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Depth-averaged analytic solutions for free-surface granular flows impacting
rigid walls down inclines
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In the present paper, flows of granular materials impacting wall-like obstacles down inclines are described
by depth-averaged analytic solutions. Particular attention is paid to extending the existing depth-averaged
equations initially developed for frictionless and incompressible fluids down a horizontal plane. The effects
of the gravitational acceleration along the slope, and of the retarding acceleration caused by friction as well,
are systematically taken into account. The analytic solutions are then used to revisit existing data on rigid walls
impacted by granular flows. This approach allows establishing a complete phase diagram for granular flow-wall
interaction.
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I. INTRODUCTION

The influence of obstacles on the propagation of granular
flows is today a booming research area. Flow-obstacle inter-
actions in granular flows have recently drawn attractions from
different disciplines in science and technology because the
flows past obstacles are locally complex and highly nonlinear.
Flow regimes can change from fast to slow states, as well as
from diverging to converging states, and vice versa.

There are for instance several studies in geophysics which
used laboratory tests on granular flows to mimic full-scale
mitigation structures against avalanches, in order to analyze
some complex problems yet to be solved: the runup on
avalanche catching dams [1–5], the runout shortening caused
by catching dams or dissipative structures such as retarding
mounds [6–11], the deflection induced by a snow shed [12],
a catching dam [13] or a deflecting dam [14], and the
effect of a complex protection system including mounds
and dams [15]. Other small-scale studies used numerical
simulations based on depth-averaged models [16], the discrete
element method [17], or full dimensional models coupled
with depth-averaged models [18] to tackle the influence of
retarding mounds, wedges, or walls on the flow geometry.
Many authors have recently combined small-scale numerical
simulations and laboratory tests [19–24]. More rarely, some
controlled experiments on flows of geomaterials—such as
snow—interacting with obstacles were carried out on large-
scale flumes to investigate the effect of snow sheds [25],
retarding mounds [26], or deflecting dams [27], but those
experiments remain costly.

The overarching aim of the present paper is to pay
attention to rigid walls spanning the whole width of the
incoming granular flow. The numerical simulations based
on the discrete element method [17,23,28–31] or the full
dimensional continuum models, as recently developed by
Domnik and Pudasaini [32], are important and necessary
contributions to the topic. In the present paper, various analytic
solutions are proposed for describing the main kinematics of
the granular patterns formed when flows of granular materials
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hit walls down inclines. A depth-averaged approach, which
ignores the details of the discrete nature of the flowing material,
is proposed. The particular behavior of flowing grains is
considered through choosing relevant values of the effective
parameters that characterize the assembly of grains.

The depth-averaged analytic solutions proposed in the
present study systematically take into account the effects of
both the potential energy caused by gravity and the energy
dissipated by friction, as recently done for the kinematics of
granular flows without any obstacle by Pudasaini and Domnik
[33]. Previous studies on small-scale granular flows past rigid
walls are revisited and cross-compared in order to draw a
complete phase diagram. The latter is helpful for evidencing
the conditions needed to form each of the various granular
patterns induced by flow-wall interaction.

The present paper is organized as follows. Section II
describes the general depth-averaged analytic solutions for
bulky frictional granular flows impacting rigid walls down
inclines. In the first place, the depth-averaged equations for
flows without any obstacle are shortly presented (Sec. II A).
Second, a general equation for the stationary granular jump is
proposed (Sec. II B). Third, general equations for propagating
granular jumps, namely granular bores, are given (Sec. II C).
Fourth, the critical wall height below which the granular
bore no longer propagates upstream of an obstruction, and
a large airborne jet is formed downstream of the wall, is
tackled (Sec. II D). Section III revisits a great number of
studies on various granular patterns resulting from flow-wall
interaction, such as airborne granular jets, diffuse and strong
granular jumps, and granular dead zones. Finally, a complete
phase diagram governing the granular flow-wall interaction is
proposed in Sec. IV, in line of the depth-averaged analytic
solutions described in Sec. II.

II. ANALYTIC SOLUTIONS FOR GRANULAR
FLOWS IMPACTING WALLS

A. Depth-averaged equations for granular flows down inclines

Gravity-driven free-surface flows of granular materials
are well described by depth-averaged mass and momentum
conservation equations. These equations were introduced in
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1871 in order to describe the nonpermanent water flows in
application to river floods [34]. Then, the classical assumption
of shallow water flows was applied to granular flows [35,36]
and motivated the mathematical modeling of natural hazards
such as landslides [37], debris flows or mudflows [38,39], rock
avalanches [40], and snow avalanches [22,41]. The key idea is
to consider that the vertical length scale (the flow thickness h)
is small with respect to the horizontal length scale L along
the slope. The assumption ε = h/L � 1 is reasonable for
many geophysical flows. It is then possible to depth-average
the three-dimensional local conservation equations. The full
derivation for granular avalanches can be found in [35,36].

Mass [Eq. (1) below] and momentum [Eq. (2)] balances
applied to an infinitesimal portion of fluid can quickly give the
depth-averaged equations for a two-dimensional flow down a
slope making an angle θ with the horizontal [42]:

∂h

∂t
+ ∂hū

∂x
= 0, (1)

ρP φ

(
∂hū

∂t
+ β

∂hū2

∂x

)
= ρP φgh cos θ

(
tan θ − μb − k

∂h

∂x

)
.

(2)

h is the flow thickness and ū = 1
h

∫ h

0 u(z)dz is the depth-
averaged velocity. ρP is the particle density and φ is the
volume fraction of the flowing granular material, which is
constant (the fluid density is ρ = ρP φ) as a direct result of
ε � 1. The x coordinate corresponds to the direction of the
main flow and t is the time. β is defined as the ratio between
the depth-averaged value of the velocity square and the square
of the depth-averaged velocity: β = ū2/ū2.

The forces at stake considered in Eq. (2) and balancing
the inertial forces are the flow weight (ρP φgh sin θ ), the
friction force (τb = μbφρP gh cos θ , where μb is the basal
effective friction coefficient), and the force related to the
thickness gradient (kρP φgh cos θ ∂h

∂x
, where k is the earth

pressure coefficient relating the normal stresses σxx and σzz

through σxx = kσzz).
The physical processes associated with the discrete nature

of the granular medium—which forms the flowing layer—are
not considered in detail. Relevant values should be given to
the granular constitutive parameters k, β, and μb, as will be
shortly discussed hereinafter.

The value of k can be derived from soils mechanics
concepts, as early suggested by Savage and Hutter [35]:

kpass/act = 2
(
1 ±

√
1 − (1 + tan2 δ) cos2 ϕ

)
cos2 ϕ

− 1, (3)

where δ is the bed friction angle, ϕ is the internal friction angle,
and kpass/act = kpass for a passive state (∂u/∂x < 0) or kact for
an active state (∂u/∂x > 0). Equation (3) with δ = ϕ yields
kpass/act = (1 + sin2 ϕ)/(1 − sin2 ϕ). Past studies have shown
that k = 1 would be a reasonable assumption for sheared
granular flows in the steady and uniform regime [43]. More
recent studies have highlighted a slight anisotropy in normal
stresses for the steady and uniform regime: k = σxx/σzz = 1.05
[44]. It is likely that k is influenced by the divergence of the
flow [45], which may lead to values different from 1 when the
free surface is strongly nonstationary and/or nonuniform.

β depends on the shape of the velocity profile. It is generally
taken to be equal to 1, which corresponds to the exact value
for plug flows. It can be calculated provided an assumption on
the shape of the velocity profile: β = 4/3 for linear velocity
profiles and β = 5/4 for Bagnold velocity profiles.

μb can be taken as a constant [36] or more complex
velocity-dependent friction laws can be considered. The
granular constitutive friction laws are expressed through either
frictional-collisional concepts [46–49] or the dependence of μb

on the inertial number, namely the μ(I ) rheology described by
MiDi [50] and Jop et al. [51].

The flow disturbed by the presence of an obstacle may
have spatial variations L whose scale is close to the typi-
cal flow thickness h. The shallow water flows assumption
(ε = h/L� 1) is then no longer valid, as clearly evidenced
by Pudasaini et al. [3], Pudasaini and Kröner [4], Faug et al.
[10], Gray et al. [20], Johnson and Gray [52], etc.

This paper presents general depth-averaged equations in
order to describe a steady granular flow down an incline and
interacting with a rigid wall. The wall spans the whole width
of the incident flow. Note that all the equations given in the
following sections should apply to incoming flows (before
impacting walls) in the steady-state regime.

B. Stationary granular jumps

Granular jumps, namely large discontinuities in depth and
velocity, are typically observed when a rapid granular flow hits
a rigid wall. When overflow is possible downstream of the wall,
a stationary granular jump (see Fig. 1 in the current section)
can be produced. When the obstruction prevents overflow
downstream of the wall, the granular mass is entirely blocked
and a granular bore propagates upstream from the obstruction
[see Fig. 3(a) in the next section].

1. Full equation for steady jumps

By analogy to hydraulic jumps [53], a theory can predict
the change in depth in the granular jump [54–56]. A sketch of a
stationary granular jump is given in Fig. 1. hi , ūi , and ρ̄i are the
thickness, the depth-averaged velocity, and the depth-averaged
density at the locations i, where the subscripts i = 1 and 2
refer respectively to locations upstream and downstream of
the jump region. By making use of the continuity equation

FIG. 1. Sketch of a stationary granular jump down an incline.
The subscripts i = 1 and 2 refer respectively to locations upstream
(section S1) and downstream (section S2) of the jump.
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(ρ̄1ū1h1 = ρ̄2ū2h2), the momentum equation applied to a
control volume surrounding the jump yields

ρ̄1ū1h1(β2ū2 − β1ū1) = P1 − P2 + W sin θ − Ff . (4)

W is the weight of the granular material in the jump:
W = 1

2 K̄gL∗(ρ̄1h1 + ρ̄2h2), where L∗ is the length of the
granular jump region (see Fig. 1) and K̄ is a coefficient
accounting for the shape of the jump. P1 and P2 are the
lateral pressure forces acting on sections S1 and S2 (see
Fig. 1): Pi = 1

2ki ρ̄igh2
i cos θ , where ki is the earth pressure

coefficient (see discussion in Sec. II A). Ff is the frictional
force between locations 1 and 2 which can be expressed
as Ff = μeW cos θ , where μe is the effective coefficient of
Coulomb friction within the jump volume, as early proposed
by Savage [55] and recently revisited by Faug [57]. Some
calculation allows deriving the relation between the Froude
number Fr1 = ū1/

√
gh1 cos θ of the incoming flow (defined

at section S1 in Fig. 1), the jump depth ratio h2/h1, and the
density variation ρ̄2/ρ̄1 across the jump:

Fr2
1 = 1

2

[
k2

ρ̄2

ρ̄1

(
h2

h1

)2

− k1 − K̄L∗
h1

(
1 + ρ̄2

ρ̄1

h2

h1

)
(tan θ − μe)

]

×

⎡
⎢⎣ 1(

β1 − β2
ρ̄2
ρ̄1

h2
h1

)
⎤
⎥⎦, (5)

where various parameters, such as the earth pressure coeffi-
cients ki and the Boussinesq momentum coefficients βi , can
be estimated for granular flows (see Sec. II A). Apart from
a recent study by Faug et al. [56] (see extended discussion
in Sec. III A), past studies paid little attention to the other
parameters appearing in Eq. (5): the jump shape parameter K̄ ,
the length of the jump relative to the thickness of the incoming
flow L∗/h1, and the difference between the tangent of the slope
angle and the effective friction within the jump (tan θ − μe).

Figure 2(a) shows the jump depth ratio as a function of the
Froude number of the incoming flow for different values of
the density variation across the jump. The following values are
used for the parameters in Eq. (5): ki = 1, βi = 1, L∗/h1 = 10
(typical value measured in the experiments by Faug et al.
[56]), K̄ = 1, and tan θ − μe = 0.11 (which is for instance
obtained from θ = 30◦ and μe = tan δ where δ = 25◦). The
jump height increases with the Froude number but the increase
rate is decreased when the density variation across the jump
increases. Recent experiments by Faug et al. [56] showed that,
at a given slope angle (which generally controls the Froude
number), dilute flows produce jumps that are thinner than
those produced by dense flows. This result is consistent with
predictions shown in Fig. 2(a).

Incompressible jumps (ρ̄2/ρ̄1 = 1) are considered in the
following of the present section. How the relation between
h2/h1 and Fr1 is influenced by ki , βi , L∗/h1, K̄ , and tan θ − μe

can be analyzed then.
Figure 2(b) shows the jump depth ratio as a function of the

Froude number for different values of L∗/h1. Other parameters
have the same values as in Fig. 2(a). The results show that the
influence of L∗/h1 is significant, in particular for low values
of the Froude number of the incoming flow. Increasing L∗/h1

generally produces an increase of the jump height relative to

FIG. 2. Depth ratio h2/h1 vs the Froude number Fr1 from Eq. (5)
for various values of ρ̄2/ρ̄1 (a), L∗/h1 (b), and k2 (c). The following
values of the parameters needed for Eq. (5) are used for all graphs
(unless one of these parameters is varied): ρ̄2/ρ̄1 = 1, βi = 1, ki = 1,
L∗/h1 = 10, tan θ − μe = 0.11, and K̄ = 1.

the incoming flow thickness, and the effect is enhanced at low
Froude number.

Figure 2(c) depicts h2/h1 versus Fr1 for two values of k2.
k1 is kept equal to 1 (isotropic flow conditions regarding
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normal stresses), which appears to be a reasonable assumption
for the incoming flows in the steady regime, as previously
discussed in Sec. II A. Moreover, it can be verified that the
influence of k1 remains weak with respect to the influence
of k2. The jump height decreases while k2 is increased from
1 up to 1.43, as shown in Fig. 2(c). The latter value for k2

would correspond to an anisotropy in normal stresses under
the following assumptions: (i) ϕ = δ = 25◦ and (ii) passive
state downstream of the jump where ∂u/∂x < 0, which yields
a sign + in Eq. (3). Other parameters have the same values as
in Fig. 2(a) with ρ̄2/ρ̄1 = 1.

Changes in βi from 1 to 5/4 or 4/3 (see discussion about
those values in Sec. II) have very weak influence on the relation
between h2/h1 and Fr1 (not shown here). Keeping βi = 1 is
then a reasonable assumption. The influence of K̄ and tan θ −
μe remain generally weak. A significant influence appears if
the length of the jump relative to the thickness of the incoming
flow, L∗/h1, is large.

It can be concluded that the relation between h2/h1, Fr1,
and ρ̄2/ρ̄1 is strongly influenced by the length of the jump, and,
to a lesser extent, by a possible change in the earth pressure
coefficient across the jump.

2. Simplified solution for incompressible steady jumps

This section considers incompressible, or slightly com-
pressible jumps, for which ρ̄2 = ρ̄1. Such jumps are obtained
if the incoming flows are not too dilute. Dilute flows produce
compressible jumps for which the change in density across
the jump cannot be ignored, as recently evidenced by [56].
Under the additional assumptions ki = k (no change in earth
coefficient across the jump) and βi = β (no variation of
velocity profiles across the jump), it is worth establishing that
Eq. (5) can be written in the following form:(

h2

h1

)2

+ h2

h1
− 2βFr2

1

k − K̄ L∗
h2−h1

(tan θ − μe)
= 0. (6)

In hydraulics [53], it is generally assumed that the product
K̄ L∗

(h2−h1) , which accounts for the geometry of the jump, can be
expressed as a simple function of Fr1. Recent experiments on

the shape of standing granular jumps [56] suggested that it is a
reasonable assumption for granular flows too, provided that the
jumps are incompressible or slightly compressible—meaning
that the density variation across the jump is nil or weak.
The assumption that the Froude number of the incoming
flow strongly controls the shape of the jump will be further
discussed in Sec. III A 1. Equation (6) has the following
solution:

h2

h1
= 1

2

⎡
⎣(

1 + 8βFr2
1

k − K̄ L∗
h2−h1

(tan θ − μe)

)1/2

− 1

⎤
⎦. (7)

For frictionless flows (μe = 0) with no deviation from
a purely hydrostatic pressure (k = 1) and uniform velocity
profiles (β = 1), Eq. (7) leads to the traditional equation
proposed for hydraulic jumps on steep slopes by Chow [53]:

h2

h1
= 1

2

⎡
⎣(

1 + 8Fr2
1

1 − K̄ L∗
h2−h1

tan θ

)1/2

− 1

⎤
⎦. (8)

3. Asymptotic solution for a granular flow over a small bump

Equation (7) can be used to describe a granular flow passing
slowly over a bump of height H0. The latter situation is similar
to a very diffuse granular jump for which h2 = H0 + h3 (where
h3 is the critical depth at the top of the bump), h3 − h1 = ε0

(where ε0 ∼ 0), and K̄ �→ 1. Equation (7) yields

H0

h1
+ ε0

h1
+ 1 = 1

2

⎡
⎣(

1 + 8βFr2
1

k − L∗
H0+ε0

(tan θ − μe)

)1/2

− 1

⎤
⎦.

(9)

By considering ε0 �→ 0 and H0/h1 �→ 0 (small bump), one
can derive a critical value Frc for the Froude number of the
incoming flow:

Frc =
√

1

β

(
k − L∗

H0
(tan θ − μe)

)
. (10)

The above equation suggests that the critical value of the
Froude number—classically equal to 1 for horizontal water or

FIG. 3. (Color online) (a) Sketch of a granular jump propagating upstream of a rigid wall (namely a granular bore). (b) Depth ratio h2/h1

vs the Froude number Fr1 for a propagating granular jump [Eq. (13)] and for a steady granular jump [Eq. (5)]. Incompressible jumps and bores
are considered (ρ̄2/ρ̄1 = 1). Identical values of the parameters (βi = 1, ki = 1, K̄ = 1, L∗/h1 = 10, and tan θ − μe = 0.11) are considered
for Eqs. (13) and (5).

062310-4



DEPTH-AVERAGED ANALYTIC SOLUTIONS FOR FREE- . . . PHYSICAL REVIEW E 92, 062310 (2015)

air flows over a bump—would depend on β, k, (tan θ − μe),
and L∗

H0
in the case of frictional granular flows down inclines.

C. Propagating jumps upstream of an obstruction

The granular jump propagating upstream of an obstacle at
speed U [see sketch in Fig. 3(a)], namely the granular bore,
is for instance observed when a rapid granular flow hits a
wall spanning the entire width of the flow [3,58]. Detailed
features of that type of granular bore have been investigated
with the help of computations by Pudasaini and Kröner [4].
The granular bore can be also observed when the material
flows past a change in slope from a high slope to a lower
slope [3,59]. In geophysics, this situation is typical of some
avalanche paths with a sharp change in slope which occurs at
the transition from the flowing zone to the runout zone.

1. Full equation for bores

By choosing a reference frame traveling at the speed
U in the direction opposite to the incoming flow, mass
and momentum conservation equations across the jump give
[Fig. 3(a)]

ρ̄1h1(ū1 + U ) = ρ̄2h2U, (11)

ρ̄2h2U
2 − ρ̄1h1(ū1 + U )2

= 1
2k1ρ̄1gh2

1 cos θ − 1
2k2ρ̄2gh2

2 cos θ + W sin θ − Ff . (12)

Vertical velocity profiles are assumed uniform for the sake
of simplicity (β = 1). The weight of the jump W and its
effective friction Ff with the bottom (and side walls for
confined flows) are determined by the equations proposed by
Savage [55] and detailed in the previous section. A relation
between the Froude number Fr1 = ū1/

√
gh1 cos θ , the depth

ratio h2/h1 and the density ratio ρ̄2/ρ̄1 can be derived from
Eqs. (11) and (12):

Fr2
1 = 1

2

[
k2

ρ̄2

ρ̄1

(
h2

h1

)2

− k1 − K̄L∗
h1

(
1 + ρ̄2

ρ̄1

h2

h1

)
(tan θ − μe)

]

×
(

1 − 1
ρ̄2

ρ̄1

h2
h1

)
. (13)

Similarly to the stationary granular jump, one can analyze
how the depth ratio of the propagating bore is influenced by
the various parameters: ki , tan θ − μe, K̄ , and L∗/h1. Such an
analysis, which gives similar results to those obtained for the
stationary granular jump, is not detailed here.

Equation (13) is slightly different from Eq. (5). Figure 3(b)
shows the depth ratio h2/h1 versus Fr1 for a propagating jump
[Eq. (13)] compared to a steady granular jump [Eq. (5)].
It is considered that the density variation across the jump
is nil (ρ̄2/ρ̄1 = 1) and the following values for the vari-
ous parameters are used: ki = 1, K̄ = 1, L∗/h1 = 10, and
tan θ − μe = 0.11. At a given value of the Froude number of
the incoming flow, the propagating bore is thicker than the
stationary jump. This result is not general but depends on the
combination of parameters, as detailed in [57].

The equations proposed above are a slight extension of
the equations which were initially proposed by Hákonardóttir
[60] but did not consider the source term related to friction
acting within the jump volume. Through accounting only for
the source term related to the component of the gravitational
acceleration along the slope, Hákonardóttir [60] distinguished
two cases: the angle of repose of the granular material ϕ is
either smaller or greater than the slope θ . The analysis by
[60] leads to two schematic diagrams of the granular bore.
When ϕ � θ , the depth h2 of the bore is constant, and the
free surface downstream of the jump is parallel to the bottom,
as drawn in Fig. 3(a). In contrast, when ϕ � θ , the depth h2

is increased while the flow approaches the wall [60], and the
slope of the free surface is equal to ϕ. The latter situation was
studied in detail by Pudasaini et al. [3] through small-scale
laboratory tests. The shape of the granular bore evolving over
time could be reproduced well by depth-averaged numerical
simulations—including the shock capturing technique—once
the measured model parameters were carefully implemented,
as demonstrated by Pudasaini and Kröner [4]. In their study,
Pudasaini and Kröner [4] evidenced a strong influence of the
internal friction angle of the granular material.

2. Simplified solution for bores

For frictionless materials (μe = 0) flowing down a horizon-
tal plane (θ = 0), and under the assumption ki = 1, an estimate
of the depth ratio can be obtained:

Fr1 = h2

h1

√√√√1

2

(
ρ̄2/ρ̄1 − 1

h2/h1
−

(
1

h2/h1

)2

+
(

1

h2/h1

)3 1

ρ̄2/ρ̄1

)
. (14)

Equation (14) with ρ̄2/ρ̄1 = 1 yields a cubic function of
h2/h1: (

h2

h1

)3

−
(

h2

h1

)2

− (
1 + 2Fr2

1

)h2

h1
+ 1 = 0, (15)

which can be solved with Cardano’s method. Equation (15) has
only one physically meaningful solution, as earlier discussed
by Jóhannesson et al. [61]:

h2

h1
= 1

3

(
2 cos δ0

√
6Fr2

1 + 4 + 1
)
, (16)

where δ0 is given by

δ0 = 1

3
arctan

⎛
⎝Fr1

√
27

(
16 + 13Fr2

1 + 8Fr4
1

)
9Fr2

1 − 8

⎞
⎠. (17)

Note that Eqs. (16) and (17) are currently considered as
important criteria in the European guidelines for the design
of protection dams against avalanches [62]. However, it is
worthwhile to stress that those equations do not take into
account some important aspects of granular flows, such as
possible changes in density and velocity profiles across the
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FIG. 4. (Color online) (a) Sketch of a propagating granular jump (or bore) upstream of a wall with an overflow downstream of the wall.
(b) Large airborne jet formed downstream of the wall when the wall height is decreased and the bore no longer exists.

jump, and the effect of friction as well. The equation proposed
to derive the height of a granular bore [Eq. (13)] needs to
be verified on new relevant laboratory tests and/or discrete
numerical simulations. Attention should be paid to low and
moderate values of Fr1, and to all parameters involved in
Eq. (13): ki , K̄ , L∗/h1, and μe.

D. From a granular bore (upstream of the wall) to a large
airborne jet (downstream of the wall)

The previous section addressed the granular bore upstream
of a wall while overflow downstream of the wall was prevented.
One can wonder what might occur when the wall height H

relative to the incident flow h1 is decreased, which causes over-
flow downstream of the wall. The latter situation is depicted
in Fig. 4(a). As H/h1 decreases, an increasing proportion of
the flow can escape. Finally the bore no longer propagates
upstream of the wall, and a large jet forms downstream of
the obstacle, as displayed in Fig. 4(b). Hence, as suggested
by Hákonardóttir [60], there exists a minimum height of the
wall for which a bore is present upstream of the wall. A
mathematical description of the bore upstream of the wall
when some flow overtops the wall can be formulated indeed. A
description, which accounts for the source terms (gravitational
acceleration along the slope and retarding acceleration caused
by friction), is proposed in the following. This is again a
slight extension of the earlier analytical solution proposed by
Hákonardóttir [60] for frictionless flows down a slope.

The conservations of mass and momentum fluxes across
the jump in the reference frame traveling upstream with the
bore at speed U give [Fig. 4(a)]

ρ̄1h1(ū1 + U ) = ρ̄2h2(ū2 + U ), (18)

ρ̄2h2(ū2 + U )2 − ρ̄1h1(ū1 + U )2

= 1
2 ρ̄1gh2

1 cos θ − 1
2 ρ̄2gh2

2 cos θ + W sin θ − Ff , (19)

where notation similar to that used for the stationary granular
jump equation [see Eq. (4) in Sec. II B 1] is considered.

The mass flux conservation between the granular jump
and the top of the wall gives h3ū3 = h2ū2. Following the
assumption of a critical flow at the top of the wall [60], with
Fr3 = Frc (it is assumed a generalized critical value of the
Froude number is likely to be different from 1), it yields

ū3 = Frc
√

gh3 cos θ. (20)

As described by Hákonardóttir [60], the bore propagates
upstream until the mass flux over the jump equals the mass
flux over the obstacle (ū1h1 = ū2h2 = ū3h

crit
3 ) and the critical

depth of the flow over the obstacle is then given by

hcrit
3 =

(
ū1h1√
g cos θ

)2/3

Fr−2/3
c , (21)

by considering the critical value Frc of the Froude number,
which can be different from 1 for frictional granular flows
down inclines. The lower the obstacle height is, the more mass
is transported over the obstacle, and when

H

h1
� h2

h1
− hcrit

3

h1
, (22)

all the approaching mass flux is transported directly over the
obstacle and the bore does not need to propagate upstream. In
this context, ones moves from a granular bore to a standing
granular jump [U = 0 in Eqs. (18) and (19)]. The critical wall
height below which the bore does not exist is then given by
the following relation:

H
jet
c

h1
= h2

h1
−

(
Fr1

Frc

)2/3

, (23)

where the ratio h2/h1 is given by Eq. (5) (full equation)
or Eq. (7) (approximate solution for incompressible granular
fluids). Equation (23) includes the effect of the slope and the
effective friction, and will be used to interpret some of the
existing experimental data described in Sec. III B.

The propagation of granular bores at high slope over a
smooth bottom (meaning that the typical size of roughness
is much smaller than the grain size) has been studied by
laboratory tests [3] and successfully captured by depth-
averaged numerical simulations [4], provided that the constant
friction parameters, measured independently, were carefully
implemented in the numerical model. It would be of interest
to design new tests on the propagation of bores on lower
slopes, and/or over rough bottoms. The latter conditions would
reduce the Froude number of the flows and produce more
elongated and diffuse bores. It is likely that depth-averaged
models implemented with constant friction parameters would
not describe those diffuse bores as well as they can do for
bores in very fast granular flows.
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III. EXPERIMENTS ON GRANULAR PATTERNS
NEXT TO WALLS REVISITED

A. Granular jump

The stationary jumps and the propagating jumps (or bores)
generated by an obstruction normal to the incident flow have
been investigated by several authors, from the pioneering
works of Morrison and Richmond [54], Savage [55], Brennen
et al. [63], Campbell et al. [64] to more recent studies
[3–5,10,20,56,60,65]. The following subsections revisit some
of the existing data on granular jumps, in line with the analytic
solutions proposed in Sec. II.

1. Stationary granular jump

Brennen et al. [63] distinguished two types of stationary
granular jumps and identified three types of flows between
the jump and the wall (flat plate weir in their tests). At low
Fr1, the flow in the jump consisted of a smooth expansion
whereas, at high Fr1, the jump contained a recirculating eddy
necessarily accompanied by a stagnation line. The smooth
expansion, namely the very diffuse jump, characterized by a
low value of the ratio h2/h1 would correspond to the so-called
granular dead zone process described by Faug et al. [66], as it
will be discussed in Sec. III C. At the lowest slopes, the flow
between the jump and the weir was shearing over its entire
depth. At highest slopes, the jump was followed immediately
by the formation of a base wedge. An intermediate situation
corresponded to a more complex jump structure, as detailed by
Brennen et al. [63]. However, Brennen et al. [63] found that
the comparison between theory and their experimental data
was not affected by the type of jump (smooth expansion or
jump with recirculating eddy) or of downstream flow. Their
experimental data were compatible with data reported earlier
by Savage [55].

Figure 5 shows the depth ratio h2/h1 measured by Savage
[55] and Brennen et al. [63] as a function of Fr1. Faug et al.

FIG. 5. h2/h1 vs Fr1 measured experimentally by Savage [55],
Faug et al. [56], Brennen et al. [63]. The line shows the prediction

from the traditional hydraulic equation h2/h1 = (
√

1 + 8Fr2
1 − 1)/2.

[56] have recently designed a laboratory chute equipped with
a discharge gate at the exit of the chute, able to produce
standing jumps over a wide range of slope angle and mass
discharge. They identified compressible jumps for which the
density variation across the jump cannot be neglected. Above
a critical mass discharge for which the incoming flow are
not too dilute, the jumps were incompressible. Their data on
incompressible jumps is also included in Fig. 5.

The collection of data available in literature [55,56,63]
show that all data merge into one single group. The pre-
diction from the hydraulic jump equation, namely h2/h1 =
(
√

1 + 8Fr2
1 − 1)/2, which is strictly valid for frictionless

flows down a horizontal plane, is also shown by the line drawn
in Fig. 5. The line is systematically below the laboratory data.
This result clearly highlights the need of an equation suitable
for granular media.

As a first step, and under the assumption of incompressible
jumps (ρ̄2/ρ̄1 = 1), Eq. (7) is fitted on all laboratory data re-
ported in Fig. 14. The following parametrization is considered:

h2

h1
= 1

2

(√
1 + 8χFr2

1 − 1
)
, (24)

where χ = β/[k − K̄L∗(tan θ−μe)
(h2−h1) ] is used as a tuning parameter.

Figure 6 depicts the exact values for χ as a function of the
Froude number for each couple (Fr1, h2/h1) measured by
Savage [55], Faug et al. [56], Brennen et al. [63]. Though
the data remain scattered, one can note the following trend:
χ is close to 1 at high Fr1 while it starts diverging when
Fr1 is decreased. This is the proof of a transition—which
occurs around Fr1 ∼ 3–4, as clearly demonstrated by the recent
experiments by Faug et al. [56]. By decreasing Fr1, there is
a transition from granular jumps (in rapid flows) relatively
well predicted by the traditional hydraulic equation toward
granular jumps (in slower flows) whose height is much higher
than the height predicted by the traditional hydraulic equation.

FIG. 6. Exact value of χ as a function of the Froude number
from the cross comparison between Eq. (24) and the laboratory data of
Savage [55], Faug et al. [56], Brennen et al. [63]. The line χ = 1 would
correspond to the prediction of the traditional hydraulic equation.
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FIG. 7. Transition observed by Faug et al. [56] between steep
jumps at high Fr1 (high slope) and diffuse jumps at lower Fr1 (lower
slope). Some recirculation was observed at the highest slopes.

Figure 6 shows that this finding could be extracted from the
existing data provided in earlier studies by Savage [55] and
Brennen et al. [63].

In contrast to previous studies by Savage [55] and Faug
et al. [56], Brennen et al. [63] paid detailed attention to the
shape of granular jumps and found that the jumps were steep
at high Fr1, while they became much more diffuse at lower
Fr1, as depicted in the pictures provided in Fig. 7.

Figures 8(a) and 8(b) summarize the key experimental
results by Faug et al. [56] through depicting how the shape
coefficient K̄ and the ratio L∗/(h2 − h1) evolve with Fr1

(see details in [56] on how the jump length L∗ was defined
experimentally). K̄ increases roughly linearly with Fr1, while
L∗/(h2 − h1) depicts a sharp increase when the Froude number
decreases. By fitting Eq. (7) (with k = 1 and β = 1) to the
experimental data, the friction μe could be derived (see detail

FIG. 8. (a) K̄ vs Fr1; the continuous line shows the fit with 1 +
a(Fr − Frc), where a = 0.07 and Frc = 0.6. (b) L∗/(h2 − h1) vs Fr1;
the continuous line shows the fit with b

(Fr−Frc )c , where b = 8, c = 0.75,
and Frc = 0.6. (c) tan θ and μe vs Fr1. (d) tan θ − μe vs Fr1 (summary
of laboratory data by Faug et al. [56]).

in [56]) and compared to tan θ , as shown in Fig. 8(c). The
difference tan θ − μe remains tiny and weakly influenced
by Fr1 (a small increase with Fr1 may be detectable but
remains within the uncertainty of measurements), as drawn
in Fig. 8(d). From the curves drawn in Fig. 8, it can be
concluded that the dramatic increase of L∗/(h2 − h1) when
Fr1 is below 3–4 prevails. This produces an increase of the
product K̄ L∗

(h2−h1) (tan θ − μe), which makes χ higher than 1
in Eq. (24). The height of the diffuse jumps is then higher
than the height predicted by the traditional hydraulic equation.
This result is interpreted as a direct consequence of the forces
caused by the gravity acceleration balanced by friction, and
acting within the jump volume. Not considering those forces
would lead to an underestimate of the height of the diffuse
granular jumps observed at low Fr1, typically smaller than
3–4. The traditional hydraulic equation is only suitable for
(incompressible) granular jumps at high Fr1. Predicting the
height of granular jumps at low Fr1 is yet a problem to be fully
solved for two reasons: (i) Eq. (7) remains implicit (h2/h1

being a function of h2 − h1) and (ii) no theory exists to predict
the length of the jump L∗.

In want of a better knowledge of the geometry of jumps,
one can propose an empirical approach by fitting the following
relations on the measured values of K̄ and L∗/(h2 − h1), which
are assumed to depend primarily on Fr1 (as usually stated in
hydraulics [53]):

K̄ = 1 + a(Fr1 − Frc), (25)

L∗
h2 − h1

= b

(Fr1 − Frc)c
, (26)

where a, b, and c are constant parameters. The relation for
L∗/(h2 − h1) is a power law able to capture the increase
of L∗/(h2 − h1) when Fr1 approaches the critical value
Frc. Note that Fr �→ Frc, yielding h2 �→ h1, is a singular
point. Describing what happens at tiny values of h2 − h1 is
challenging because the processes are strongly driven by the
complex interplay between hydrodynamic properties and the
frictional nature of the granular fluid. The relation for K̄ is an
affine function which satisfies the following property: K̄ �→ 1
when Fr �→ Frc (very diffuse jumps). The fitted lines for K̄ and
L∗/(h2 − h1) are reported in Figs. 8(a) and 8(b), respectively,
and the values of parameters a, b, and c are indicated as
well. Frc = 0.6 provided the best fits. Using Frc = 1 does
little to change the fitted curves but it is not consistent with
the laboratory results by Faug et al. [56] who could observe
very diffuse jumps at values of Fr1 lower than 1. In want
of any further knowledge at the present time, the empirical
relations for K̄ and L∗/(h2 − h1) will be used in the following
to estimate the bore height and the critical wall height below
which jumps no longer exist.

2. Bores and critical wall height below which jumps
no longer exist

In particular studies conducted in geophysics to understand
the interaction between avalanches of granular materials
and walls, the key role played by the occurrence—or the
nonoccurrence—of granular bores has been pointed out.
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Hákonardóttir [60] and Faug et al. [10] investigated the
impact of granular avalanches with walls that mimic avalanche
barriers, and observed different granular patterns depending on
the wall height relative to the incoming flow depth.

Faug et al. [10] designed laboratory tests on a granular
avalanche (Fr1 ∼ 3.75), which overflowed dams of various
heights from H/h1 = 0.7 to H/h1 = 7.4. Those tests were
initially performed to study avalanche runout shortening
caused by dams, which is crucial for avalanche protection
in geophysics [6,8–10,67]. In their experiments, Faug et al.
[10] observed a distinct transition, around H/h1 = 2–3, from
a gentle overflow of the granular material to a bore regime
(see Fig. 4 in [10]). A sharp jump propagated far upstream
of the wall in the latter situation. In the former situation,
a quasisteady dead zone formed against the wall and other
incoming grains were able to pass smoothly on the dead
zone to overflow the wall. This situation is discussed in
more detail in Sec. III C. Equation (23) that predicts the
critical wall height H

jet
c below which bores no longer exist

can be checked against the experimental observations by
[10]. Each couple (Fr1, H/h1) tested by [10] is reported in
Fig. 10(a), by distinguishing between the experiments with
a bore propagating upstream (crosses) and the ones without
any bore (circles). The prediction from Eq. (23) is reported as
well, where h2/h1 is calculated with the approximate solution
given by Eq. (7). The following values were considered for
the parameters needed: k = 1, β = 1, and L∗/(h2 − h1) and
K̄ were derived from the empirical relations proposed in
Sec. III A 1. Two values of the difference tan θ − μe were
tested: 0.05 and 0.10, which are typical values recently
measured by [56] [see Fig. 8(d)]. Equation (23) is found to be
quite efficient at demarcating the experiments with the sharp
jump [crosses in Fig. 10(a)] from the experiments with the
more diffuse overflow [circles in Fig. 10(a)].

Hákonardóttir [60] designed laboratory tests on much more
rapid granular avalanche (Fr1 ∼ 12) impacting damlike obsta-
cles of four different heights: (i) H/h1 = H∞/h1 (H = H∞
prevented overflow), (ii) H/h1 = 18, (iii) H/h1 = 15, and
(iv) H/h1 = 6.7. As shown in Fig. 9(b), a granular jump
propagating upstream was observed for test (i) for which the
incoming flow was entirely blocked upstream of the dam (H =
H∞). For tests (ii) and (iii), the granular bore was still present,
while some material was able to overflow the smaller dam. In
contrast, a long airborne granular jet formed downstream of the
dam in test (iv), when H/h1 was reduced to 6.7. Equation (23)
that predicts the critical wall height H

jet
c below which bores

no longer exist can be checked against the experimental
observations by Hákonardóttir [60]. Figure 10(a) shows each
point (Fr1, H/h) corresponding to tests (ii)–(iv) conducted by
Hákonardóttir [60]. The prediction from Eq. (23) is reported as
well. Again, the following values were considered for the pa-
rameters needed: k = 1, β = 1, and L∗/(h2 − h1) and K̄ were
derived from the empirical relations proposed in Sec. III A 1.
Two values of tan θ − μe were tested: 0.05 and 0.10. Again,
Eq. (23) allows us to demarcate roughly the experiments with
bores [tests (ii) and (iii) represented by cross symbols] from the
experiment without a bore and a large jet formed downstream
of the wall [test (iv) shown in a circle symbol].

It is worthy to note that the predictions from traditional
hydraulics (Frc = 1 and tan θ − μe = 0), reported in dashed

FIG. 9. (Color online) Hákonardóttir [60] studied granular flows
at high Froude number (Fr1 ∼ 12) impacting a rigid wall. At large
wall height preventing overflow, a granular jump propagate upstream
[test (i)]. While decreasing the wall height, a clear transition from a
granular bore propagating upstream of the wall with some overflow
downstream of the wall [tests (ii) and (iii)], to a large airborne jet
formed downstream of the dam [test (iv)] was observed. The pho-
tographs by K. M. Hákonardóttir were adapted from Hákonardóttir
[60].

lines in Fig. 10, are very close to predictions from the
approximate solution stemming from Eq. (7) implemented
with the empirical laws for K̄ and L∗/(h2 − h1). They are thus
efficient at capturing the transitions observed by [10,60] for
experiments at high Froude numbers. However, it is likely that
hydraulic theory would fail for lower values of the Froude num-
ber for which the term K̄ L∗

h2−h1
starts playing a role in Eq. (7).

B. Granular airborne jet

Granular airborne jets are observed in very rapid granular
flows (Fr1 
 1) interacting with a relatively small wall
(H/h1 � 1), as shown in Fig. 11(a). The length of the
influence zone upstream of the obstacle is small and reduced
to a small wedge of stagnant grains (the size of the wedge is
typically close to the wall height). In geophysics, the length of
the granular airborne jet is for instance relevant for the design
of the minimum distance between two rows of dissipative
structures against snow avalanches [26,68]. Predicting accu-
rately the jet length avoids designing dissipating structures that
are ineffective because they would be overtopped by the jet.

The trajectory of these airborne jets was studied in detail
by Hákonardóttir et al. [13] (note that airborne snow jets have
been also studied [26]). The experiments showed that the rapid
flow detached from the top of the obstacle as a coherent
granular jet, the motion of which being well described by
theory for a two-dimensional irrotational flow of an inviscid
fluid over a dam [69]. As suggested by Hákonardóttir [60],
the theory from Yih [69] gives a relation between the launch
angle βjet, the angle of the upstream face of the wall α, and the
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FIG. 10. (Color online) Points (Fr1,H/h1) tested by Faug et al.
[10] (top graph) and Hákonardóttir [60] (bottom graph). Cross
symbols (+) correspond to tests for which a bore propagated upstream
and circle symbols (◦) represent tests for which the bore was
not present. The continuous lines show predictions from Eq. (23)
implemented with Eq. (7) for various values of tan θ − μe (see text).
The dashed lines show the prediction from traditional hydraulics for
horizontal flows.

obstacle height relative to the incoming flow H/h1. Notation
used is shown in Fig. 11(a), and further details for the theory
of Yih can be found in [60]. Hákonardóttir et al. [13] showed
that on colliding with a barrier, a shallow granular flow of
high Froude number becomes airborne and follows a coherent
ballistic trajectory, with negligible effect of resistive forces
within the deflection region. Thus, for a given flow speed and
depth of the avalanche relative to that of the obstacle, the
length of the airborne jet can be estimated by combining the
prediction of the angle of deflection βjet with the parabolic
trajectory of the jet, on the assumption that air resistance plays

only a negligible role for these trajectories (note that a similar
conclusion was obtained for rapid snow-chute flows [26]).

Figure 11(b) displays the experimental values of the couple
(Fr1, H/h1) tested by Hákonardóttir et al. [13] (note that
tests from snow-chute flows are also included [26]). Those
values correspond to tests for which large airborne granular
jets were observed downstream of the wall, without any
granular jump formed upstream of the wall, thus offering a
test for Eq. (23) described in Sec. II D. Equation (23) gives
the critical wall height, H

jet
c , which demarcates the granular

bores propagating upstream of the wall from the large airborne
jets formed downstream without any granular jump formed
upstream. The prediction of that equation should be above
all the points corresponding to couples (Fr1, H/h1) tested by
Hákonardóttir et al. [13,26]. The values of each parameter
needed for Eq. (23) implemented with Eq. (7) are given in the
caption of Fig. 11. It is verified that all the points corresponding
to couples (Fr1, H/h1) tested by Hákonardóttir et al. [13], and
by Hákonardóttir et al. [26] for snow-chute flows, are below
the prediction of H

jet
c shown by the group of lines drawn in

Fig. 11(b).

C. Granular dead zone regime

Relatively slow flows (Fr1 ∼ 1) impacting relatively small
walls (H/h1 ∼ 1) produce the formation of a quasistatic
stagnant zone upstream of the wall, which can reach a
stationary length, while the incoming grains start to flow gently
over the static pile and form a stationary jet whose energy is
much smaller than the airborne jet discussed in Sec. III B. This
granular pattern is illustrated in Fig. 12(a) [see also Fig. 9(b)].

The coexistence between this stagnant zone and the flowing
grains above the dead zone has been observed and studied in
detail by Faug et al. [66]. This so-called dead zone process
[28,66,70] differs from the granular jump because it is not
accompanied by a sharp discontinuity in depth (strong jump).
It consists more of a dense granular stream flowing down
a pile made of quasistatic grains. The thickness and the

FIG. 11. (Color online) (a) Photograph of the granular jet as it detaches from the top of the obstacle (photograph by K. M. Hákonardóttir);
(b) Values of the couple (Fr1, H/h1) tested in the laboratory experiments on airborne jets with granular materials [13] and snow [26].
The predictions from Eq. (23) for the critical height H

jet
c , below which the granular bore no longer exists, are drawn for k = 1 and β = 1.

L∗/(h2 − h1) and K̄ are derived from the empirical functions of Fr1. Three different values are considered for tan θ − μe: 0.05, 0.10, and 0.15.
The dashed line shows the prediction from traditional hydraulics.
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FIG. 12. (Color online) (a) Photograph of the granular dead zone created upstream of a wall: creation of the dead zone (inset: stationary
dead zone [66]). (b) Values of couples (Fr1,H/h1) which correspond to the experiments on dead zones by Faug et al. [66]. The predictions
from Eq. (23) for the critical height H

jet
c , below which the granular bore no longer exists, are drawn for k = 1, β = 1, and tan θ − μe = 0.15.

L∗/(h2 − h1) and K̄ are derived from the empirical functions of Fr1. Two values of the b constant are considered: b = 8 and b = 12. The
prediction from traditional hydraulics is reported too.

depth-averaged velocity, and the density as well, of the flowing
zone vary smoothly. The values of couples (Fr1, H/h1) tested
by Faug et al. [66] are drawn in Fig. 12(a). The reasons
why such a dead zone (without any sharp jump formed)
was observed even for relatively high Fr1 and H/h1 in the
experiments by Faug et al. [66] still remains unclear. However,
it is worthwhile to note that increasing b, which corresponds
to an increase of the length of the jump, produces an increase
of H

jet
c . Increasing H

jet
c then leads to an increase of the area for

which dead zones (in the absence of a bore) can be observed.
The predictions from Eq. (23) for the critical height H

jet
c ,

below which the granular bore no longer exists, are drawn in
Fig. 12(b) for k = 1, β = 1, and tan θ − μe = 0.15. L∗/(h2 −
h1) and K̄ are derived from the empirical functions of Fr1. Two
values of the b constant are considered: b = 8 and b = 12.

Figure 13 displays the measured length of the dead
zone [66] scaled by the thickness of the incident flow,
Ldz/h1, as a function of the Froude number of the obstacle,
FrH = ū/

√
gH cos θ . FrH is defined by Fr2

1 = Fr2
H (H/h1).

Figure 13 shows that Ldz/h1 is strongly correlated to FrH ,
which demonstrates the importance of the dimensionless num-
ber FrH . For FrH ∼ 1, the dead zone length starts diverging.
For the largest values of FrH , Ldz/h1 reaches a constant value
around 10. Most of the studies about flow-wall interactions
investigated rapid granular flows down steep slopes and/or
over smooth bottoms (typical size of roughness much smaller
than the grain size). That rapid dynamics remains of course
important but attention should be paid to the slower dynamics
too. New tests should be designed to investigate slow granular
flows on lower slopes and/or over a rough bottom. The dead
zone process stems from the ability of granular materials to
form stagnant zones (solidlike behavior) which can coexist
with inertial zones (fluidlike behavior). It is worthwhile to
note that recent developments have been conducted to predict
the force experienced by the wall when a dead zone is present,
as discussed in [71] and references therein.

IV. DISCUSSION AND OUTLOOK

The analytic solutions presented in the present study
reveal the crucial importance of the following depth-averaged
dimensionless numbers needed to describe how the geometry
of the granular flow is influenced by the presence of a
wall: (i) the Froude number Fr1 = ū1/

√
gh1 cos θ of the

incident flow and (ii) the obstacle height relative to the
incoming flow depth H/h1. The Froude number of the obstacle
FrH = ū1/

√
gH cos θ is also a dimensionless number of inter-

est, which depends on the two aforementioned numbers. The
difference between tan θ and the effective basal friction μe, and
the earth pressure coefficient k are additional dimensionless

FIG. 13. (Color online) Dead zone length scaled by the thickness
of the incident flow, Ldz/h1, vs the Froude number of the obstacle,
FrH , as measured by Faug et al. [66].
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parameters to take into account the granular nature of the fluid
at stake. Under specific conditions (steep slope and smooth
bottom, which lead to jumps short in length), μe = tan δ may
be a good approximation. More complex effective friction
laws, for which μe depends on depth-averaged flow variables
h1 and ū1, need the introduction of other dimensionless
numbers [46–51].

Let us define L+ and L− the length of the zones of
influence upstream and downstream of the wall, respectively.
d is the grain diameter. Both L+/d and L−/d are functions—
respectively called f and g—of Fr1 and H/h1, and L+/d may
be additionally influenced by μe, ϕ, and k:

L+
d

= f

(
Fr1,

H

h1
,μe,ϕ,k

)
, (27)

L−
d

= g

(
Fr1,

H

h1

)
. (28)

Including any influence of μe, ϕ, and k on L−/d is
considered as negligible—or even irrelevant, because granular
flows downstream of the wall essentially consist of detached
jets formed of free falling particles in a relatively dilute
regime. The three important steady regimes are defined below
depending on the magnitude of the scaled lengths L+/d and
L−/d, and the value of FrH as well. This allows establishing a
complete phase diagram of the granular flow-wall interaction.

A. Granular airborne jet regime: L−/d � L+/d (FrH � 1)

At low H/h1 and high Fr1, the incoming flow is able to
flow easily over the wall forming a large granular airborne jet
downstream of the wall, as depicted in Fig. 4(b). A steady state
can be achieved. L−/d is high and approximately determined
by the length of the stationary airborne jet formed downstream
of the wall, while L+/d is small (typically close to the wall
height from laboratory tests: L+ ∼ H ) and roughly reduced
to the length of the stationary wedge formed upstream of
the wall. The airborne jet regime, mainly controlled by the
inertia of the incoming flow, is defined by L−/d 
 L+/d and
FrH � 1.

B. Granular dead zone regime: L−/d ∼ L+/d (FrH ∼ 1)

At intermediate values of H/h1 and Fr1, all typical energies
involved in the flow-wall interaction (both potential and kinetic
energies of the incident flow, and the potential energy based
on the wall height H as well) are of the same magnitude. A
steady-state pattern can be formed: it consists of a quasistatic
stagnant zone which coexists with an inertial flowing zone
above able to flow over the obstacle, as displayed in Fig. 12(a).
L+/d is determined by the length of the dead zone formed
upstream of the wall, while L−/d corresponds to a jet formed
upstream of the wall. The jet formed is shorter, denser, and
much less energetic than the granular airborne jet discussed
above. The dead zone regime is defined by L+/d ∼ L−/d and
FrH ∼ 1.

C. Granular jump regime: L−/d � L+/d (FrH undetermined)

At high Fr1 and H/h1, the incoming flow has a strong
kinetic energy but the potential energy associated with the

obstacle height (∼gH ) is simultaneously high, which makes
FrH undetermined. A thick layer of grains is able to propagate
upstream of the wall (subcritical flow), and encounters the
grains from the incoming rapid flow (supercritical flow). A
granular bore, at the sharp transition between the subcritical
flow (propagating upstream) and the supercritical (incoming)
flow, is formed, as depicted in Fig. 4(a). The distance at which
the bore is able to propagate upstream defines L+/d. Under
certain conditions (H < H

jet
c ), a stationary granular jump can

be formed leading to a steady value of L+/d while a part of
the incoming flow is able to overtop the wall, forming a jet of
very low energy (L−/d much smaller than L+/d).

D. Phase diagram for granular flow-wall interaction

In line of the above qualitative considerations and the
analytic solutions discussed in the present study, a phase
diagram for granular flow-wall interaction can be proposed,
as drawn in Fig. 14.

Equation (7) gives the scaled height h2/h1 of the steady
granular jumps. Equation (23) makes it possible to predict the
critical wall height H

jet
c , which defines the frontier between

large airborne jets (Fr1 > Frc and H < H
jet
c ) and steady

granular jumps (Fr1 > Frc and H > H
jet
c ). There exists a line

above which steady-state conditions cannot be achieved and
a granular bore will propagate upstream of the wall provided
that the Froude number is larger than Frc. This line corresponds
to the jump height defined by Eq. (7). Once H/h1 is larger
than h2/h1, a bore propagates upstream and its height is given

FIG. 14. (Color online) Phase diagram for granular flow-wall
interaction. The zones defining the conditions under which each of the
granular patterns discussed in the present paper are drawn in the plane
(Fr1,H/h1). Predictions from Eq. (7) for the height of steady jumps
(thick lines) and from Eq. (23) for the critical height below which the
granular bore no longer exists (thin lines) are reported (k = 1, β = 1,
and tan θ − μe = 0.10). K̄ and L∗/(h2 − h1) are derived from the
empirical functions of Fr1. Two values of b are considered for H

jet
c

and h2/h1: b = 8 (dashed line) and b = 12 (dotted line). Also, the
prediction from traditional hydraulics for horizontal flows is reported
in continuous line for H

jet
c .
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by Eq. (13). Below Frc, the granular bore does not form. Still
below Frc but at sufficiently low values of H/h1 (H < H

jet
c ), a

steady state can be reached through the formation of a granular
dead zone coexisting with the flowing grains above able to
overtop the wall.

The following values of parameters are used for the predic-
tions given in Fig. 14 [Eq. (7) for h2/h1 and Eq. (23) for H

jet
c ]:

k = 1, β = 1, and tan θ − μe = 0.10. K̄ and L∗/(h2 − h1)
were derived from the empirical functions of Fr1. Two values
of b in Eq. (26) were considered for H

jet
c and h2/h1: b = 8

(dashed lines) and b = 12 (dotted lines). The prediction from
traditional hydraulics for horizontal flows is also reported for
H

jet
c (continuous line).
The phase diagram proposed in Fig. 14 was established

with the help of depth-averaged analytic solutions for free-
surface gravity-driven granular flows interacting rigid walls
down inclines. An effort was made to systematically include
the effects of the gravitational acceleration along the slope,
and of the retarding acceleration caused by friction as well.
This phase diagram should be very useful for the design of
future research studies on the problem of obstacles impacted
by granular flows.

Empirical closure relations were used to estimate the
geometry of the granular jump, i.e., the relations for K̄ and
L∗/(h2 − h1), and the difference tan θ − μe was considered
as a constant in the range 0.05–0.15, in accordance to recent
laboratory results by [56]. At high Froude numbers, the
semiempirical solutions obtained provide results which are

close to the traditional hydraulic equations (strictly valid for
horizontal flows without any friction force considered). This
explains the great success of traditional hydraulics for granular
jumps in fast granular flows down steep slopes. However,
the differences are more pronounced at low Froude numbers.
Furthermore, changing tan θ − μe and/or the constant b

in the empirical relation for L∗/(h2 − h1) does significant
change to the results at low Froude numbers. This highlights
some uncertainty in defining the boundaries of the area of
the phase diagram at low values of Fr1 and H/h1 (in which
steady dead zones coexisting with flowing grains above can be
formed) and a need for further investigations. In particular, the
interaction between slow granular flows and walls should be
investigated in more detail because it is entirely driven by the
complex interplay between the hydrodynamic properties and
frictional nature of the granular fluid. This slow dynamics
is for instance crucial in geophysics and natural hazards
mitigation, because it is relevant to situations where gravity
mass movements interact with protection structures in the
runout zones while the Froude number becomes relatively low.
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K. Lied, M. Naaim, F. Naaim-Bouvet, and L. Rammer,
2009), http://bookshop.europa.eu/en/the-design-of-avalanche-
protection-dams-pbKINA23339/.

[63] C. Brennen, K. Sieck, and J. Paslaski, Powder Technol. 35, 31
(1983).

[64] C. Campbell, C. Brennen, and R. Sabersky, Powder Technol.
41, 77 (1985).

[65] A. Jaworski and T. Dyakowski, Exp. Therm. Fluid Sci. 31, 877
(2007).

[66] T. Faug, P. Lachamp, and M. Naaim, Nat. Hazards Earth Syst.
Sci. 2, 187 (2002).
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