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When the surface of a nominally flat binary material is bombarded with a broad, normally incident ion beam,
disordered hexagonal arrays of nanodots can form. Shipman and Bradley have derived equations of motion that
govern the coupled dynamics of the height and composition of such a surface [Shipman and Bradley, Phys.
Rev. B 84, 085420 (2011)]. We investigate the influence of initial conditions on the hexagonal order yielded by
integration of those equations of motion. The initial conditions studied are hexagonal and sinusoidal templates,
straight scratches, and nominally flat surfaces. Our simulations indicate that both kinds of templates lead to
marked improvements in the hexagonal order if the initial wavelength is approximately equal to or double the
linearly selected wavelength. Scratches enhance the hexagonal order in their vicinity if their width is close
to or less than the linearly selected wavelength. Our results suggest that prepatterning a binary material can
dramatically increase the hexagonal order achieved at large ion fluences.
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I. INTRODUCTION

When a nominally flat solid surface is bombarded with a
broad ion beam, a variety of self-assembled nanoscale patterns
can emerge. Examples include periodic height modulations or
“ripples” [1] as well as nanodots arranged in hexagonal arrays
of surprising regularity [2–5]. Ion bombardment therefore has
the potential to become a high-throughput, single-step method
of mass producing large-area nanostructures with length scales
beyond the limits of conventional optical lithography.

The primary obstacle to the widespread adoption of ion-
induced pattern formation as a nanoscale fabrication tool has
been the presence of numerous defects in the patterns that are
typically produced. In the case of surface ripples, some ripples
terminate, while others fuse with their neighbors. In contrast,
penta- and hepta-defects are found in hexagonal arrays of
nanodots produced by ion bombardment of binary materials.

A promising concrete strategy for producing more highly
ordered patterns is to bombard a topographically prepatterned
surface or “template” rather than an initially flat surface [6].
The template should have a regular structure on a length scale
that is longer than the natural spacing of the patterns formed
by ion sputtering, so that it can be fabricated by, e.g., optical
lithography with a mask or optical standing-wave lithography.
The purpose of the template is to guide the ion-induced self-
organization that occurs at shorter length scales, leading to a
more highly ordered nanostructure than would be formed on
an initially flat surface.

Some steps toward utilizing templates in ion-induced ripple
formation on elemental materials have been taken. If a silicon
surface is prepatterned with parallel trenches with a width
equal to a few times the ripple wavelength, for example,
the ripples that form in the trenches tend to align with the
trench walls, and the number of defects in the ripple patterns
is small [6].

An intriguing recent experiment suggests another possible
route to enhanced ordering. In the experiment, a silica
surface was polished mechanically, producing a set of parallel

scratches [7]. This surface was then subjected to normal-
incidence bombardment with a beam of 1.8 MeV gold ions.
The result was an array of nanodots with a much higher
degree of order than would have been present had the surface
not been polished before bombardment. In particular, chains
of nanodots that were presumably parallel to the scratches
were observed. Similar results have been obtained if the
“scratches” are made by prepatterning the surface using near-
grazing-incidence ion bombardment rather than by mechanical
polishing [8–10].

In this paper we investigate the efficacy of using a
template to improve the order in nanodot arrays produced
by normal-incidence ion bombardment of binary materials.
Using numerical simulations, we explore the degree of order
produced by a template with a hexagonal array of nanoholes.
The nanohole spacing is chosen to be equal to or longer than the
linearly selected wavelength λT , i.e., the natural spacing of the
nanodots. We find that this type of template dramatically im-
proves the order when the nanohole spacing is approximately
equal to certain integer multiples of λT . Comparable results
are obtained for a template with a sinusoidally varying surface
height. Finally, we study the effect of an initial condition
that is meant to resemble a single, long, straight scratch
on an otherwise nominally planar surface. Our simulations
show that if the scratch width is appropriately chosen,
the degree of hexagonal order is strongly enhanced in its
vicinity.

We use three different methods to characterize the degree
of hexagonal ordering present in the simulated nanodot arrays.
The first is a qualitative method which involves inspection of
the peaks in the magnitude of the Fourier transform of the
surface height. The other two methods are quantitative. One
uses a topological data analysis technique called persistent
homology. We will describe how to compute a quantity called
the H1 sum, and how it can be used as a sensitive measure
of hexagonal order. The second quantitative method involves
constructing a Voronoi tessellation for the nanodot peaks and
computing its nearest-neighbor number distribution.
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The organization of the paper is as follows. In Sec. II,
we briefly introduce the equations of motion that describe
the time evolution of the surface of a binary material that is
bombarded with a broad, normally incident ion beam. These
are the equations that we will integrate numerically in our
simulations. Section III describes the numerical method used
to solve the equations of motion and the initial conditions
we studied. In Sec. III, we also discuss how we quantify the
hexagonal order in the patterns. Section IV contains the results
of the numerical simulations for different initial conditions. In
Sec. V, we discuss the results of our simulations and their
implications for future experimental work.

II. EQUATIONS OF MOTION

In pioneering work, Shenoy, Chan, and Chason studied
the coupling between the surface topography and composition
that arises during ion bombardment of a binary material [11].
Bradley and Shipman extended this theory to include the effect
of mass redistribution [12–17] and the leading order nonlinear
terms for the case of normal-incidence ion bombardment
[3–5]. The Bradley-Shipman equations of motion govern the
behavior of u and φ, the deviations of the surface height and
surface composition from their steady-state values. Adopting
the same notation and assumptions as Bradley and Shipman,
the equations are

∂u

∂t
= φ − ∇2u − ∇2∇2u + λ(∇u)2, (1)

and
∂φ

∂t
= −aφ + b∇2u + c∇2φ + νφ2 + ηφ3, (2)

where the variables x, y, t , and u have been rescaled so
that they are dimensionless. The coefficients a,b,c,λ,ν, and η

depend on the choice of binary material and ion beam. Explicit
formulas that relate these coefficients to the underlying
physical parameters may be found in Ref. [5]. A discussion
of the physical meaning of all of the terms in the equations of
motion may also be found there.

III. NUMERICAL METHODS

In order to reduce boundary effects in our numerical
integrations of the equations of motion (1) and (2), we adopted
periodic boundary conditions. We used a Fourier spectral
method on a grid of 256 × 256 points in our integrations of the
equations of motion. The linear parts of the equations of mo-
tions were integrated in Fourier space, and the nonlinear parts
were evaluated in real space. Time stepping was carried out
using a fast method introduced by Cox and Matthews: fourth-
order Runge-Kutta exponential time differencing [18,19]. In
all of the simulations, the parameter values a = 0.25, b =
0.37, c = 1, η = 10, and λ = 0 were used. This choice of the
coefficients a, b, and c guarantees that there is a narrow band
of unstable wave numbers, which is necessary for hexagonal
ordering [3–5]. For these parameter values, the wavelength
with the highest linear growth rate is λT � 10.26. The value
of the parameter ν determines whether the long-time pattern
consists of stripes or nanodots [3–5]. Since stripes have not
been observed in experimental studies of normal-incidence

bombardment of binary materials, we used ν = 1 in all
simulations, and so obtained patterns composed of nanodots.

A. Initial conditions

Three types of initial conditions will be considered in this
paper: hexagonally ordered arrays of nanoholes, sinusoidal
ripples, and straight scratches. We superimposed small ampli-
tude spatial white noise on the initial conditions to account
for the randomness which would exist on a real prepatterned
surface. The initial condition for the composition was small
amplitude spatial white noise in all simulations. The noise
had a maximum amplitude of 10−4 for both the height and
composition in all of the simulations.

The hexagonal initial condition was formed by superimpos-
ing three sine waves. In order to satisfy the periodic boundary
conditions, we chose to do the simulations in the rectangular
domain given by −L � x � L and −L/

√
3 � y � L/

√
3,

where L = 200. The functional form used for the hexagonal
initial condition was

uhex,0(x,y) = 10−2[sin2 (ka · r) + sin2 (kb · r) + sin2 (kc · r)]

+ η(x,y), (3)

where η(x,y) is the low amplitude spatial white noise,
r ≡ xx̂ + yŷ, k̂a ≡ x̂, k̂b ≡ cos(2π/3)x̂ + sin(2π/3)ŷ, k̂c ≡
cos(4π/3)x̂ + sin(4π/3)ŷ, and ka, kb, and kc are set to a
common value which we will call kI . Since each of the
sinusoids is squared, λ1 ≡ π/kI is their wavelength. We
varied the parameter λ1 from simulation to simulation while
keeping L fixed. For convenience, let k1 ≡ 2π/λ1 = 2kI . The
wavelength λ1 cannot be chosen arbitrarily, since 2L/λ1 must
be a positive integer. If 2L/λ1 were not an integer, then,
because of the periodic boundary conditions, there would be
an unphysical discontinuity in the height profile of the initial
condition, which would produce unphysical results.

The functional form for the sinusoidal initial condition was

usin,0(x,y) = 10−2sin(k2x) + η(x,y), (4)

where k2 ≡ 2π/λ2 and λ2 is the wavelength of the initial
sinusoid, which we varied between different simulations. The
spatial domain was taken to be square: −L � x,y � L. Again,
the initial wavelength could not be chosen arbitrarily: 2L/λ2

must equal a positive integer.
The functional form for the scratch initial condition was

motivated by an experiment in which an atomic force micro-
scope was used to scratch a Ni-Fe surface [20]. The scratching
process produced ridges on each side of the groove—a feature
which we included in our initial condition. The form of the
initial condition used for the scratch template was

uscratch,0(x,y)=10−2

(
x2

1.25σ 2
−1

)
exp

(
− x2

2σ 2

)
+ η(x,y),

(5)

where σ is a parameter that determines the half-width of the
scratch. Varying σ does not affect the scratch’s maximum
or minimum values. The number 1.25 appears only in order
to produce a reasonable ridge-height-to-scratch-depth ratio.
Since we are using periodic boundary conditions, this single
scratch on a finite spatial domain can be thought of as a series
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FIG. 1. (Color online) (a) A section of the simulation result shown in Fig. 3 with blue dots indicating the nanodot peaks. (b) Around each
peak, a circle of radius p = 5 has been drawn. (c) The connectivity parameter p has increased to 10.5 and red edges have been placed between
the centers of circles that enclose each other’s centers. Only the circles that enclose each other’s centers are shown for clarity. (d) When p = 11,
there are four filled in triangles where three circles all enclose each other’s centers. Only the circles related to the filled in faces are shown.
(e) When p = 12.5, many faces have been filled in and holes have emerged. The eight white polygonal regions with red edge boundaries are
identified as holes at this value of p. (f) A plot of pend versus pstart for the holes found by our persistent homology analysis of (a). The green
squares (red circles) are holes which are present (absent) in (e). The line pend = pstart is also shown. A point’s vertical distance above the line
is the corresponding hole’s persistence interval length.

of widely spaced, parallel scratches on an infinitely extended
domain. The scratches lie parallel to the y axis.

B. Quantifying order

1. Fourier space

The degree of ordering of the surface may be seen
qualitatively by looking at the Fourier transform of the surface
height. For example, if the system forms a hexagonally ordered
array of nanodots, then a well-ordered pattern will exhibit
six strong peaks in Fourier space: The peaks will be located
near the circle in k space given by k2

x + k2
y = k2

T (where
kT ≡ 2π/λT ) and will be separated by an angle of 60o. On the
other hand, a disordered pattern of nanodots will not exhibit
strong peaks in Fourier space.

2. Persistent homology

In this subsection, we describe a method of quantifying
hexagonal order that is based on a topological data analysis

technique known as persistent homology [21]. A brief
overview of our method is given in this subsection; for details
and the larger mathematical context, see Ref. [22].

To quantify the hexagonal order in a pattern of nanodots,
we start by obtaining a discrete set of points from a surface
pattern by recording the (x,y) coordinates of each nanodot
peak, as in Fig. 1(a). As in Fig. 1(b), a circle of radius p is
drawn around each of these points. The radius p is called the
connectivity parameter; it will be increased from 0 to some
maximum value. Clearly, for sufficiently large p, some of the
circles will enclose each other’s centers. For every two circles
that enclose each other’s centers, we connect the corresponding
center points by an edge, as shown in Fig. 1(c). Every time
three circles enclose each other’s centers, we fill in the triangle
which has the centers of the circles as its vertices [Fig. 1(d)],
yielding a face. Finally, for a given value of p, a hole is
identified whenever edges form the boundary of an unfilled
region. For example, Fig. 1(e) shows eight holes for p = 12.5.
Note that hole No. 5 corresponds to the largest defect seen in
Fig. 1(a).

062401-3



PEARSON, BRADLEY, MOTTA, AND SHIPMAN PHYSICAL REVIEW E 92, 062401 (2015)

−200−150−100 −50 0 50 100 150 200

x

−200

−150

−100

−50

0

50

100

150

200
y

123.2

123.6

124.0

124.4

124.8

125.2

125.6

126.0

(a)

−1.0 −0.5 0.0 0.5 1.0

kx

−1.0

−0.5

0.0

0.5

1.0

k
y

0

150

300

450

600

750

900

1050

(b)

FIG. 2. The height (a) and the magnitude of the Fourier transform (b) of a nontemplated surface after integrating to time t = 104. In order
to prevent the central peak from dominating the plot, the gray scale in (b) is capped at the maximum value of the magnitudes of the Fourier
modes within the annulus of linearly unstable wave vectors. This is also done in all subsequent figures showing Fourier transforms.

A hole’s persistence interval length equals pend − pstart,
where pstart is the p value at which the hole forms, and pend is
the p value at which the hole gets filled in and ceases to exist.
Summing up the lengths of all the persistence intervals gives
a nonnegative number which we will call the H1 sum.

There are multiple open-source software packages capable
of computing persistence intervals for a set of discrete points.
We used the R package called phom in our analysis [23].

In Fig. 1(f), each hole phom identified in Fig. 1(a) is
represented by a point. The coordinates of a point are the values
of pstart and pend for the hole in question. The persistence
interval lengths are the vertical distances of the points
above the line given by pstart = pstart. The eight green squares
are those with pstart � 12.5 � pend and so can be seen in
Fig. 1(e); the red circles are holes not seen in Fig. 1(e).

Since a perfect hexagonal array of points is composed of
equilateral triangles, every time three edges form a triangle, the
corresponding three circles will enclose each other’s centers,
and therefore every triangle will be filled in at the same value
of p. Thus, a persistent homology computation of a perfectly
ordered hexagonal array of points will find no holes for any
value of p, and so the H1 sum will be zero. Whenever there is
a vacancy or another type of disorder in the hexagonal lattice,
the persistent homology analysis will reveal the presence of
one or more holes. Therefore, we can quantify the amount of
disorder in an imperfect hexagonal array of points using the H1

sum: The smaller the H1 sum, the better the hexagonal order.

3. Nearest-neighbor distribution

A second approach we will use to quantify hexagonal order
involves computing the number of nearest neighbors each
nanodot has. As in the persistent homology approach, we first
identify the nanodot peaks and obtain the (x,y) coordinates
of these peaks. Let m be the number of points obtained and
call the points qi for i = 1,...,m. From this set of points, we
construct the Voronoi tessellation—this partitions the plane in
such a way that each qi lies within the polygon consisting of
all points closer to qi than to any qj with j �= i. The number

of polygons in the tessellation with n sides will be denoted by
	(n). Thus, 	(n) is the number of points qi with n nearest
neighbors and will be referred to as the nearest-neighbor
distribution. For a perfectly hexagonal lattice, the mean and
variance of the nearest-neighbor distribution are exactly six
and zero, respectively. Thus, to quantify hexagonal order, we
will compute the mean and variance of 	(n) and compare
them to these numbers.

IV. RESULTS

We separate our simulation results into four subsections:
(A) nominally flat initial surfaces, (B) hexagonal templates,
(C) sinusoidal templates, and (D) scratch initial conditions.

A. Nominally flat initial conditions

First, we present the control case in which the initial condi-
tion of the simulations was small amplitude spatial white noise;
i.e., there was no templating. In Fig. 2(a), the surface height
at time t = 104 is shown; it is evident that multiple domains
of hexagonally ordered nanodots have formed. The magnitude
of the Fourier transform of the surface height is plotted in
Fig. 2(b). Figure 2 will be compared with the simulation results
in Secs. IV C and IV D, since those simulations were performed
on square domains. Figure 3 is the analog of Fig. 2 but with
the simulation performed on the same rectangular domain that
will be used in the hexagonal template simulations described in
Sec. IV B. The Fourier transforms in both Figs. 2 and 3 exhibit a
narrow band of unstable wave vectors as a diffuse annulus with
mean radius 2π/λT � 0.61. Although there is some structure
within the two annuli, it is not very pronounced. This indicates
that the hexagonal ordering is strong only locally; globally,
there is no preferred orientation for the hexagons.

B. Hexagonal templates

For the simulations using a hexagonal initial condition,
we find that there can be either little effect or a dramatic
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FIG. 3. The height (a) and the magnitude of the Fourier transform (b) of a nontemplated surface after integrating to time t = 104.

improvement of the global hexagonal order of the nanodots.
Dramatic improvement of the hexagonal order was only
observed when the wavelength of the initial sine waves
was approximately equal to λT or 2λT . For example, this
effect can be seen clearly in Figs. 4 and 5, which were
generated from the simulations with λ1 � 2λT and λ1 �
λT , respectively. The Fourier transforms of these surface
heights also demonstrate the strong global hexagonal order by
exhibiting six equally spaced peaks in the annulus of unstable
wave vectors. On the other hand, if λ1 was not close to 2λT

or λT , no strong improvement in order was observed, as in
Fig. 6.

Figure 7 shows the composition corresponding to Fig. 4.
The surface height and composition are anticorrelated, as the
Bradley-Shipman theory predicts [4]. Since this is always true
at sufficiently long times (including the time we ended our
simulations, t = 104), we will not show any additional plots
of the surface composition.

A comparison of Figs. 3 and 4 shows that when the pattern
has enhanced order, long wavelength variations in the surface
height are suppressed. This effect has been investigated in
detail by Motta et al. in the more general case of obliquely
incident ion bombardment of binary materials [24]. Using
the amplitude equations they derived, Motta et al. found that
average height of a region evolves differently depending on
whether the region has defects. Specifically, a region with
defects will typically be eroded faster than a defect-free region,
which is in agreement with our simulation results.

In order to quantify the dependence of global hexagonal
order on the initial wavelength λ1, we simulated the evolution
of the surface for 24 different initial wavelengths. Furthermore,
we performed 10 simulations at each of these wavelengths.
Using the persistent homology method of Sec. III B 2, we
computed H1 sums for each of the initial wavelengths, and
then averaged the results over the 10 realizations. In all our
H1 sum calculations, we filtered out persistence intervals with
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FIG. 4. The height (a) and the magnitude of the Fourier transform (b) of a hexagonally templated surface after integrating to time t = 104.
The initial wavelength was λ1 = 20 � 2λT .
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FIG. 5. The height (a) and the magnitude of the Fourier transform (b) of a hexagonally templated surface after integrating to time t = 104.
The initial wavelength was λ1 = 400/38 � λT .

lengths less than the one pixel resolution of the local maximum
finder. The results are shown in Fig. 8. The error bars were
obtained from the standard deviations of the 10 trials at each
wavelength. The H1 sum characterizes the hexagonal order in
a way that agrees with how one would qualitatively describe
the order based on a visual inspection of the real space results.
In particular, it shows the excellent global hexagonal order
that occurs for λ1 � 2λT and λ1 � λT . There is also a much
larger H1 sum for the simulations which had λ1 � 22.2, or
equivalently k1/kT � 0.46. One such simulation is shown
in Fig. 6. A visual inspection corroborates the H1 sum’s
indication that the hexagonal ordering of these surface is on par
with the results of the nontemplated surfaces, such as Fig. 3.
Furthermore, there is improved order for many simulations
with initial wavelengths near the linearly selected wavelength.
This is also observed in the real space results, such as Fig. 5.

We further analyzed the hexagonal templates using
the nearest-neighbor number distribution introduced in

Sec. III B 3. For the results, see Figs. 9 and 10. Recall that for
a perfectly hexagonal lattice the mean and variance of 	(n)
would be 6 and 0, respectively. The results are qualitatively
in agreement with those obtained using the H1 sum. The
advantage of the H1 sum over the Voronoi method is that
the H1 sum plot clearly shows that each of the simulations
with λ1 � 2λT evolved to a perfectly ordered hexagonal array
of nanodots, while the Voronoi plots only indicate improved
order for those simulations. This occurs despite the fact that
the H1 sum is more sensitive to small perturbations than
	(n) [22]. The reason the H1 sum identifies the perfectly
ordered hexagonal arrays and the Voronoi method does not is
that we could filter out noise caused by the finite resolution
of the local maximum finder when calculating the H1 sum but
not when calculating 	(n).

Do templates of greater amplitude lead to patterns with a
lower degree of order? To address this question, we again
carried out simulations with λ1 = 400/38 � λT and with
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FIG. 6. The height (a) and the magnitude of the Fourier transform (b) of a hexagonally templated surface after integrating to time t = 104.
The initial wavelength was λ1 = 400/18 � 22.2.
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λ1 = 20 � 2λT . The amplitude of the template, however, was
increased by a factor of 10 to 0.1. The amplitude of the low
amplitude spatial white noise was left unchanged and the
degree of hexagonal order was once again measured using
the H1 sum. Our simulations show that for both values of λ1,
the quality of the hexagonal order was undiminished by the
tenfold increase in the template amplitude.

C. Sinusoidal templates

For the simulations that began with a sinusoidal initial
condition, again dramatic improvement of the hexagonal order
was only seen when the wavelength of the initial sine wave was
approximately equal to λT or 2λT . For example, this effect can
be seen clearly in Figs. 11 and 12, which were generated from
the simulations with λ2 � 2λT and λ2 � λT , respectively. The
Fourier transforms of these surface heights also demonstrate
the strong global hexagonal order by exhibiting six equally
spaced peaks in the annulus of unstable wave vectors. On
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FIG. 8. (Color online) The H1 sum versus the ratio k1/kT for
the hexagonal templates after integrating to time t = 104, averaged
over 10 realizations. The two horizontal blue lines show the H1 sum
averaged over 10 nontemplated initial surfaces after integrating to
time t = 104, plus or minus the standard deviation.
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FIG. 9. (Color online) The mean of the nearest-neighbor distri-
bution 	(n) versus the ratio k1/kT for the hexagonal templates
after integrating to time t = 104, averaged over 10 realizations. The
two horizontal blue lines show the mean of 	(n) averaged over 10
nontemplated initial surfaces after integrating to time t = 104, plus
or minus the standard deviation.

the other hand, if λ2 was not close to 2λT or λT , no strong
improvement in order was observed.

D. Scratched templates

If we start with a scratch initial condition, again improved
ordering can be observed. In the case of scratch initial condi-
tions, however, the ordering is localized along a strip centered
on the initial scratch, as in Fig. 13. Furthermore, this improved
ordering lasts for the full duration of the simulation (t = 104)
only if the width of the scratch 2σ is close to or less than the
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FIG. 10. (Color online) The variance of the nearest-neighbor
distribution 	(n) versus the ratio k1/kT for the hexagonal templates
after integrating to time t = 104, averaged over 10 realizations. The
two horizontal blue lines show the variance of 	(n) averaged over 10
nontemplated initial surfaces after integrating to time t = 104, plus
or minus the standard deviation.
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FIG. 11. The surface height (a) and the magnitude of the Fourier transform (b) after integrating to time t = 104 for a sinusoidal template
with λ2 = 20 � 2λT .
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FIG. 12. The surface height (a) and the magnitude of the Fourier transform (b) after integrating to time t = 104 for a sinusoidal template
with λ2 = 400/39 � λT .
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FIG. 13. (Color online) Surface height (a) and the magnitude of the Fourier transform (b) after integrating to time t = 104 with a scratch
of width 2σ = 4. The red vertical lines indicate the approximate boundary of the initial scratch.
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FIG. 14. (Color online) Surface height (a) and the magnitude of the Fourier transform (b) after integrating to time t = 104 with a scratch
of width 2σ � 13.86. The red vertical lines indicate the approximate boundary of the initial scratch.

linearly selected wavelength. The real space surface produced
after integrating to t = 104 starting from a scratch of width 4
is shown in Fig. 13(a). The corresponding Fourier transform
exhibits six peaks separated by 60o in the annulus of unstable
wave vectors, as expected for a surface with global hexagonal
order. However, if the initial scratch width is substantially
larger than the linearly selected wavelength, as was the case
in Fig. 14 with 2σ � 13.86, then there is no improvement
in the global hexagonal order at time t = 104. The Fourier
transform substantiates this claim since it exhibits a diffuse
annulus devoid of any noticeable peaks. Even if the cut width
is chosen to be approximately twice the linearly selected
wavelength, there is still no substantial improvement in the
global hexagonal order at time t = 104, as is seen in Fig. 15.

The region of enhanced hexagonal order in Fig. 13(a)
is higher than the remainder of the surface. This is once
again in agreement with Motta et al.’s prediction that regions
with defects are eroded at a different rate than well-ordered
regions [24].

From Fig. 13(a) it can be seen that, when the improved
ordering occurs, it is most dramatic in a strip centered along
the initial scratch. To measure this localization of the order
quantitatively, we used the persistent homology method of
Sec. III B 2 on strips of different widths. Since changing
the strip width also changes the total area over which one
is measuring holes, it is more appropriate to calculate the H1

sum per unit area instead of the raw H1 sum. The result of
this analysis after averaging over 10 simulations each with an
initial scratch of width 4 is shown in Fig. 16(a). The result from
averaging 10 simulations with scratch width approximately
equal to 2λT is shown in Fig. 16(b). Comparing the two plots
shows that the scratch of width 4 led to much better order near
the initial scratch than when the scratch had the larger width
20.4. In fact, there is better order for the scratch of width 4
even when the entire domains are compared; this corresponds
to the data points for strip width 400.

We increased the depth of the scratch in the case of a scratch
of width 4 by multiplying the first term on the right-hand side
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FIG. 15. (Color online) Surface height (a) and the magnitude of the Fourier transform (b) after integrating to time t = 104 with a scratch
of width 2σ � 20.40. The red vertical lines indicate the approximate boundary of the initial scratch.
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FIG. 16. (Color online) The H1 sum per unit area versus strip width for the initial conditions with a scratch of width 4 (a) and with a scratch
of width approximately 2λT (b) after integrating to time t = 104, averaged over 10 realizations.

of Eq. (5) by a factor of 10. Once again, our simulations showed
that a tenfold increase in the template amplitude leads to no
reduction in the hexagonal order.

V. SUMMARY

Our simulation results show that templating the surface
of a binary material prior to ion bombardment can signifi-
cantly improve the order of nanoscale patterns produced by
sufficiently high ion fluences. When the initial wavelengths
were approximately one or two times the linearly selected
wavelength, the hexagonal and sinusoidal templates both
produced dramatically improved global hexagonal order. In
particular, the hexagonal templates with initial wavelength
approximately double the linearly selected wavelength λT

evolved to a final state which was defect free and perfectly
ordered. Impressive improvements in order were also obtained
from the scratched templates when the scratch widths were
close to or smaller than λT . Moreover, the well-ordered regions
of nanodots were centered on the scratches. The results of these
simulations with initial scratches demonstrate the potential of
using templated samples to produce controllable and localized
improvements of the order in nanoscale patterns.

In addition to the positive aspects just discussed, our
simulations expose some limitations to the effectiveness of
prepatterning. For the hexagonal and sinusoidal templates,
we did not observe significantly improved order when the
initial wavelength was more than double the linearly selected
wavelength. The scratch initial condition, on the other hand,
has little effect on the surface at long times if the scratch width
is significantly larger than the linearly selected wavelength.
Finally, both the sinusoidally templated and scratched surfaces

developed an underlying, long-wavelength rolling topography,
which could be problematic in some applications.

The prepatterns investigated in this paper are not just
of academic interest; there are also practical methods of
producing them. Sinusoidal and hexagonal templates could
be produced using standard lithographic methods. Scratches
could be produced either by dragging an atomic force
microscope tip across a sample [20], or by scanning a laser
or focused ion beam across it. These fabrication techniques
would not only produce the desired prepatterns, but could
produce them at the length scales that our simulations indicate
are needed to observe enhanced ordering.

To understand the pattern formation that is produced
by ion bombardment of a binary material, the coupling
between the surface topography and composition must be
taken into account [3–5]. The same is true of two closely
related problems: bombarding an initially elemental material
with a beam of metallic ions [25–27], and bombarding an
initially elemental material with a noble gas ion beam with
concurrent deposition of metallic impurities [5,29–45]. The
proposed equations of motion for these three problems have
many features in common [3,4,25,28–30]. Our finding that
templating can lead to improved order in the patterns on
binary materials is therefore expected to carry over to the two
problems in which metal atoms are implanted in a surface layer.
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