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Loading-unloading hysteresis loop of randomly rough adhesive contacts
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We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough
profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors.
A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged,
and the calculated contact area and applied load are shown as a function of the penetration, for loading and
unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis
loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der
Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in
metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical
properties and the energy of adhesion on the hysteresis process.
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I. INTRODUCTION

Contact mechanics between rough surfaces plays a crucial
role in a large number of engineering applications, ranging
from seals [1,2], boundary and mixed lubrication [3,4], and
adhesive systems and friction [5–7]. Recently, an increasing
interest in these topics has been motivated by the increasing
efforts made to face up to new technological challenges, such
as the manufacturing of novel bioinspired adhesives [8–10],
the optimization of seals [11,12], and the extreme downsizing
of mechanical and electrical devices. In particular, microme-
chanical and nanomechanical systems (MEMS and NEMS)
have driven the development of new materials and surfaces,
involving an increasing influence of surface phenomena. In
such applications, where usually surfaces may experience
rapid intermittent contacts, it is very important to comprehend
how adhesion and roughness affect the behavior of the system
and in particular the energy dissipation at the interface. This
aspect of the problem is also very critical when scanning probe
microscopy, as atomic force microscopy (AFM), is utilized to
characterize the mechanical behavior and surface properties
of materials: During adhesive contacts of rough solids the
measured contact force versus displacement shows a clear
hysteretic loop associated with energy dissipation [13–15],
which is not observed in perfectly smooth elastic contacts.

The relevance of the problem has strongly stimulated
research in this field. However, notwithstanding the large
number of papers dealing with the adhesive contact of rough
surfaces [16–23], only a few papers attempt to explain the
origin of adhesion hysteresis and energy dissipation in rough
contacts [25–27]. This is usually attributed to the presence of
plasticity [24,25,27], interdigitations among polymer chains
[15], humidity [13], and viscoelasticity [28,29]. In fact all these
phenomena can act contemporaneously, so that distinguishing
among the different causes has become of utmost importance.
Only a few works have made an effort in this direction. For
example, Refs. [30–33] proved that adhesion hysteresis can be
observed even in the case of elastic solids provided that the
contact occurs between rough surfaces. The study presented
herewith aims at providing an additional contribution along

this direction. By employing a methodology based on a pure
continuum mechanics approach, which belongs to the class
of boundary element methods (BEMs) [5,10,34], we analyze
numerically the loading-unloading adhesive contact of rough
solids by including adhesion in terms of surface energy, i.e., by
assuming that the range of the adhesive interaction is infinitely
short. We study, in particular, the influence of adhesion and
surface roughness on the hysteresis loop, and show that energy
can be lost simply as a consequence of roughness and van der
Waals forces. Such energy loss is numerically quantified and
explained in terms of two different but concurrent mechanisms
occurring at the contact interface and involving different ranges
of roughness length scales.

II. NUMERICAL MODEL

We briefly summarize the numerical methodology pre-
sented in Refs. [5,10,34]. We consider a periodic problem
where an elastic half space is in contact with a randomly
rough rigid profile of height distribution h(x) as shown in
Fig. 1, where λ is the spatial period of the profile. The quantity
h(x) is the height of the profile measured from its mean plane.
Because of periodicity h(x) can be represented in exponential
form as

h(x) =
+∞∑

m=−∞
a(qm)eiqmx =

+∞∑
m=−∞

ameimq0x (1)

where the fundamental wave vector q0 = 2π/λ, m is the
wave number, am = |am|eiφm and φm the phase of the mth
spectral component, uniformly distributed in the interval
[0,2π [. Figure 2 shows the total displacement utot of the
substrate, the average displacement um of the boundary of the
deformed layer, and the penetration � of the rigid substrate
into the elastic layer. These three quantities are shown to satisfy
the relation

utot = � + um. (2)

Figure 2 also shows the so called interfacial displacement
v(x), and the separation s = hmax − � between the two
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FIG. 1. An elastic half-space in contact with a periodic randomly
rough rigid substrate of wavelength λ.

surfaces, where hmax = max [h(x)] is the maximum height of
the roughness from its mean plane. Let us define the contact
domain � = ∪L

i=1[ai,bi], where ai and bi are the coordinates
of ith contact patch with ai < bi and i = 1,2, . . . ,L, where L

is the number of contacts patches. Recalling that the interfacial
pressure distribution σ (x) vanishes out of the contact domain
the relation between σ (x) and the interfacial displacement v(x)
is

−
∫

�

G(x − x ′)σ (x ′)dx ′ = v(x), (3)

where the kernel [5,34]

G(x) = 2(1 − ν2)

πE
log

[
2

∣∣∣∣sin

(
kx

2

)∣∣∣∣
]

(4)

represents the Green’s function of the semi-infinite elastic
body under a periodic loading, i.e., it represents the interfacial

FIG. 2. A schematic representation of elastic displacement field
at the interface, as they occur during approaching the substrate to the
elastic solid by a quantity utot. Observe that utot is the sum of the
mean displacement um of the elastic body and substrate penetration
�. Also the interfacial displacement and the separation s between the
two surfaces are shown.

displacement v(x) caused by the application of a Dirac delta
comb with peaks δ(x − nλ) separated by a distance λ. Here E

and ν are Young’s modulus and Poisson’s ratio of the elastic
layer. Now let us define the separation between the elastic solid
and the rigid rough substrate, i.e., the distance between the
mean plane of the deformed surface and the mean plane of
the rough surface, as s = hmax − � (see Fig. 2). Noting that in
the contact domain v(x) = h(x) − s = h(x) − hmax + � one
can also write

−
∫

�

G(x − s) σ (s) ds = h (x) − s; x ∈ � (5)

−
∫

�

G(x − s) σ (s) ds = v (x); x /∈ �. (6)

Equation (5) is a Fredholm integral equation of the first kind
used to determine the unknown pressure distribution in the
contact area �. Whereas Eq. (6) is employed to calculate
the displacement v(x) out of the contact area, by simply
performing the integral at the left-hand side. In order to close
the system of equations we need an additional condition to
determine the yet unknown contact domain �. To this end,
we first observe that for any penetration � or equivalently
for any given separation s, we can calculate the pressure
distribution at the interface through Eq. (5), and the interfacial
elastic displacement through Eq. (6), as functions of the
unknown coordinates ai and bi of the ith contact area. To
calculate the exact values of the quantities ai and bi at
equilibrium we need to minimize the interfacial free energy
Utot(a1,b1, . . . ,aL,bL,�) of the system at fixed penetration �

[5,34].
The free interfacial energy is

Utot = Uel + Uad, (7)

where the interfacial elastic energy Uel is [5,34]

Uel(a1,b1, . . . ,aL,bL,�) = 1

2

L∑
i=1

∫ bi

ai

σ (x)[h(x) − s]dx.

(8)
The adhesion energy is

Uad(a1,b1, . . . ,aL,bL) = −γ

L∑
i=1

∫ bi

ai

√
1 + [h′(x)]2dx, (9)

where γ is the work of adhesion. We, indeed, assume that
the range of adhesive interaction is infinitely short as in the
JKR theory [35]. This assumption together with the law of
incompenetrability of bodies makes the rigid wall behave as
a bilateral constraint, whose normal reaction forces per unit
area may be either positive (hard-wall repulsion) or negative
(adhesive attraction). In this case the stress field at the interface
is only determined by enforcing the equilibrium of the elastic
body.

Equation (5) and the requirement that the interfacial free
energy Utot has a (local) minimum at equilibrium, constitute a
set of closed equations, which allows, for any given penetration
�, to determine the coordinates ai and bi of each contact spot,
the pressure distribution at the interface, and all other physical
quantities. For the numerical implementation the reader is
referred to Ref. [34].
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The numerical simulations have been carried out for a
randomly rough profile with PSD

CR(q) = C0

( |q|
qmin

)−(2H+1)

; q ∈ [qmin,qmax]

(10)
CR(q) = 0; q /∈ [qmin,qmax],

where H is the Hurst exponent of the randomly rough profile.
It is related to the fractal dimension: Df = 2 − H . In Eq. (10)
qmin = n0q0 and qmax = Nqmin. The generation of roughness
has been carried out by means of a spectral technique as shown
in the Appendix.

III. RESULTS

We assume that the elastic block is a soft perfectly elastic
material with elastic modulus E = 1 MPa and Poisson’s ratio
ν = 0.5. For each rough profile results have been averaged
over 10 different realizations.

The profiles have root mean square roughness hrms =
〈h2〉1/2 = 1 μm. The spectral components of our profiles are
given by Eq. (10) and cover the wave-vector range from qmin =
n0q0 up to qmax = Nqmin, outside this range the PSD is zero.
We have considered λ = 2π/q0 = 6.28 mm, qmin = 10q0, and
qmax = 100qmin. We note that once hrms, qmin, and qmax are
fixed, changing the Hurst exponent (i.e., the fractal dimension
of the surface) also determines a modification of the average
square slope m2 = 〈h′2〉 = ∫

q2CR(q)dq of the surface. For
each generated rough profile (see Appendix) the numerical
calculations have been carried out for different values of the
separation s = hmax − �. In Fig. 3 we show three different
shapes of the deformed profile at three different values of the
separation: s = 92 μm, s = 51 μm, and s = 20 μm, for (a)
loading and (b) unloading conditions. The work of adhesion
is γ = 0.01 J/m2. The rigid rough substrate profile has a
fractal dimension Df = 1.2. In Fig. 3 the value s = 20 μm
is the minimum value of separation at which the unloading
process begins to take place after loading. Therefore at
s = 20 μm the shape of the deformed profile is the same not
depending on what condition (i.e., loading or unloading) is
being considered. However, as the unloading proceeds further
and the elastic block is moved away from the contact, the shape
of the deformed profile significantly changes compared to the
loading case (see s = 51, and 92 μm), and is characterized
by a significantly larger contact area and by the formation
of stretched contacts with pronounced adhesive necks [32].
This type of behavior is peculiar of asperity adhesive contact
[35]. In fact, in presence of adhesion, asperities enter in
contact when the local interfacial load is still zero, but during
unloading, asperities are first stretched, with the formation of
adhesive neck, and then jump out of contact at negative local
loads. During unloading, unstable local pull-off events occur
at random locations [32] leading to pronounced differences
between the loading and unloading precesses. Such different
behaviors can be indirectly observed in in Fig. 4, where the
PSD of the rigid substrate profile (fractal dimension Df = 1.2,
nondimensional penetration �̃ = �/hmax = 0.4) has been
compared to the PSD of the deformed shape of the elastic body
during loading and unloading conditions, for γ = 0.01 J/m2

[Fig. 4(b)] and γ = 0.04 J/m2 [Fig. 4(b)].
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FIG. 3. (Color online) The deformed shapes of the elastic body at
three different separations, s = 92 μm, s = 51 μm, and s = 20 μm,
and the rough rigid substrate profile, for (a) loading and (b) unloading.
The work of adhesion is γ = 0.01 J/m2, and the rigid rough substrate
profile has a fractal dimension Df = 1.2.

At first we remark that for large wave vectors q, the PSDs of
the deformed profile, either in loading or unloading conditions
(blue and red curves respectively), run parallel to the PSD
of the rigid rough profile. This is due to the fact that, for
0.5 < H < 1, full contact always occurs between the elastic
block and the short wavelength corrugation of the rough rigid
profile, (see Fig. 3). In fact, we can easily estimate the threshold
wavelength lth below which full contact occurs between solid
and the rigid rough substrate. To this end consider that for a
fractal surface the amplitude A(q) = 2|a(q)| of each single
wavy corrugation scales as A(q)/A(qmin) ∼ (qmin/q)H where
A(qmin) is of order of the rms roughness hrms of the substrate.
Now assume that the elastic slab makes contact with the
surface on a region of size l = 2π/q in this case, assuming
A(q) 	 l, the change of elastic energy stored in the body
can be shown to be �Uel ∼ El2A(q) whereas the change of
adhesion energy upon contact is �Uad ∼ −γ l2. Therefore
full contact will occur when the change of total energy
�Utot = �Uel + �Uad upon contact is �Utot < 0. In this case
the contact will occur on a single connected region, otherwise
it will be split in many different contact spots. The condition
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FIG. 4. (Color online) The PSD of the rigid substrate profile with
fractal dimension Df = 1.2, compared to the PSD of the deformed
shape of the elastic body at fixed non dimensional penetration
�̃ = �/hmax = 0.4, obtained for (a) γ = 0.01 J/m2 and (b) γ =
0.04 J/m2, for loading (blue curves) and unloading (red curves)
conditions.

�Utot < 0 gives EA(q) < γ , i.e., A(q) < δ = γ /E where δ is
called the adhesion length. Using A(q)/A(qmin) ∼ (qmin/q)H

one gets l < (2π/qmin)[δ/A(qmin)]1/H = lth. In our case we
get lth ≈ 2–12 μm depending on the value of the energy
of adhesion. Therefore, during loading, at scales below this
threshold value lth we will observe the formation of small
contacts where the elastic solid conforms to the rigid substrate,
thus leading to the observed trend of PSD (see Fig. 4),
which, indeed, runs parallel to the PSD of the rigid rough
profile. At smaller spatial frequencies the contact is, instead,
split in many different disconnected regions. Therefore partial
contact occurs at the large scales and the slope of the PSD
of the deformed profiles must necessarily differ from the
one of the rigid rough profile. In Ref. [10] the authors have
shown that, under load conditions, in such smaller range of
spatial frequencies and during loading conditions, the PSD
of the deformed profile closely follows a power law of the
type Cv(q) ≈ q(2+H ) in very good agreement with Persson’s
theory [12,36–41]. However, during unloading the PSD of the
deformed profile shows a different trend: (i) for large wave
vectors the unloading PSD still runs parallel to the PSD of
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FIG. 5. (Color online) The PSD of the rigid substrate profile
with fractal dimension Df = 1.2, compared to the PSD of the
deformed shape of the elastic body, obtained for γ = 0.04 J/m2,
(a) for loading and (b) unloading conditions, for different values of
the nondimensional penetration �̃ = �/hmax.

rough profile but over a wider range of wave vectors, (ii) at
smaller spatial frequencies the slope of the PSD, instead, does
not follow Persson’s predictions, as shown by the larger slope
of the PSD curve compared to the loading case. This fact seems
to suggest that the power-law trend predicted by Persson’s
theory [36,37] holds true only for loading conditions. This is
more evident at larger values of adhesion energy, see curve for
γ = 0.04 J/m2 in Fig. 4(b). When the PSDs of the deformed
profile are compared at different values of the penetration (see
Fig. 5), an interesting different behavior between loading and
unloading can be observed. In particular, we note that, during
loading, the PSD of the deformed surface is very sensitive
to the penetration value �̃ [Fig. 5(a)], while this sensitivity
is much less pronounced during unloading [Fig. 5(b)], at
least for relatively large values of the energy of adhesion
γ = 0.04 J/m2.

In Fig. 6 the normalized real contact area A/A0 is shown,
for different values of average square slope of the profile
m2 = 〈h′2〉 and adhesion energy γ , as a function of the
dimensionless quantity σ̃ /

√
m2, where σ̃ = 2σ/(E∗q0hmax).

We have chosen to plot A/A0 vs. σ̃ /
√

m2 as, for adhesiveless
contacts, theories and numerical calculations [7,10,17,18,34]
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FIG. 6. (Color online) The true contact area A/A0 as a function
of the dimensionless quantity m

−1/2
2 σ̃ for two different Hurst ex-

ponents H = 0.8 (m2 = 2.7 × 10−3), H = 0.9 (m2 = 1.5 × 10−3),
and for three different values of energy of adhesion, γ = 0.01 J/m2

(black curves), γ = 0.04 J/m2 (blue curves), and γ = 0.07 J/m2

(red curves). As predicted by the theories, there is a marginal
influence of the fractal dimension on the true contact area at
small loads under loading conditions. The influence of Df becomes
important during unloading. This leads to the formation of a hysteresis
loading-unloading loop, which is strongly affected by the adhesion
energy γ.

predict an almost linear relation between this two quantities,
which is observed to be independent of the elastic properties
of the material and the surface statistics. However, in our case,
this linearity is not observed, especially when the two surfaces
are moved apart (unloading). More importantly, given the same
applied load, the contact area during unloading is much larger
than during loading, thus leading to strong hysteresis. This is
even more clear in Fig. 7(a) where the dimensionless load σ̃ is
plotted vs. the nondimensional penetration �̃. Interestingly,
being the solid perfectly elastic, such a hysteretic energy
dissipation must be related to contact phenomena occurring at
the interface. In fact we can propose two different mechanisms
leading to energy dissipation: (i) the first occurring at small
scales, i.e., for wavelength l < lth, which we refer to as the
small-scale hysteresis (SSH); (ii) the second at large scales,
i.e., for l > lth, which we refer to as the large-scale hysteresis
(LSH). To understand the origin of the SSH, let us recall
that at small scales the solid conforms to the rigid substrate.
Thus, each single contact is actually represented by a compact
interval. In such a case Guduru and his collaborators have
shown that, already a moderate roughness strongly modifies
the original JKR curve providing it with a nonmonotonic
behavior [30,31]. This, in turn, causes the unloading process
to be characterized by many crack propagation jumps, with
the interface separating in alternating stable and unstable
segments. Each unstable segment dissipates energy leading
to an increase of the total work during unloading and, hence,
to energy dissipation. This unstable behavior has been used in
Ref. [33] to justify the hysteresis observed in JKR experiments
with AFM tips.

The origin of LSH is instead different. In fact, as noted
so far, when the surface is observed at large scales the
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FIG. 7. (Color online) The dimensionless load σ̃ =
2σ/(E∗q0hmax) (a) and the quantity A/A0 (b) as a function of
the nondimensional penetration �̃, for two different Hurst exponents
H = 0.8 (m2 = 2.7 × 10−3), H = 0.9 (m2 = 1.5 × 10−3), and for
three different values of energy of adhesion, γ = 0.01 J/m2 (black
curves), γ = 0.04 J/m2 (blue curves), and γ = 0.07 J/m2 (red
curves).

contact is constituted by a set of disconnected small contact
regions, wherein the short wavelength corrugation is appar-
ently smoothed out. The contact interface, then, resembles the
contact between as large number of randomly located smooth
asperities, each of one obeying the JKR adhesion laws. In such
conditions, Israelachivili and his group [32] proposed a very
simple picture to explain the occurrence of hysteresis. As noted
so far, this is indeed due to the local stretching and consequent
JKR pull off of asperities during unloading [32].

It is noteworthy to observe that increasing the energy of
adhesion γ leads to a strong increase of hysteresis loop [see
Fig. 7(a)]. The origin of this behavior is twofold, as increasing
γ necessarily leads to: (i) an increase of number of contact
patches, and (ii) to an increase of the size of each single
contact patch. This, in turn, determines an enhancement of
SSH and LSH phenomena, i.e., to a large increment of energy
dissipation during the loading-unloading loop. Figure 7(b)
shows the reduced real contact area A/A0 as a function of the
dimensionless penetration �̃ for two different Hurst exponents
H = 0.8 (m2 = 2.7 × 10−3), H = 0.9 (m2 = 1.5 × 10−3),
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TABLE I. The dimensionless energy loss.

γ = 0.01 J/m2 0.04 J/m2 0.07 J/m2

m2 = 5.1 × 10−3 − 26.6 42.83
2.7 × 10−3 3.44 19.36 49.25
1.5 × 10−3 2.59 17.91 28.15

and for three different values of energy of adhesion, γ =
0.01 J/m2 (black curves), γ = 0.04 J/m2 (blue curves), and
γ = 0.07 J/m2 (red curves).

An estimation of the dimensionless energy loss during the
entire loading-unloading cycle, for different values of the
average square slope of the profile, is given in Table I. In
particular no general trend can be inferred. Results, instead,
may suggest a non monotonic dependence of the dissipated
energy on m2. This is, in fact, what we expect. Simple
dimensional argument shows indeed that the density Dsum of
the substrate asperities increases as Dsum ∼ √

m4/m2 where
m4 = 〈h′′2〉 = ∫

q4CR(q)dq is the average square curvature
of the rough profile. Thus, considering that m4 increases with
m2 faster than m2, it follows that the number of asperities per
unit length grows as m2 is increased. Therefore, for moderate
values of the average square slope, increasing m2 should lead,
by following the mechanism proposed in Refs. [30,31] to
an enhancement of the SSH hysteresis in each contact spot,
and to and increment of the number of contact spots, thus
increasing the number of LSH pull-off events. Hence, for small
m2, increasing m2 should necessarily causes an increase of
hysteresis.

However, for sufficiently large values of m2, the contact area
in each contact spot must strongly diminish (given the same
value of γ ). This follows from the fact that, as shown above, full
contact between the elastic solid and the rigid substrate on the
length scale l = 2π/q, occurs when the amplitude A(q) of the
spectral components satisfies the relation A(q) < δ, that is to
say m2(q) < (δ/ l)2, where m2(q) ≈ [A(q)/l]2 is the average
square slope of the q component of the rigid rough profile.
Therefore, increasing m2 will cause full contact conditions to
be established at continuously decreasing length scales. This
will strongly reduce the contact area in each contact spots, will
reduce the force needed to detach the elastic body from the
rigid substrate and in the end strongly diminish the adhesion
hysteresis, in agreement with experimental observations in
AFM contacts in Ref. [33].

Figure 8 shows the normalized conditional probability
density function (PDF) p(t) of the interfacial separation
t(x) = v(x) − h(x) + s in the noncontact area (where t > 0).
t(x) plays a crucial rule in many practical applications (e.g.,
mixed lubrication, lip seals, static seals). The PDF has been
calculated for H = 0.7, and γ = 0.04 J/m2, in (a) loading and
(b) unloading conditions. The trend of the calculated p(t) in
the loading and unloading conditions slightly differs in Fig. 8,
since during unloading (see Fig. 3), the shape of the deformed
profiles changes leading to higher interfacial separations t(x)
compared to the loading case. This explains the trend of
p(t) in Fig. 8 for the unloading case: the quantity p(t) is,
in fact, slightly shifted towards higher values of separation
t(x) compared to the loading case.

Loading

Unloading
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FIG. 8. The normalized probability density function (PDF) p(t)
of the local separation t(x) in the noncontact area [t(x) > 0] for
H = 0.7, and γ = 0.04 J/m2, �̃ = 0.7 for loading and unloading
conditions.

IV. CONCLUSIONS

We have studied the adhesive contact between a rubber
block and a rigid randomly rough profile during loading and
unloading conditions. The roughness has been considered to
be a self-affine fractal on a limited range of wave vectors.
Calculations have been carried out for each profile by means
of a numerical code previously developed by the authors.
The calculated data have been statistically averaged, and the
influence of profile average slope and energy of adhesion on
loading-unloading contact behavior has been investigated. We
have shown that the combination of adhesion and roughness
leads to the appearance of hysteresis cycle and, hence,
to energy dissipation. We physically justify the observed
behavior by considering two sources of energy dissipation
one occurring at small scales and the second at large scales.
We have numerically quantified the energy loss depending on
the average slope of roughness and on the energy of adhesion
and discuss it in terms of surface statistical properties.

APPENDIX: ROUGH PROFILE GENERATION

In our numerical calculations we have utilized a periodic
profile with wave vectors in the range q0 < q < qmax. In
particular, the nonvanishing spectral components of our pro-
files are given by Eq. (10) in the range from qmin = n0q0 <

q < qmax = Nqmin. Out of this range the PSD is zero. This
choice is necessary in order to improve the ergodicity of
the process. For the numerical generation of a profile, it is
necessary to determine the amplitudes |am| and the phases φm

of the terms am = |am|eiφm [see Eq. (1)]. It can be shown that
in order to satisfy the translational invariance of the profile
statistical properties [which implies that the autocorrelation
function satisfies the relation 〈h(x ′)h(x ′ + x)〉 = 〈h(0)h(x)〉],
it is enough to assume that the random phases φm are uniformly
distributed on the interval [−π,π [. This also guarantees that
the process is Gaussian. Now moving from Eq. (1) the PSD is

C(q) =
+∞∑

m=−∞
〈|am|2〉δ(q − mq0) (A1)
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FIG. 9. The averaged dimensionless height probability density
function p(t) of 10 rigid rough profiles. h̃(x) = h(x)/hmax. Calcula-
tions are shown for H = 0.8. Because of the enhanced ergodicity, the
trend of the calculated probability density function p(t) (solid line)
follows pretty well a Gaussian random distribution (dashed line).

from which it follows

C(mq0) = 〈|am|2〉δ(0). (A2)

If we assume self-affine fractal profile [see Eq. (10)] one
obtains

〈|am|2〉 = 〈|a1|2〉m−(2H+1). (A3)

Hence, the quantity 〈|am|2〉 can be determined once known
〈|a1|2〉 and the Hurst exponent of the surface. However
to completely characterize the rough profile we still need
the probability distribution of the amplitudes |am|. There
are several choices, however, the simplest assumption, as
suggested by Persson et al. in Ref. [37], is that the probability
density function of |am| is just a Dirac’s δ function centered at
〈|am|2〉1/2, i.e.,

p(|am|) = δ(|am| − 〈|am|2〉1/2). (A4)

Figure 9 shows the averaged probability density function p(h̃)
of 10 realizations of the same statistical rough profile. Data are
represented in terms of the dimensionless roughness heights
h̃(x) = h(x)/hmax. The Hurst exponent is H = 0.8. Thanks to
the improved ergodicity of the numerically generated rough
profile, the trend of the calculated probability density function
p(h̃) (solid line) follows closely a Gaussian distribution
(dashed line).
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