̄ λ). (29)

Then the draining first-order phase transition produces a di-
mensionless “latent energy” per unit volume L′

−=H′(ψ ′
−,σ̄ =

+1) − H′(ψ ′
−,σ̄ = −1)= − ψ ′

− + α cos θc. Similarly, the
wetting transition has L′

+ = +ψ ′
+ − α cos θc. Substituting

transition pressures in Eqs. (22) and (23), both transitions have
the same volumetric latent energy,

L′ = −λ. (30)

Therefore, they are both “exothermic” and should occur
spontaneously, but irreversibly.

Such latent energy is absorbed by viscous dissipation in
the two fluids. To model this mechanism, we consider an
open rectilinear mesoscopic domain of uniform saturation
with coordinate −mc�0 < x < mc�0, involving mc neighbors
from Eq. (28), as Armstrong and Berg [58] observed. In a

transition, volume conservation ∂S/∂t = −S∂u�/∂x relates
the gradient in water velocity u� to temporal variations in S, and
it binds decane and water velocities through ug = −u�S/(1 −
S). Taking u� = 0 midway through the domain, the ODE
integrates to u� = −x∂ ln S/∂t or u� = 2ū�x/(mc�0), where

ū� = −(mc�0/2)∂ ln S/∂t (31)

is the domain-average speed of water.
Meanwhile, viscous forces exerted by water and decane in a

unit pore volume are μ�u�(1 − ν)S/K� and μgug(1 − ν)(1 −
S)/Kg , where K� and Kg are Carman-Kozeny permeabilities
corrected for the respective incomplete degrees of saturation
S and (1 − S) of the wetting and nonwetting fluids (here water
and decane) and μ� and μg are their respective viscosities.
In the integral model of Burdine [20], a Heaviside-shaped
retention curve yields K�/K0 = Snb and Kg/K0 = (1 − S)nb ,
where K0/(1 − ν) � (d2/180)[(1 − ν)/ν]2 and nb � 3. From
the periodic unit cell of volume Vcell, we calculate the Carman-
Kozeny equivalent “particle diameter” d = (6νVcell/π )1/3.

Because the overall energy in Eq. (29) is proportional
to σ̄ to leading order, the average rate of latent energy
produced is approximately −(∂S/∂t)|L′|γ�g/�0 during a
draining phase transition in which S remains uniform in
the mesoscopic domain. It balances the combined energy
dissipation rate μ�u

2
�(1 − ν)S/K� + μgu

2
g(1 − ν)(1 − S)/Kg

from viscous forces on both fluids averaged over the whole
mesoscopic domain. Because u� ∝ x, the domain average of
u2

� is (4/3)ū2
�. In short, the energy balance is

−
( |L′|γ�g

�0

)
∂S

∂t

= 180

(
ν

1 − ν

)2 4

3

(
Sū�

d

)2[
μ�

Snb+1
+ μg

(1 − S)nb+1

]
. (32)

Substituting the continuity Eq. (31) and introducing the ref-
erence speed u0 ≡ |L′|γ�g/(180μ�)[(1 − ν)/ν]2(d/�0)2 and
time τ0 ≡ �0/u0, Eqs. (31) and (32) are, in dimensionless form
where t ′ ≡ t/τ0 and u′ ≡ ū�/u0,

∂ ln S/∂t ′ = −2u′/mc (33)

and

u′ = 3

2Smc

[
(1 − S)nb+1Snb+1

(1 − S)nb+1 + μ′Snb+1

]
, (34)

where μ′ ≡ μg/μ� is the ratio of viscosities of the non-
wetting and wetting fluids. Equation (34) predicts that the
mean dimensionless velocity peaks at a value u′

max given
by ln u′

max � −0.036 20 ln μ′2 − 0.4206 ln μ′ − 2.745 in the
range 10−3 < μ′ < 103, at a degree of saturation given
by ln Smax � −0.004 72 ln μ′2 − 0.0849 ln μ′ − 0.7340. In the
experiments of Armstrong and Berg [58], the maximum Weber
number is ∼1.2 × 10−3, which is too low for inertial forces
to matter. However, if Armstrong and Berg [58] had used air
(μ′ � 0.02) rather than decane (μ′ � 0.96) as a nonwetting
fluid, the peak speed should have been about 2.7 times faster,
yet not large enough for inertia to become important.

To solve this problem, we first eliminate u′ from Eqs. (33)
using (34) and obtain an ODE for S in terms of t ′. We then
impose Smax as an initial condition and solve the ODE both
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forward and backward from the time of peak mean speed. As
Fig. 7 shows, results compare well with experiments without
resorting to parametric fitting. In particular, they reproduce
the different behaviors that Armstrong and Berg [58] reported
before and after the peak, namely a rapid rise in speed, followed
by more gradual deceleration. This drawn-out approach to
a new drained equilibrium, which is revealed by model and
experiment, gives the impression that the system reaches a
residual degree of saturation ∼0.1 on short time scales.

From the peak speed u′, we estimate the magnitude
of the largest expected drop δψmax in capillary pres-
sure by integrating its gradient across the mesoscopic do-
main, δψmax ∼ mc�0μ�ū�(1 − ν)/K�. Using Eq. (34), this
is, in dimensionless form, δψ ′

max ∼ (3/2)(1 − Smax)nb+1/[(1 −
Smax)nb+1 + μ′Snb+1

max ]. Then we expect capillary pressures to
vary in the range ψ− ± δψmax during a Haines jump. From
γ�g of the water-decane interface [94], we find ψ− ± δψmax �
15 100 ± 1700 Pa, which is consistent with the pressure jump
of 15 790 ± 2820 Pa that Armstrong and Berg [58] reported.

VIII. DISCUSSION

Our analysis suggests that hysteresis is the natural col-
lective behavior of a mesoscopic domain exhibiting phase
transitions [30], as it is in other instances where statistical
mechanics is useful, such as magnetism [95] or shape-memory
alloys [96]. In this view, it is not possible to subsume hysteresis
by introducing another state variable.

The principal question is to what mesoscopic scale this
collective hysteretic behavior applies. Recent experiments on
a single plane layer of sintered glass beads [80] or in more
complicated three-dimensional Berea sandstone [52] indicate
that sudden collective rearrangements in liquid distribution
only involve a few near -neighbors, thereby implying that the
mesoscopic domain size should be relatively small, as Eq. (28)
implies.

As derived, our mean-field theory predicts that, at the
mesoscopic level, the region bound by the two curves in
(ψ ′,S) state space cannot be invaded upon a reversal of
capillary pressure. Nonetheless, practical applications often
stage porous media that are larger than the scale in Eq. (28).
For such macroscopic systems, a counterexample based on
the Preisach [97] model (Appendix F) shows how a porous
medium with inhomogeneous saturation can produce such an
invasion in (ψ ′,S) state space. Because, in general, there is
not a unique combination of degrees of saturations Si that
produces an overall S̄ = ∑

Siχi in a medium composed of
distinct mesoscopic domains with volume fraction χi , any
measurement (ψ ′,S̄) on a macroscopic sample that falls within
the two main retention curves cannot describe the state of
the system unambiguously. In other words, the existence of
points within the main curves in (ψ ′,S) state space implies a
sensitivity to past conditions, which jeopardizes experimental
reproducibility and solution unicity. Therefore, to sidestep
these difficulties, one should avoid measuring retention curves
with a pressure ψ imposed across distant boundaries, and
one should integrate PDEs like Richards’ equation [24] at
the mesoscopic scale [98].

However, it is yet unclear whether this mesoscopic approach
is sufficient to proscribe an invasion of the region within

the two main curves, thereby guaranteeing experimental
reproducibility and restoring unicity of a numerical solution.
At present, our mean-field theory attributes randomness to
geometry alone. However, because an inhomogeneous macro-
scopic sample may be composed of individual mesoscopic
domains with different transition pressures, local fluctuations
in the applied field ψ ′ could arise even if a steady capillary
pressure is imposed across a large sample. Such fluctuations
would effectively raise the relative randomness R arising from
Eq. (4). Therefore, although our analysis predicts retention
curves that are reversible until a phase transition occurs, there
may be irreversible precursors to the main phase transition.
If such precursors existed for R < Rc, they could lead to
an invasion of the main retention curves upon a reversal in
applied pressure. Future numerical simulations of Eq. (4)
on porous media with a distribution F (λ,α) should establish
the relative roles of geometrical randomness, fluctuations in
applied pressure, and domain size.

Unlike the problem of vapor sorption on solid surfaces [99],
in which ψ is written in terms of vapor pressure by eliminating
interface curvature between the Kelvin and Young-Laplace
Eqs. [100,101], capillary pressure appears explicitly through
its volume work in Eq. (4). Therefore, vapor pressure is not
as crucial here as it is in analyses of hysteretic isotherms of
sorption on nanometric porous structures [102–105].

However, for our description to hold, negative pressure
must be transmissible through a connected liquid. While this
assumption holds when wetting and nonwetting fluids are both
able to sustain a tensile pressure (e.g., the experiments of
Armstrong and Berg [58]), a gas phase restricts applications
to a large enough S that allows ψ to percolate across the
mesoscopic domain. In the pendular regime where narrow
liquid bridges congregate across necks surrounded by gas
on both sides, saturation can be too low for ψ to connect,
thus producing the residual volume fraction θr observed in
experiments [106]. Nonetheless, morphological observations
on spherical packings at the pore scale [107] indicate that liquid
arranges in pore-filling clusters for S as low as 0.15, followed
by a percolation threshold for long-range connectivity around
S � 0.2. At lower liquid volume fractions, pendular bridges
do not disappear until desorption takes place.

In short, because pore energy in Eqs. (1)–(4) ignores
pendular bridges forming around necks at low saturation, we
do not expect our mean-field theory to capture the transition
from dry to wet as quantitatively as its converse from wet to
dry, unless the predicted degree of saturation S+ at ψ ′

+ is high
enough to uphold the form of Eq. (4), or unless both fluids
can sustain tensile pressures. Nonetheless, it may be possible
to extend our analysis to lower saturation of a gas-liquid
system by combining it with statistical mechanics of liquid
sorption on nanoscopic surfaces [108–111]. Similarly, pores
of the “F type” [61] coated with a residual liquid film could be
handled in this framework by considering other energy states
and modifying Eq. (4) accordingly.

Finally, our analysis has restricted attention to immutable
geometries in which mechanical forces do not contribute to
the system’s energy. However, pressure forces exerted on the
porous medium could produce microscopic rearrangements,
for example, in unsaturated soils [112,113]. In this case,
the statistical mechanics should be refined to incorporate
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mechanical energy. Irreversible changes to the geometry would
then lead to another mechanism for invasion of the main
retention curves that is not yet included in our analysis.

IX. CONCLUSIONS

We presented a mean-field statistical mechanics of porous
media filled with two immiscible fluids, one wetting and the
other nonwetting. The model assumed that interstitial voids
can transmit tensile capillary pressure applied on domain
boundaries. Whereas such connectivity is readily achieved
if both fluids are liquid, this assumption requires saturation
above a percolation threshold if the nonwetting fluid is a gas.
Although the theory requires no fitting parameter, it ignores
phase trapping and liquid films in this case.

To avoid complicated derivations, we used a mean-field
analysis based on the simplest Ising assumption that the void
space is made up of pores connected to their neighbors through
narrow necks, where fluid interfaces typically reside, and that
pores are either full or empty of wetting fluid. We derived the
energy E of an individual pore in terms of its filling state σ and
average σ̄ in its surroundings. The form of E prescribed how
the applied capillary pressure ψ should be made dimensionless
with mean pore size and interface energy of the two fluids.

With a simple example, we showed that a saturated
mesoscopic sample having a disordered void space drains
progressively as ψ rises, until it experiences a collective
first-order phase transition that empties its wetting fluid
abruptly. We then attributed hysteresis of the retention curve
to another phase transition that the sample experiences as ψ is
subsequently returned to low values.

We calculated the retention curve from statistical moments
of the porous geometry, represented by the specific pore
wettable surface area α, and the specific neck interfacial
area λ, both made dimensionless relative to individual pore
volume and average pore size. Having showed how these
two parameters could be evaluated in spherical packings, we
found that the retention curve is shifted to higher capillary
pressures as ᾱ grows and that its hysteresis loop gets wider
as the volume-averaged λ̄ rises or as the hydrophilic contact
angle decreases. We also found that, like other mesoscopic
systems undergoing phase transitions, hysteresis is inevitable,
but could disappear with a sufficiently broad distribution of α.

Finally, we showed that a velocity time history recorded
in Haines jumps could be attributed to viscous dissipation of
the latent energy released in the collective first-order transition
predicted by the theory.
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APPENDIX A: LAGRANGE MULTIPLIER

We show that the dimensionless Lagrange multiplier β ′ in
Eq. (13) is typically very large. As a scale for pore energy
fluctuations, 1/β depends on fluid speed u�. At vanishing u�,
energy fluctuations are only due to thermal agitation. They
then grow with u� as they do in agitated granular gases [114],
thus possibly reducing β.

To evaluate β ′ as u� ∼ 0, we consider a reversible approach
to the draining phase transition. (A similar calculation applies
to its wetting counterpart.) Because at least one liquid
phase is involved, the speed of sound is high enough for
a typical mesoscopic domain to reequilibrate quickly and
thoroughly to any small reduction dS < 0 in the degree
of saturation. The resulting change in dimensionless total
entropy ℵt , which involves all active molecular degrees of
freedom, has three contributions, dℵt = β ′dH′ + dℵg − dℵ�.
The first is from the change dH′ in dimensionless total
energy [1], the second is the entropy input of nonwetting fluid
dℵg = −[ρg�

3
0ŝg/(kMg)]dS, and the third is the corresponding

entropy output of wetting fluid, dℵ� = −[ρ��
3
0ŝ�/(kM�)]dS. In

these expressions, k is Boltzmann’s constant, and ρg , ŝg , and
Mg are, respectively, the density, absolute molar entropy, and
molecular weight of nonwetting fluid, while ρ�, ŝ�, and M�

are the corresponding quantities for the wetting fluid. Because
the process is reversible until the phase transition, dℵt = 0.
Combining these relations,

β ′ = −
(

dS

dH′

)[
�3

0

k

(
ρ�ŝ�

M�

− ρgŝg

Mg

)]
. (A1)

In typical situations, the term in square brackets, which
we call A, is very large. For the air-water system
at standard temperature with ŝ� � 70 J/mol K and ŝg �
194 J/mol K, A � 3 × 1011 with �0 = 1 μm. If decane is
the nonwetting fluid (ρg = 730 kg/m3, ŝg � 425 J/mol K),
then A � 1011. In the spirit of the mean-field theory,
we estimate the total energy from Eq. (29) as H′ �
(0.5 − S)[−ψ ′ + ᾱ cos θc − (1 − 2S)λ̄], such that dH′ �
2(1 − 2S)λ̄dS − (0.5 − S)dψ ′. Using Eq. (A1),

β ′ � 2A/(2S − 1)

4λ̄ − ∂ψ ′/∂S
. (A2)

Toward the draining phase transition where |∂ψ ′/∂S| � 1
and S � 1, β ′ ∼ A/2λ̄ is therefore very large. A consequence
is that the retention curve should be insensitive to thermal
temperature, as typically observed.

As u� grows, fluctuation energy per unit volume could
rise beyond its thermal baseline. However, it cannot ex-
ceed μ�u�/�̄0 or ρ�u

2
�/2 without being promptly dissi-

pated by viscous or inertial forces. Therefore, we ex-
pect 1/β < vp max(μ�u�/�̄0,ρ�u

2
�/2) or, equivalently, β ′ >

1/ max(Ca,We/2). Then, in applications with low capillary
number Ca and Weber number We, β ′ is large. Such is
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the case for the experiments of Armstrong and Berg [58]
(Ca < 2 × 10−4 and We < 8 × 10−5).

APPENDIX B: SPHERE PACKINGS

We consider the porous void space formed by random,
dense packings of spheres. Studies of such granular assemblies
often focus on compaction of the solid [115], rather than
on the statistical distribution of voids and openings [116].
For example, Edwards and Oakeshott [117] applied statistical
mechanics to powder compaction. However, the mean solid
volume fraction ν matters less to the retention curve than it
does to the mechanics of granular materials. Whereas a small
increment in ν can induce jamming in random packings [118],
such increment does not affect the void space as much and,
consequently, the retention curve is not changed substantially.

To our knowledge, the joint distribution F (λ,α) has not
yet been studied. However, unless the PSD is wide, Luchnikov
et al. [119] identified necks and pores with a Voronoi-Delaunay
partitioning of void space in random packings of spheres. As
a first attempt to characterize F , we exploit their Delaunay
triangulation, which subdivides space into irregular tetrahedra
having vertices on the centers of spheres of diameter dj . This
triangulation is unique, as long as centers lie in “general
position”; i.e., no three centers are aligned, no four centers
lie on a plane or a circle, and no five centers are arrayed on a
sphere [120].

Here necks have planar cross sections obtained by removing
three circular sectors from each tetrahedral face. Similarly, the
pore of index i is what remains of a tetrahedron of volume vti

after excision of N = 4 spherical sectors centered on each apex
j with solid angles �j subtending the opposite face. Then pore
volume and area are, respectively vpi

= vti − ∑
�jd

3
j /24 and

api
= ∑

�jd
2
j /4 for j = 1,N .

Although triangulation is a robust method for identifying
unambiguously pores and necks in a packing of spheres,
it only allows N = 4 near neighbors around an individual
pore. Because accuracy of the mean-field theory grows with
N [1], one could contemplate a Potts model [65] grouping
m adjacent tetrahedral pores into a new unit cell with N =
3m + 1 external necks and 2m possible filling states, each
with a different unit cell energy E. The partition function
in Eq. (7) would then include 2m terms. Unfortunately, there
would now be three kinds of dimensionless ratios arising from
the energy of a unit cell, namely m parameters similar to
α, another m similar to λ, and m − 1 independent ratios of
pore and unit cell volumes. For example, a unit cell with
two pores of index 1 and 2 would have seven necks, four
possible filling states (σ1,σ2) = (+1,+1), (+1,−1), (−1,+1),
or (−1,−1), and a five-dimensional joint statistical distribution
of independent geometrical parameters. While being more
accurate, this higher-order mean-field treatment would trade
off the relative simplicity that we have exploited with m = 1.
However, it would make it straightforward to handle rare pores
that a triangulation subdivides artificially, such as a five-sphere
pyramid with a square base. For soils with more complicated
pore geometry (e.g., Fig. 1), techniques inspired from Monga
et al. [121] could be developed to calculate F .

APPENDIX C: HYSTERESIS STRENGTH

Consider a R2+ parameter space (λ,α), like that shown
in Fig. 4. From Eq. (20), �− and �+ are divided by the
straight line of slope σ̄ / cos θc and intercept ψ ′/ cos θc, and are
therefore complementary (i.e., �+ ∪ �− = R2+; �+ ∩ �− =
∅). Meanwhile, integrals in Eq. (19) can be interpreted as
“masses” contained within each domain with “surface density”
F . In that view, the “center of mass” of the entire plane has
coordinates

λ̄ ≡
∫∫

λFdλdα (C1)

and

ᾱ ≡
∫∫

αFdλdα. (C2)

When λ and α are single-valued (i.e., λ = λ̄ and α = ᾱ), the
phase transitions described in Sec. III arise when one of the two
dividing lines L− and L+ from Eq. (20) intersects the center
of mass [Figs. 3(b) and 3(c)]. The corresponding intercepts
mark the two transition pressures ψ ′

− for σ̄ = −1 → +1 (line
L−) and ψ ′

+ for σ̄ = +1 → −1 (line L+). If the domain starts
saturated (σ̄ = −1), line L− has negative slope −1/ cos θc. If
instead it starts dry, L+ has positive slope +1/ cos θc.

Consider now a porous domain with broader surface
density F (Fig. 4). Without loss of generality, assume that
it begins saturated (σ̄ = −1). Because the magnitude |σ̄−| of
the transition filling state is necessarily <1, the slope of the
dividing line between �− and �+ at phase transition is not
as steep as L−. In addition, this dividing line can no longer
pass through the center of mass, since doing so would imply
an equal “mass” on both sides, which, from Eq. (19), would
lead to I = 0. However, because σ̄− �= 0, I = 0 could not be a
solution to Eq. (18). Instead, the dividing line must be further
displaced downward, so the �− domains captures more mass,
bringing σ̄− to the negative sign that we expect. In short, there
are two reasons why the new transition ψ ′

− is lower with a
broader F . First, the slope of the dividing line is not as steep,
thus reducing the intercept ψ ′/ cos θc. Second, the latter moves
farther down to satisfy Eq. (18).

A similar argument shows that ψ ′
+ increases with a broader

F . Overall, if hysteresis strength is measured as the difference
between the two capillary transition pressures, it is always
weaker with a broad distribution of pore and neck areas than
the single-valued case in Eq. (25), hence justifying Eq. (26).

APPENDIX D: CORRELATION PROBABILITY

We calculate the probability that the mth nearest neighbor of
a pore holds the same filling state, and we extract at which near-
neighbor index m this probability has decayed substantially.
We restrict attention to the case where all pores and necks
have a single size. (For complicated geometries, Monte Carlo
simulations constrained to uphold the overall voidage could
refine predictions, albeit without the benefit of simplicity.)

In a system with uniform pore volume, the probability for
a pore to hold a filling state σ of the same sign as the volume
average σ̄ is

Pr0 ≡ Pr(σ σ̄ > 0) = (1/2)(1 + |σ̄ |). (D1)
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(For example, if σ̄ = 0, pores have equal probability to hold
one or the other state; for |σ̄ | = 1, all pores have the same
sign.) Equivalently, the probability Pr(σ ) for the original pore
to hold the state σ is Pr0 if σ̄ > 0 or 1 − Pr0 if σ̄ < 0.

First, consider a pore filled with liquid (σ = −1). If σ̄ >

0, then the probability for its first-nearest neighbor to have
the same filling state is Pr1 = 1 − Pr0. If instead σ̄ < 0, then
Pr1 = Pr0. A similar argument applies to a gas-filled pore. In
general, Pr1(σ ) = (1 + σ σ̄ )/2. In the spirit of the mean-field
theory, whereby the energy of a pore is only affected by the
state of its first neighbors, Pr1 is generalized recursively. Then,
the probability for the mth neighbor to have the same σ is

Prm(σ ) = (1 + σ σ̄ )m/2m, (D2)

where σ can be either −1 or +1. Therefore, the probability
to have a mth neighbor of the same filling state as the origi-
nal pore is Prc = Prm(+1)Pr(+1) + Prm(−1)Pr(−1). Overall,
substituting S for σ̄ with Eq. (21),

Prc = (1 − S)m+1 + Sm+1. (D3)

APPENDIX E: ROLE OF CONTACT ANGLE

Because a neck involves a gas-liquid interface if σ changes
sign across it, its area can deform away from the dry opening
cross section any time the contact angle θc differs from π/2.
In principle, capillary pressure could also modify the interface
shape. However, because effects discussed in this article occur
in a relatively narrow range of ψ around ∼γ�g/�̄0, and because
necks are small, ψ should contribute negligibly to interface
distortion. Similarly, pore size typically makes the Bond
number Bo ≡ g�̄2

0(ρ� − ρg)/γ�g too small for the gravitational
acceleration g to matter.

Ignoring details of interface geometry [54], we estimate
the deformation for θc �= π/2 by analogy with a cylindrical
capillary, in which the meniscus is small enough to be nearly
spherical. In this analogy, the ratio of neck interface area an

and its dry cross section an0 is similar to the ratio of meniscus
area to capillary cross section,

an/an0 � 2/(1 + sin θc), (E1)

where the subscript 0 represents “dry” geometrical quantities
measured in the absence of liquid. The interface is equally
distorted if gas resides on one side or the other. If instead a
neck connects two pores with the same phase (gas or liquid),
then its area does not matter to pore energy, and may be taken
to satisfy Eq. (E1). Then, in this estimate, all necks have greater
cross section than the dry value an0 by a common factor 1 <

an/an0 < 2.
Similarly, the deformation of a neck matters to the volume

vp in Eq. (1), only if it connects two pores of a different phase.
Therefore, the contribution of a single neck to the difference
(vp − vp0 ) is either zero or a volume increment of magnitude

vp. Exploiting a similar capillary approximation than toward
Eq. (E1), and assuming for simplicity that all N necks around
a given pore have the same area, interface distortion amounts
to

δ ≡ N

vp

vp0

� a
3/2
n0

vp0

(
2 − 3 sin θc + sin3 θc

3
√

Nπ cos3 θc

)
. (E2)

Consider a pore filled with liquid (σ = −1). Here distortion
of gas-liquid interfaces shrinks its dry volume vp0 by an
amount σN�=
vp contributed by its N�= necks connected to
gas-filled neighbors. A similar argument applies to a gas-filled
pore, where N�= necks to liquid-filled neighbors swell its
dry volume, again by the amount σN�=
vp. In all cases,
using results in Appendix D, we have N�=/N = 1 − Pr1,
so that (vp − vp0 )/vp0 = σN
vp(1 − σ σ̄ )/2 = N
vp(σ −
σ̄ )/2. On average,

(vp − vp0 )/vp0 � δ(σ − σ̄ )/2. (E3)

Therefore, by the ergodic condition σ̄ = 〈σ 〉, this correction
in average pore volume vanishes whenever δ is constant, for
example with single-valued dry neck area and pore volume.
It also vanishes in the general case if, as expected, the
domain statistics of a

3/2
n0 /vp0 are uncorrelated with those of

σ . However, the mean absolute excursion |vp − vp0 |/vp0 �
δ(1 − σ σ̄ )/2 does not vanish, but it is usually small, since λ0

is typically ∼O(1) and the terms in parentheses in Eq. (E2) is
�2/3

√
Nπ,∀ θc. For example, tetrahedral pores in a hexago-

nal close packing have a
3/2
n0�/vc0� � 2.49 (see Appendix H), so

|vp − vp0 |/vp0 < 0.23(1 − σ̄ 2),∀ θc < π/2 and <0.1(1 − σ̄ 2)
for typical θc > 35◦. Because phase transitions occur near
|σ̄ | � 1, fluctuations in pore volume due to θc can therefore be
ignored in most cases. Finally, unless necks are unusually long,
the position of the triple contact line on their periphery should
be relatively insensitive to the contact angle, and therefore
the pore surface area ap should not significantly depend on
θc either. Overall, hydrophilic contact angles should mostly
affect the magnitude of λ. From Eq. (E1),

λ/λ0 � 2/(1 + sin θc). (E4)

APPENDIX F: MACROSCOPIC INHOMOGENEITIES

To illustrate the role of inhomogeneities, we consider a
Preisach model [97] for a hypothetical medium consisting
of two adjacent mesoscopic subdomains a and b occupying
different parts Va = χaV and Vb = χbV of the total pore
volume V = Va + Vb with distinct mean degrees of saturation
Sa and Sb, but subject to the same dimensionless applied
pressure ψ ′. For clarity, the entire medium has single-valued
pore and neck sizes. Therefore, a and b share the transition
pressures ψ ′

+ and ψ ′
− (Sec. III).

Figure 8 shows the response to generic initial conditions. If
the two subdomains a and b have an initial capillary pressure
ψ ′

0 < ψ ′
+ (saturated), or ψ ′

0 > ψ ′
− (dry), they both experience

the same saturation history and effectively behave as a single
domain. If instead they start at an intermediate pressure ψ ′

+ <

ψ ′
0 < ψ ′

−, then overall saturation depends on initial conditions
Sa0 and Sb0 : If an initially saturated a (Sa0 = 1) is juxtaposed
with a dry b (Sb0 = 0), then a stays saturated as ψ ′ rises from
ψ ′

0 until the phase transition at ψ ′
−. This produces a horizontal

segment on the joint retention retention curve at an apparent
mean S = θ/(1 − ν) = χa . Conversely, if a starts dry while b

is saturated, then the retention curve features a similar segment
at S = χb = 1 − χa . In either case, these segments invade the
region in (ψ ′,S) state space between the main curves fd and
fw. Similar invasions arise with a more general distribution
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FIG. 8. Apparent macroscopic retention curve for two adjacent
mesoscopic domains subject to the same capillary pressure but
different initial mean degree of saturation, and drawn for conditions of
Fig. 3. (Right) The open square represents initial degrees of saturation
Sa0 = 0 and Sb0 = 1, and an initial capillary pressure ψ ′

0 between ψ ′
+

and ψ ′
−. (Left) The solid square is the same initial pressure but with

Sa0 = 1 and Sb0 = 0. Both apparent retention curves invade the region
between the main curves (dashed lines) shown in Fig. 3(a).

F (λ,α), with positions in (ψ ′,S) that are sensitive to the initial
inhomogeneous distribution of liquid.

APPENDIX G: SLOPE OF THE RETENTION CURVE

A practical use of Eq. (18) is to find the derivative ∂ψ/∂θ

that appears in Richards’ equation [24]. To that end, we
calculate ∂σ̄ /∂ψ ′ = ∂I/∂ψ ′ by differentiating first the left
integral in Eq. (19). By Leibniz’s theorem,

∂

∂ψ ′

∫∫
�+

Fdλdα

=
∫∫

�+

∂F

∂ψ ′ dλdα +
∮

C+
F

∂M+
∂ψ ′ · n+ds, (G1)

where C+ is the contour of the �+ domain in (λ,α) space,
n+ is its outward unit normal at the point M+, and ds is the
curvilinear coordinate on C+. Assuming for simplicity that F

is not affected by ψ ′, the first term to the right of Eq. (G1)
vanishes. Then the only contribution to the second term is
from the only part of C+ that can change with ψ ′, namely the
semi-infinite line satisfying

α = (λσ̄ + ψ ′)/ cos θc ≡ αC(λ), (G2)

with positive λ and α. On that line, ∂M+/∂ψ ′ = (0,1/ cos θc)
and n+ds = (−σ̄ / cos θc,1)dλ from Eq. (20). Therefore,

∂

∂ψ ′

∫∫
�+

Fdλdα =
∫ λmax

λmin

F (λ,αC)dλ/ cos θc, (G3)

in which λmin = 0 and λmax = max(0,−ψ ′/σ̄ ) for σ̄ < 0, and
λmin = max(0,−ψ ′/σ̄ ) and λmax = +∞ for σ̄ > 0. A similar
calculation yields the right integral in Eq. (19). There Leibniz’s
theorem is invoked on the �− domain with contour C−,
yielding the equal and opposite result to Eq. (G3). Overall,
∂I/∂ψ ′ is twice the result in that equation. Finally, using
Eq. (21) to convert σ̄ to θ ,

∂θ

∂ψ ′ = − 1 − ν

cos θc

∫ λmax

λ=λmin

F (λ,αC)dλ. (G4)

Our experience with the numerical integration of Eq. (G4) is
that it is precise for ψ ′ up to the draining transition. However,
its accuracy deteriorates for its wetting counterpart. For that

transition, a better alternative is to express Eq. (G4) in terms
of α. Defining λC ≡ (α cos θc − ψ ′)/σ̄ , a similar calculation
yields

∂θ

∂ψ ′ = −1 − ν

σ̄

∫ αmax

α=αmin

F (λC,α)dα, (G5)

where αmin = 0 and αmax = max(0,ψ ′/ cos θc) for σ̄ < 0 and
αmin = max(0,ψ ′/ cos θc) and αmax = +∞ for σ̄ > 0.

The transition pressures ψ ′
± and their corresponding filling

states σ̄± satisfy simultaneously

∂I

∂σ̄
(σ̄±,ψ ′

±; θc) = +1 (G6)

and

σ̄± = I(σ̄±,ψ ′
±; θc). (G7)

Solutions of these two nonlinear equations can be obtained by
iteration. Whereas evaluating I(σ̄ ,ψ ′; θc) requires two double
integrations [Eq. (19)], the derivative in Eq. (G6) is again
simplified using Leibniz’ theorem,

∂I

∂σ̄
(σ̄ ,ψ ′; θc) = 2

cos θc

∫ λmax

λ=λmin

F (λ,αC)λdλ, (G8)

which can be used to evaluate Eq. (G6).

APPENDIX H: HEXAGONAL CLOSE PACKING

We derive the retention curve for a hexagonal close packing
of identical spheres (HEX). This configuration is instructive as
an example of Heaviside hysteresis with narrower separation
between the wetting and draining phase transitions than in
a hypothetical medium with single-valued λ̄ and ᾱ. It may
also constitute a convenient test of the theory in future three-
dimensional tomographic experiments.

A HEX has two kinds of pores. The first is enclosed within
regular tetrahedra of four touching spheres (denoted by �).
The second (�) is found within pyramids consisting of four
touching spheres with centers on a square and contacting a
fifth sphere. The first kind has a dry pore volume v′

p0� =
1/6

√
2 − π/3 + arctan

√
2 and a dry pore surface area a′

p0� =
2π − 6 arctan

√
2, and the sum of its N� = 4 dry neck cross

sections is a′
n0� = √

3 − π/2. The second kind has v′
p0� =

1/3
√

2 + π/4 − arctan
√

2 and a′
p0� = 6 arctan

√
2 − 3π/2,

and its N� = 5 necks add up to a′
n0� = 1 + √

3 − 3π/4.
Here primes denote quantities dimensionless with sphere
diameter. Because the two kinds are present in equal numbers,
the mean dry pore volume is v̄′

0p = (v′
p0� + v′

p0� )/2, so that

�̄0 = (
√

2 − π/3)1/3/2. Then pore volume fractions are

χ� =
v′

p�

v′
p� + v′

p�

= [
√

2 − 4π + 12 arctan
√

2]

(3
√

2 − π )
(H1)

and χ� = 1 − χ� = 0.716 . . . . Consequently, the two kinds
of pores have different values λ0 and α0, namely,

λ0� = 31/6(3
√

2 − π )
1
3 (6 − π

√
3)√

2 − 4π + 12 arctan
√

2
,

(H2)

α0� = 4 × 32/3(3
√

2 − π )
1
3 [π − 3 arctan

√
2]√

2 − 4π + 12 arctan
√

2
,
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and

λ0� = 32/3(4 + 4
√

3 − 3π )(3
√

2 − π )
1
3

6π + 4[
√

2 − 6 arctan
√

2]
,

(H3)

α0� = 35/3(3
√

2 − π )
1
3 (4 arctan

√
2 − π )

3π + 2[
√

2 − 6 arctan
√

2]
.

Combining with Eq. (H1), we find λ̄0 = χ�λ0� + χ�λ0� =
2.095 . . . and ᾱ0 = χ�α0� + χ�α0� = 6.128 . . . . Therefore,
the distribution F consists of two δ functions centered at
(λ�,α�) and (λ�,α�) with respective strengths χ� and χ�
(Fig. 9).

Consider a saturated HEX with σ̄ = −1. As ψ ′ is increased
(Fig. 9, left), the line α cos θc = ψ ′ + σ̄ λ eventually overtakes
the (λ�,α�)δ function (draining transition), thus raising σ̄ to
the intermediate dotted slope (χ� − χ�) imposed by Eqs. (18)
and (19). Because this line lies above the (λ�,α�)δ function,
the transition proceeds to drain the sample completely, as
indicated by two consecutive black arrows.

Conversely, as ψ ′ is reduced on a dry HEX, the wetting tran-
sition occurs as (λ�,α�) is reached with ψ ′

+ = α� cos θc + λ�,
thus flipping the slope, once again, to the same intermediate
value (χ� − χ�). Because the resulting dotted line lies just
below the square, imbibition also proceeds to completion
immediately. To guarantee this, (α� − α�) cos θc must be
<λ� − λ�(χ� − χ�). Coincidentally, if we adopt Eq. (E4)
and α = α0, this inequality is always satisfied, albeit just so
when θc = π/6.

In short, HEX retention curves have Heaviside shapes
similar to Eq. (24). However, their air-entry potential ψ ′

− =
α� cos θc + λ� is closer to the wetting pressure ψ ′

+ =
α� cos θc − λ� than if both phase transitions resulted from
a δ function at (λ̄,ᾱ).

Finally, we evaluate the latent energy for HEX first-order
phase transitions by summing Eq. (5) over all pores. For
saturated and dry HEX,

H′(σ = ∓1)

= ±ψ ′

2
∓ cos θc

(ap� + ap� )

4�̄2
0

− (an� + an� )

4�̄2
0

. (H4)

Then the latent energy in the draining and wetting transitions
are, respectively, L′

∓ = H′(σ = ±1) − H′(σ = ∓1),

L′
− = −λ� − cos θc

[
α� − (ap� + ap� )/4�̄2

0

]
(H5)

FIG. 9. α vs λ/ cos θc for draining and wetting phase transitions of
a HEX with θc = 50◦, α = α0, and λ from Eq. (E4). (Top) Increasing
ψ ′ of an initially saturated sample brings the dashed line of slope
σ̄ = −1 [Eq. (20)] to the draining transition as it intersects the square
at (α�,λ�) when ψ ′ = ψ ′

−. The integral I in Eq. (19) then flips σ̄

to (χ� − χ�), thereby rotating the slope to the dotted line. Because
the latter lies above the triangle at (α�,λ�), it is further rotated to
σ̄ = +1, so the sample drains completely. (Bottom) Reverse process
as ψ ′ is reduced in an initially dry sample. Here the wetting transition
occurs as the dashed line of slope +1 reaches the triangle at (α�,λ�)
with transition pressure ψ ′

+. This reduces the slope to (χ� − χ�)
(dotted line), which lies just below the square, thereby completing
the transition to saturation.

and

L′
+ = −λ� + cos θc

[
α� − (ap� + ap� )/4�̄2

0

]
, (H6)

Because L′
− �= L′

+, the corresponding Haines jumps should
proceed at different rates [Eq. (32)].
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