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Qualitatively different collective and single-particle dynamics in a supercooled liquid
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The equations of fluctuating nonlinear hydrodynamics for a two component mixture are obtained with a proper
choice of slow variables which correspond to the conservation laws in the system. Using these nonlinear equations
we construct the basic equations of the mode coupling theory (MCT) and consequent ergodic-nonergodic (ENE)
transition in a binary mixture. The model is also analyzed in the one component limit of the mixture to study
the dynamics of a tagged particle in the sea of identical particles. According to the existing MCT, dynamics of
the single-particle correlation is slaved to that of the collective density fluctuations and, hence, both correlations
freeze simultaneously at the ENE transition. We show here from a nonperturbative approach that at the ENE
transition, characterized by the freezing of the long time limit of the dynamic correlation of collective density
fluctuations to a nonzero value, the tagged-particle correlation still decays to zero. Our result implies that the point
at which simulation or experimental data of the self-diffusion constant extrapolate to zero would not correspond
to the ENE transition of simple MCT.
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I. INTRODUCTION

The self-consistent mode coupling theory (MCT) has been
a useful tool for understanding slow dynamics in a dense liquid
starting from the liquid side. The construction of this model
involves a basic feedback mechanism affecting the transport
properties of the liquid, arising from the coupling of slowly
decaying density fluctuations in the supercooled state. The
basic result of the model is that as the density of the liquid
increases beyond a critical value, a dynamic transition from
the ergodic liquid state to a nonergodic ideal glassy state
occurs. The long time limit of the time correlation of density
fluctuations is treated as an order parameter for this transition.
This quantity, termed as the nonergodicity parameter (NEP),
makes a discontinuous jump from being zero in the liquid state
to a nonzero positive value at the ergodic-nonergodic (ENE)
transition.

For understanding the mechanism of glass formation in
liquids with simple interaction potentials like the hard sphere
or Lennard-Jones type, computer simulation of a small number
of particles moving under classical laws of motion has been
a useful tool [1–3]. In such simulation studies often binary
mixtures are the system of choice, since they can be tuned to
avoid crystallization of the liquid and thus facilitate the study of
the supercooled state [1]. For the two component systems, the
self-consistent MCT with the prediction of an ENE transition
has been studied by several authors [4–6] in the past. The
approach adopted there is a straightforward generalization of
the MCT for the one component case. In these works analysis
of experimental and simulation data is made through schematic
models or treating the various nonuniversal parameters in the
theory as freely adjustable for data fitting. The model equations
in these works predict the dynamic transition too prematurely
even when the structural inputs for the MCT was taken from
the simulations. This aspect of the mode coupling model for
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the binary fluid is indicated in the computer simulation results
reported in Refs. [7,8] in which the authors simulated a binary
Lennard-Jones system. In this paper we refer to these models
of binary mixture as the “existing MCT.”

In the current work we present a different formulation of
MCT for a binary mixture by constructing the renormalized
perturbation theory for the dynamics of the collective modes
of a two component system. The collective modes represent
the underlying conservation laws of mass and momentum and
we use the equations of fluctuating nonlinear hydrodynamics
(FNH) for describing their evolution in time. The basic
conservation laws thus play a key role in the construction of the
mode coupling model that we develop here. The self-consistent
MCT is formulated using a Martin-Siggia-Rose (MSR) type
field theory corresponding to the stochastic dynamical equa-
tions. Previous works [9–11] using similar techniques for one
component systems have provided important insight in our
understanding of MCT for such systems. At the simplest level
irreversible dynamics of the slow modes is expressed using
bare transport coefficients in the equations of fluctuating linear
hydrodynamics [12]. The transport coefficients represent the
role of short time or binary collision events in producing
dissipation. The nonlinear couplings of the slow modes in
the FNH equations represent the role of correlated motions of
the particles at high density and give rise to renormalization
of the bare frictional coefficients. The reversible part or
the Euler terms in the fluctuating equations are obtained
using the Poisson bracket relations between the microscopic
variables. The nonlinearities in the dynamics which give rise
to the feedback mechanism of the MCT and causes the
ENE transition are present in this reversible part, namely
the pressure term in the momentum conservation equation.
In the present model formulation for the binary mixture we
focus on the dynamic instability or the ENE transition as
a first step. Within the self-consistent MCT, we consider
the corrections to the transport coefficients using the mode
coupling approximation of dominant density fluctuations and
this is the key ingredient in producing a feedback to the
transport properties. For the binary mixture, couplings to the
concentration fluctuations also become equally relevant. In
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the MSR theory the renormalization of both the viscosity and
the interdiffusion are expressed in a self-consistent form. The
possible ENE transition, allowed by the model equations, is
analyzed in terms of the solution of a set of integral equations
for the NEPs. These equations are obtained from the long time
limit of the corresponding correlation functions constructed
from the MSR field theoretic model.

The equal time or structural correlations in a binary fluid are
obtained with a proper free energy functional written in terms
of the slow variables and is a required input for the study of
the dynamics. It is obtained from the coarse graining of the
microscopic Hamiltonian of the binary mixture. Following the
method of Langer and Turski [13], the momentum density
dependent part is obtained [14]. The so called interaction part
of the free energy functional is taken in the standard form
with expansion in terms of direct correlation functions [15]. In
the present work we confine ourselves to a strictly Gaussian
type free energy functional. The two-point direct correlation
functions can be expressed in terms of static structure factors
of the binary mixture through Ornstein-Zernike relations [16].
The thermodynamic properties of the fluid determined from the
interaction potential of the particles thus enter the formulation
of the dynamics. In the mode coupling model for the dynamics,
computation of the mode coupling integrals appearing in the
renormalized transport coefficients requires the static structure
factor of the liquid as an input. In the one component case
the Percus Yevick (PY) structure factor has been used mostly
in similar situations. In case of the binary mixtures we use
the extension of the PY models for a two component fluid
by Lebowitz [17]. These structure factors are obtained as a
function of the packing fraction η, size ratio α (of species 2 to
that of species 1), and the relative abundance of the species 1
denoted by the variable x.

Using the field theoretic formulation for the dynamics of the
collective modes for the binary system, we are able to consider
the one component limit of the mixture by setting the size ratio
and mass ratio of the two species to be unity. The process of
self-diffusion can then be considered by taking the system as a
mixture of a single (tagged) particle with (N − 1) particles. In
the existing MCT, the time correlation φ(t) (say) of collective
density fluctuations couples to time correlation of the single
particle φs(t). Therefore, as the φ freezes at the ENE transition,
so does φs , which is simply slaved to the former and, hence,
the tagged-particle diffusion is zero at this point. In the present
work we consider the implications of the ENE transition on
the dynamics of a single particle in a sea of identical particles.

The paper is organized as follows. In the next section,
we define the proper set of conserved densities for the two
component system and obtain the equations of FNH for
the slow variables. In Sec. III, we introduce the MSR field
theory for treating the nonlinearities in the FNH equations and
construction of the renormalized perturbation theory. Here we
demonstrate how the theory can be renormalized in terms of the
elements of the self-energy matrix defined with the so called
Dyson equation. In Sec. IV we discuss the ENE transition and
the resulting equations for the NEPs at the one loop order
renormalization. In order to clearly indicate the difference of
the present approach from existing MCT for binary systems,
we also discuss here the approximations involved in obtaining
the latter. In Sec. V, we consider the existing MCT model

and discuss the approximations involved in reaching the same
with the use of the MSR approach. In Sec. VI we demonstrate
through a nonperturbative analysis developed in Ref. [18] that
the single-particle dynamics decouples from the collective
correlation’s behavior near the ENE transition. In the final
section we evaluate our results in the background of the
existing MCT for binary systems.

II. GENERALIZED HYDRODYNAMICS
FOR A BINARY MIXTURE

The dynamics of the many-particle system is studied in
terms of the time evolution of a set of slow modes. The
latter arise as a consequence of underlying conservation laws,
broken symmetries [19,20], or a specific physical property
of the system in consideration. The equations of motion
of these microscopically conserved variables are obtained
in terms of generalized Langevin equations. Using standard
formulations [21], the Langevin equations for the coarse
grained densities {ψi} are obtained in the generalized form
(we adopt the notation that the repeated indices are summed
over),

∂ψα

∂t
= [Qαν − �0

αν

] δF

δψν

+ ζα, (1)

where ζα denotes the thermal noise which is assumed to be
Gaussian and white. Correlation of the noise is related through
standard fluctuation-dissipation relations (FDRs) to the bare or
short time transport matrix �0

ασ and introduces the irreversible
dynamics for the collective modes. �0

ασ in Eq. (1) is related to
the correlation of the thermal noise ζα with FDRs,

〈ζα(t)ζσ (t ′)〉 = 2β−1�0
ασ δ(t − t ′), (2)

where β = (kBT )−1 is the inverse of temperature T times the
Boltzmann constant kB . F [ψ] is identified as the free energy
functional of the local densities {ψα(x,t)} and determines
the equal time correlations or susceptibility matrix χ−1

ασ , with
α,σ ∈ the set of slow modes for the system. F [ψ] is expressed
in terms of the slow modes. Thus, equilibrium averages of the
fields ψα at equal times are given by

〈ψαψσ 〉 =
∫

D(ψ)e−βF [ψ]ψαψσ∫
D(ψ)e−βF [ψ]

, (3)

where D(ψ) indicates a functional integral over the fields {ψα}.
The stationary solution of the Fokker-Planck equation corre-
sponding to Langevin equations for fluctuating hydrodynamics
is e−βF . In the following we consider the set of equations
for a binary mixture which forms the basis for the model
of self-diffusion we consider here. For the binary mixture
elements of the bare transport matrix include the viscosities
and interdiffusion coefficients. Qαν = {ψα,ψν} in Eq. (1) is
the Poisson bracket between the slow variables ψα and ψν .

We consider here the FNH equations for a binary mixture
of Ns identical particles of species s having mass ms , diameter
σs (for s = 1,2), respectively. We define xs = Ns/N and ns =
Ns/V respectively as the concentration and the number density
per unit volume of the particles of species s (for s = 1,2).
The total number of particles is N = N1 + N2 and V is the
volume of the mixture. For the binary system, we consider
the following set of collective variables which are treated as
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slow due to the underlying microscopic conservation of the
individual mass and sum of the total momentum of the two
species, respectively. The individual mass densities ρs and
the momentum densities gs for the species s are respectively
defined in terms of microscopic phase space variables as [22]

ρs(x,t) = ms

Ns∑
i=1

δ(x − Ri
s(t)), (4)

gs(x,t) =
Ns∑
i=1

Pi
sδ(x − Ri

s(t)), (5)

where m1 and m2 are the masses of particles of species 1
and 2, respectively. The phase space coordinates of position
and momentum of the ith particle of the species s are
denoted as {Ri

s(t),P
i
s (t)}. The individual coarse grained mass

densities, respectively denoted as ρs(x,t) are microscopically
conserved. The individual momentum densities g1 and g2 are
not conserved, but total momentum density defined as

g(x,t) = g1(x,t) + g2(x,t) (6)

is conserved. We work here with the following set of conserved
variables: the total mass density ρ(x,t), total momentum
density g(x,t), and the concentration variable c(x,t) [12]. The
mass and concentration densities are defined as follows:

ρ(x,t) = ρ1(x,t) + ρ2(x,t), (7)

c(x,t) = x2ρ1(x,t) − x1ρ2(x,t). (8)

We define the fluctuations of ρ and c, respectively as δρ =
ρ − ρ0 and δc = c, since the average of c is zero when we
consider the mass ratio of the constituent particles to be unity.

The generalized Langevin equation (1), leads to the equa-
tions of motion for the respective coarse grained densities
ψi ≡ {ρ(x,t),g(x,t),c(x,t)} for a binary mixture. Following
standard procedures [23], outlined in Appendix A we obtain

∂ρ

∂t
+ ∇ · g = 0, (9)

∂gi

∂t
+ ∇j

[
gigj

ρ

]
+ ρ∇i

δFU

δρ
+ c∇i

δFU

δc
+ L0

ij

gj

ρ
= θi,

(10)

∂c

∂t
+ ∇ ·

[
c

g
ρ

]
+ γ0∇2 δFU

δc
= fc. (11)

FU is the so called potential part of the free energy functional
F [ψ] introduced in the generalized Langevin equation (1). F

is expressed as

F [ρ,g,c] = FK [ρ,g] + FU [ρ,c]. (12)

The kinetic part FK (dependent on the current density g)
is computed from the microscopic Hamiltonian. Considering
partition function of the system and following the method of
Langer and Turski [13,14] we obtain

FK [ρ,g] =
∫

dx
g2(x)

2ρ(x)
. (13)

FU [ρ,c] is taken here as a quadratic functional of the fields
ρ and c and is related to the structure of the liquid. This
is expressed in terms of the corresponding direct correla-
tion functions {cρρ,cρc,ccc} defined in the Ornstein-Zernike
relations. See Appendix A for details on the structure of the
mixture.

The various elements of the bare transport matrix �0
ασ

which appear in the generalized Langevin equation (1) for the
binary mixture are defined in Appendix A. Thus, �0

gigj
≡ L0

ij

represents the matrix of bare or short time viscosities, while
�0

cc ≡ γ0∇2 is linked to the bare interdiffusion coefficient for
the mixture. These two dissipative coefficients are related to
the correlation of the Gaussian noises respectively in Eqs. (10)
and (11),

〈fc(x,t)fc(x′,t ′)〉 = 2β−1γ0∇2δ(x − x′)δ(t − t ′), (14)

〈θi(x,t)θj (x′,t ′)〉 = 2β−1L0
ij δ(x − x′)δ(t − t ′), (15)

〈fc(x,t)θi(x′,t ′)〉 = 0. (16)

Here β−1 determines the strength of the thermal noise
correlations. For an isotropic system the bare viscosity matrix
L0

ij involves two independent coefficients,

L0
ij = −L0∇i∇j − η0(δij∇2 − ∇i∇j ), (17)

where L0 and η0 respectively denote the bare or short time
longitudinal and shear viscosities.

Equations (9)–(11) represent the dissipative dynamics of the
slow modes in a binary mixture due to nonlinear coupling of the
these modes. The mode coupling model for slow dynamics of
a mixture follows from these equations. To focus on the role
of various nonlinearities we note the following terms in the
above set of equations. In Eq. (10) for the momentum density
g, the second, third, and the fourth terms on the left-hand
side (LHS) represent various contributions from the reversible
part of the dynamics. The second term represents a convective
nonlinearity and ensures Galilean invariance of the equations,
while the third and the fourth terms correspond to nonlinear
dynamics. Even with a Gaussian free energy functional defined
in Eq. (A6), these two terms give rise to a nonlinear coupling
of ρ and c. In Eq. (11) for concentration c, the second term
on the LHS represents reversible dynamics and is the only
nonlinearity. The third term represents the dissipative part that
corresponds to a diffusive mode. The only nonzero Poisson
bracket of the concentration variable is {c,gi} and since the the
functional derivative of F with gi is gi/ρ, the only possible
coupling in the reversible part of the c equation is between c

and gi/ρ. This is an important point to note and will be useful
when we consider the renormalization of the dynamics due to
the nonlinearities. The role of 1/ρ nonlinearities in the FNH
equations will be ignored in this work to primarily focus on
the ENE transition in particular.

At the linear level Eqs. (9)–(11) of fluctuating hydro-
dynamics for the mixture involve the characteristic speeds
c0 and υ0, which are respectively expressed in terms of
equilibrium structure factors, c2

0 = ρ0χ
−1
ρρ and υ2

0 = ρ0χ
−1
ρc .

The dissipative equations of linearized dynamics also include
the bare transport coefficients which are, respectively, the
longitudinal viscosity L0 and the interdiffusion coefficient
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ν0 = γ0χ
−1
cc . The effects of the nonlinearities in the above

FNH equations are accounted through renormalization of the
bare transport coefficients (L0, ν0) as well as the speeds
(c0, υ0). In particular, corrections of L0 and ν0 due to the
slowly decaying hydrodynamic modes give rise to a nonlinear
feedback mechanism which is key to producing the slow
dynamics of the MCT.

III. MARTIN-SIGGIA-ROSE FIELD THEORY

In this section we describe the computation of the correla-
tion and response functions of the conserved slow modes which
are the prime quantities in describing the dynamics of the
binary mixture and possible ENE transition in the system. The
consequences of the nonlinearities in the equations of motion,
i.e., the generalized Langevin equations for the slow variables,
are worked out by using graphical methods of field theory.
In the present work the renormalized perturbation theory
is developed in self-consistent form, which is particularly
useful for the discussion of the mode coupling model and
the consequent slow dynamics. We follow here closely the
methodology developed in Ref. [10] using the standard
approach of MSR field theory [24–28]. We describe the scheme
briefly below, and for more technical details we refer the reader

to Ref. [10]. The renormalized theory for the binary mixture
dynamics is developed in terms of the correlation functions
and response functions respectively given by

Gαβ(12) = 〈ψα(1)ψβ(2)〉, (18)

Gαβ̂(12) = 〈ψα(1)ψ̂β(2)〉. (19)

The number 1 refers here to both space and time coordinates
(x1,t1) and so on. The averages denoted here by the angular
brackets are functional integrals over all the fields weighted by
e−A. The actionA is a functional of the field variables {ψi} and
the corresponding conjugate hatted fields {ψ̂i} introduced in
the MSR filed theory. Using the equations of motion (9)–(11)
for the set of slow modes {ρ,c,g}, the MSR action functional
is obtained in the Appendix B as given in Eq. (B7). The
correlation and response functions in the MSR field theory,
respectively given by Eqs. (18) and (19), are suitably orga-
nized in terms of their contributions from the Gaussian and
non-Gaussian parts of the action functional A. Using the
polynomial expansions of the linear and nonlinear kernel terms
in the equations of motion the action functional A in Eq. (B7)
is put in a schematic form:

AU [�,�̂] = 1

2

∑
1,2

�(1)G−1
0 (12)�(2) + 1

3

∑
1,2,3

V (123)�(1)�(2)�(3) + 1

4

∑
1,2,3,4

V (1234)�(1)�(2)�(3)�(4) −
∑

1

�(1)U (1).

(20)

In the above expression the set of slow modes {ψα} are
represented in terms of a vector field �(1) having the different
fields as its components. The nonlinearities in the equations
of motion (9)–(11) give rise to non-Gaussian terms in the
action Eq. (20) involving products of three or more field
variables. The corresponding vertex functions V (123), etc.
[see Eq. (20) for the MSR action], are defined to be symmetric
under the exchange of the indices. The simplest level form of
the correlation functions are zeroth order quantities denoted
by G0, corresponding to the the action which is only quadratic
order in the fields, all higher order vertices being ignored.
Keeping only the Gaussian terms in the action functional (B7),
the matrix G−1

0 defined in Eq. (20) is obtained in the block form

G−1
0 =

[
© B†

0
B0 C0

]
, (21)

where the elements of matrix B0 are provided in Table I and
the matrix B†

0 is the transpose and complex conjugate of the

TABLE I. Elements of matrix [G−1
0 ]

α̂β
defined in terms of the

matrix B0. ν ′
0 = χ−1

ρc γ0 and ν0 = χ−1
cc γ0.

ρ c g

ρ̂ ω 0 −q

ĉ iq2ν ′
0 ω + iq2ν0 0

ĝ −qc2
0 −qυ2

0 ω + iq2L0

matrix B0. The matrix C0 is defined as

[C0]μ̂ν̂ = 2β−1δμ̂ν̂[δμ̂ĝL0 + δμ̂ĉγ0]. (22)

The © on the right-hand side (RHS) of Eq. (21) represents the
null matrix with all its elements equal to zero. The role of the
non-Gaussian terms is to renormalize the correlation functions
of the Gaussian theory and is expressed in a perturbation
series expansion in terms of the corresponding vertices. The
diagrammatic methods of field theories are used for this
purpose. In the following we use the FDRs (28)–(31) to
obtain important conclusions on the renormalized theory from
a nonperturbative approach.

A. Fluctuation-dissipation relations

We now demonstrate that the correlation and response
functions defined in Eqs. (18) and (19) are related through
a set of fluctuation-dissipation relations. The derivation of
these FDRs are based on the symmetry of the MSR action
under time reversal transformation [29]. In Appendix A we
demonstrate that the MSR action (B7) remains invariant under
the following time transformation rules of the field ψi and its
hatted conjugate ψ̂i :

ψi(x,−t) → εiψi(x,t),

ψ̂i(x,−t) → −εi

[
ψ̂i(x,t) − iβ

δF

δψi(x,t)

]
. (23)
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Applying this symmetry corresponding to the field ψi ≡ gi ,
we obtain

gi(x,−t) → −gi(x,t),

ĝi(x,−t) → ĝi(x,t) − iβvi(x,t). (24)

We denote the functional derivative of the free energy
functional F with the field ψ(x,t) as

ζψ (x) = δF

δψ(x)
, (25)

so that ζgi
= [δF/δgi(x,t)] = gi(x,t)/ρ(x,t) = vi(x,t). Ap-

plying the above transformation rules to the correlation of
ĝi(x1,−t1) with a field ϕ(x2,t2), we obtain

〈ĝi(x1,−t1)ϕ(x2,t2)〉 = 〈ĝi(x1,t1)ϕ(x2,t2)〉
− iβ〈vi(x1,t1)ϕ(x2,t2)〉. (26)

For t1 > t2, the LHS is zero due to causality and obtains

Gviϕ(x,t) = −iβ−1Gĝiϕ(x,t), (27)

where x = x1 − x2 and t = t1 − t2. Since the response func-
tions by definition are time retarded due to causality principle,
for the spatially Fourier transformed correlation function from
the corresponding response function we obtain

Gviϕ(q,ω) = −2β−1ImGĝiϕ(q,ω). (28)

The v field has been introduced in the formulation to deal
with the 1/ρ nonlinearity in the equations of motion. In the
case of a one component liquid the latter plays a crucial
role [10] in cutting off the sharp ENE transition in which
density correlation function freezes at a nonzero value in the
long time limit. In the present work we ignore the ergodicity
mechanisms to focus on the implications of the ENE transition,
in particular, in the binary system. Thus, we ignore the role of
the 1/ρ nonlinearity and treat g and v with the linear relation
g = ρ0v and work with the set of fields {g,ρ,c}. With this
approximation the FDR given by Eq. (28) reduces to

Ggiϕ(q,ω) = −2β−1ρ0ImGĝiϕ(q,ω). (29)

Applying the same symmetries respectively for ψ = ρ and c,
we obtain the following set of FDRs:

Gζcϕ(q,ω) = −2β−1ImGĉϕ(q,ω), (30)

Gζρϕ(q,ω) = −2β−1ImGρ̂ϕ(q,ω), (31)

where ζρ and ζc are as defined in Eq. (25).

B. Renormalization

The role of the non-Gaussian parts of the action A on
the correlation functions are quantified in terms of the self-
energy matrix � which shows up in the equation satisfied by
the response functions and that satisfied by the correlation
functions. The self-energy matrix � is defined through the
Schwinger-Dyson equation

G−1 = G0
−1 − �, (32)

where G0 represents the Gaussian counterpart of G obtained
by keeping only up to quadratic terms in the action A. The
matrix equations represented by Eq. (32) are solved to obtain
the corresponding correlation and response functions in MSR

field theory. For example, from the set of equations denoted
by (32) we obtain that the response functions satisfy[(

G−1
0

)
α̂μ

(13) − �α̂μ(13)
]
Gμβ̂(32) = δ(12)δα̂β̂ . (33)

Using diagrammatic methods the self-energies �α̂μ as well
as �α̂μ̂ are expressed in perturbation theory in terms of the
two-point correlation and response functions. The block form
of the inverse Green’s function matrix, both in the zeroth order
and in the fully nonlinear theory, have a symmetric structure in
the parts representing the response functions. Since the fields
ψ and ψ̂ are real, it readily follows from the MSR action
functional that

A∗[ψ,ψ̂] = A[ψ,−ψ̂], (34)

and it is straightforward to show [10] that the response function
Gα̂β satisfies the relation

Gα̂β(q,ω) = −G∗
βα̂(q,ω). (35)

From the matrix form (21) for the G−1
0 matrix it is obvious

that this is satisfied at the zeroth order. From the Dyson
equation (32) it therefore also follows that the self-energies
satisfy the relation

�α̂β(q,ω) = −�∗
βα̂(q,ω). (36)

Analyzing the structure of the full Green’s function matrix
from the Dyson equation in Appendix B 2, the response part
of Gαβ̂ is obtained as

Gαβ̂ = Nαβ̂

D . (37)

The various elements of matrix Nαβ̂ for the case of a binary
mixture are obtained in Appendix B 2. The denominator
D on the RHS of Eq. (37) is obtained in Eq. (B12). The
Nα̂β matrix satisfies the relation Nα̂β(q,ω) = N∗

βα̂(q,ω). The
various renormalized transport coefficients appearing in
the RHS of Eq. (37) are expressed in terms of the correspond-
ing response self-energies as listed in Eqs. (B13)–(B15). The
correlation functions of the physical, unhatted field variables
are defined as

Gαβ = −
∑
μν

Gαμ̂Cμ̂ν̂Gν̂β, (38)

where greek letter subscripts take values ρ,c and the lon-
gitudinal components of the vector field g. The self-energy
matrix Cμ̂ν̂ is listed in Table II. The double-hatted self-energies
�μ̂ν̂ as well as Cμ̂ν̂ both vanish if either index corresponds to
ρ̂, since there is no noise or nonlinearity in the continuity
equation (9). Therefore, from the general structure of Eq. (38)
of the correlation and that of Eq. (37) for response functions
we obtain

Gαβ = 1

DD∗
∑
μν

Nαμ̂Cμ̂ν̂Nν̂β . (39)

TABLE II. Elements of matrix Cα̂β̂ .

ρ̂ ĉ ĝ

ρ̂ 0 0 0
ĉ 0 2β−1q2γ0 − �ĉĉ −�ĉĝ

ĝ 0 −�ĝĉ 2β−1q2L0 − �ĝĝ
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From the above expression it is clear that the renormalized
correlation functions involve both response type self-energies
(�ψψ̂ ) and correlation type self-energies (�ψ̂ψ̂ ), the latter be-
ing present in the matrix Cψ̂ψ̂ . In order to demonstrate that the
renormalized correlation functions can be expressed in terms
of a set of renormalized transport coefficients we therefore
need to establish a relation between the corresponding set
of response and correlation type self-energies renormalizing
the same transport coefficient. Here the fluctuation dissipation
relations (29)–(31) between correlation and the response
functions of the MSR field theory prove very useful. We are
able to do this at the nonperturbative level here but in the
hydrodynamic limit of small wave-vectors and frequencies.

C. Nonperturbative analysis

We consider the FDRs (29)–(31) obtained in the previous
section to link the correlation and response self-energies. Using
Eqs. (35) and (38), respectively, for the response function Gĝiϕ

and correlation function Ggiϕ in the FDRs (29) and (30), we
obtain the following set of relations:

Ngiα̂Cα̂γ̂ = −iβ−1ρ0
(
Dδĝi γ̂ + N∗

ĝiϕ
G−1

ϕγ̂

)
, (40)

{
χ−1

ρc Nρα̂ + χ−1
cc Ncα̂

}
Cα̂γ̂ = −iβ−1

(
Dδĉγ̂ + N∗

ĉϕG−1
ϕγ̂

)
. (41)

The results in Eqs. (40) and (41) are further analyzed in
the Appendix B to obtain a set of relations between the
response and correlation self-energies. In the hydrodynamic
limit which corresponds to the small wave numbers (q) and
small frequencies (ω) we obtain

γĝĝ = 2β−1ρ0γ
′
ĝg, (42)

γĉĉ = 2β−1
γ ′

ĉρ

χ−1
ρc

= 2β−1 γ ′
ĉc

χ−1
cc

. (43)

The quantities {γα̂β,γα̂β̂}, which appear in the above relations
are coming from the leading order contributions to the
corresponding self-energies {�α̂β,�α̂β̂}. These leading order
wave-vector dependencies for the different self-energies are
listed in Appendix B. Justifications for using the properties of
the different vertex functions V ’s in the action (20) are given
in Appendix B. For the off-diagonal elements of the Cα̂δ̂ matrix
we also obtain

γĉĝ = 2β−1
γ ′

ĝc

χ−1
cc

= 2β−1
γ ′

ĝρ

χ−1
ρc

. (44)

The above relations between the self-energies are important
for the renormalizability of the theory in terms of redefined
transport coefficients. The renormalized longitudinal viscosity
coefficient L(q,z) is obtained in the form

L(q,z) = L0(q) + iγ ′
ĝg(q,z)

= L0(q) + βρ−1
0

∫ ∞

0
dteiztγĝĝ(q,t). (45)

From Eq. (43), we see that in the hydrodynamic limit both γ ′
ĉρ

and γ ′
ĉc are related to the self-energy γĉĉ. This has important

implications in the renormalization of the two transport
coefficients appearing in the correlation function matrix. From

Eqs. (B14) and (B15) and using the definitions of γĉc and
γĉρ , we obtain, respectively, the renormalized expressions for
ν(q,ω) and ν ′(q,ω) as

ν(q,ω) = χ−1
cc γ0(q) + γ ′

ĉc(q,ω), (46)

ν ′(q,ω) = χ−1
ρc γ0(q) + γ ′

ĉρ(q,ω). (47)

The renormalized quantities ν and ν ′ are respectively ex-
pressed as χ−1

cc γ and χ−1
ρc γ in terms of a single renormalized

quantity whose Laplace transform is defined as

γ (q,z) = γ0(q) + β

∫ ∞

0
dteiztγĉĉ(q,t), (48)

involving the self-energy �ĉĉ. To summarize, in hydrodynamic
limit, the correlation and the response functions in the fully
nonlinear theory are obtained in terms of the renormalized
transport coefficients. The renormalization of the thermody-
namic quantities c2

0 and υ2
0 follows from Eqs. (B16) and (B17).

In Appendix B we demonstrate that for the Gaussian free
energy considered in the present work these corrections are
higher orders in q and vanish in the hydrodynamic limit.

IV. THE ERGODIC-NONERGODIC TRANSITION

We have identified above the respective self-energy matrix
elements which contribute to the renormalized transport
coefficients. The correlation and response functions of the fully
nonlinear theory are expressed in terms of these renormalized
quantities. The next step in this is to express these self-energies
in terms of the correlation functions. This gives rise to a
self-consistent scheme in which correlation functions satisfy
nonlinear equations involving memory functions which are
expressed in terms of the correlation functions themselves.
This essentially constitutes the feedback mechanism of MCT
and has been used extensively for understanding the slow
dynamics in a dense supercooled liquid. As the density or
the packing fraction of the system is increased, there is a
critical density at which the density correlation function does
not decay to zero in the long time limit and this is defined as
an ENE transition. In the present case of the binary mixture,
the transition is characterized by freezing of the correlations
of ρ and c. The ENE transition in the mixture is characterized
by correlation functions having a nonergodic solution, i.e.,
the long time limit of the different elements of the matrix
of correlation functions Gσμ(q,t), where σ,μ ∈ {ρ,c} are
nonzero for all wave number q. This is equivalent to having
the corresponding Laplace transform Gσμ(q,z) ∼ fσμ(q)/z
developing a pole at z = 0. Equivalently, the Fourier transform
behaves like Gσμ(q,ω) ∼ 2πδ(ω)fσμ(q). In the following, the
liquid is considered to have an ENE transition when a set of
nonzero values is obtained for the fσμ(q)’s, which are therefore
called the NEPs.

Using the FDRs given by Eqs. (30) and (31), the expressions
for the Fourier transform of the correlation functions are
obtained in terms of the Laplace transforms of the correlation
functions,

Gαϕ(q,z) = 1

D
∑

ν

Nαν̂(q,z)χνϕ. (49)
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The repeated index ν in Eq. (49) is summed over the set {ρ,c}.
The above equation is rearranged to a form

D
∑

α

N−1
μ̂α (q,z)Gαϕ(q,z) = χμϕ(q,z). (50)

To sort out the dependence on structure and the dynamics, we
define normalized correlation functions φασ as

φασ (q,t) = Gασ (q,t)√
χααχσσ

. (51)

The corresponding NEP is then defined as the long time limit of
the correlation functions φασ ; i.e., the NEPs fασ are obtained
as

fασ (q) = lim
t→∞ φασ (q,t) = lim

z→0
zφασ (q,z). (52)

Taking the long time limit of the equations given by (49), we
get the following equations for the NEPs:

fασ (q)

1 − fασ (q)
= aασL(q)

c̃0
2 + (1 − aασ )L(q)

. (53)

The aασ ’s are obtained in terms of static correlations, aρρ = 1,
aρc = χ , and acc = χ2, where χ (k) = χρc(k)/

√
χρρ(k)χcc(k).

aασ is symmetric in ρ and c. The quantity c̃0 is obtained in
terms of the sound speed c0 as

c̃2
0 = c2

0 + v2
0(χρc/χρρ). (54)

The function L(q) in the RHS of Eq. (53) is the long time limit
of the renormalized memory function L(q,z) of the generalized
viscosity. The memory function L(q,z) involves a factor q2

following from conservation laws. The memory functions for
L(q,t) as a nonlinear functional of the fασ ’s. In the standard
MCT approach [10,30–32] the integral Eqs. (53) are closed
by treating L(q) as a nonlinear functional of the fασ . This is
determined by taking the long time limit of the corresponding
self energies �ĝĝ . Using the vertex functions appearing in the
MSR action functional (B7) we show in the Appendix B 2 that
the relevant diagrams (shown in Fig. 1) involving the slowly
decaying correlations of ρ and c obtain the following one-loop

FIG. 1. One loop diagrams for �ĝi ĝj
with vertices involving

nonlinear couplings of density fluctuations.

FIG. 2. One loop contributions to �ĉĉ.

contribution for L(q,t),

L(q,t) = β−1

2ρ0q2

∫
dk

(2π )3
Vĝσσ ′(q,k,k1)V ∗

ĝμμ′(q,k,k1)

× εσμ(k)εσ ′μ′(k1)Gσμ(k,t)Gσ ′μ′(k1,t), (55)

where the repeated indices σ, μ, σ ′, and μ′ are summed over
the set {ρ,c}. The vertex function Vĝσμ is given by

Vĝσμ(q,k,k1) = [q̂.kcσμ(k) + q̂.k1cσμ(k1)], (56)

and k1 = q − k. εσμ(k) is respectively equal to 1 or χ (k) for
σ = μ and otherwise. The corresponding renormalization to
the diffusion memory kernel γ (q,t) is obtained from the self-
energy element �ĉĉ. The relevant one loop diagrams (shown
in Fig. 2) involving the slowly decaying correlations of ρ and
c obtain the following one loop contribution:

γ (q,t) = 2

ρ2
0

∫
dk

(2π )3

[
1

k2
Ġcc(k1,t)Ġρρ(k,t)

+ 1

kk1
χ (k1)χ (k)Ġρc(k1,t)Ġρc(k,t)

]
. (57)

The dot implies a derivative with respect to time in the above
equation. The memory kernel renormalizing the diffusion co-
efficient consists of the derivatives of the correlation functions
and thus vanishes in the long time limit. The equations (53)
obtained for the ENE transition in the mixture are same as
obtained by Harbola and Das [14] for a binary system. The
NEPs show a strong dependence on the size ratio α = σ2/σ1,
mass ratio κ = m2/m1, and concentration of the species x1.
The value of the total packing fraction η = π (n1σ

3
1 + n2σ

3
2 )/6

at the ENE transition point is the critical packing fraction and
is denoted as ηc. We display in Fig. 3 how ηc, obtained from the

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.5

0.6

0.7

0.8

η c

0.5
0.6
0.7
0.8
0.9

FIG. 3. (Color online) The critical packing fraction ηc (see text
for definition) for the binary mixture as obtained from the solution of
Eq. (53) vs concentration x1 of smaller sized particles for different
size ratios α, defined here as the ratio of smaller to bigger sized
particles (having same mass) of the mixture.
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solution of Eq. (53), changes with concentration x1 of species
1 for different values of the size ratio α of the particles (with
mass ratio κ = 1).

V. COMPARISON WITH THE EXISTING MCT MODEL

In this section we discuss a related model of MCT for a
binary mixture which has been used extensively earlier in the
literature and discuss its relevance in comparison to the present
work. We briefly indicate how the method which we have used
above for obtaining our model can also obtain the existing
model and clarify the unphysical approximations made in this
case. The existing version of the MCT [4] for binary systems
is reproduced using the present method with a different choice
for the set of slow variables. Here, in addition to the individual
conserved densities {ρ1,ρ2}, the momentum densities of each
component are treated as two separate slow variables. The
microscopic definitions for the mass and momentum densities
are given in Eqs. (4) and (5). The reversible parts of the
corresponding equations for the slow modes are obtained by
using the Poisson bracket relations among these four densities.
However, assuming widely separated time scales, stochastic
equations are written for each of the momentum densities
gs (s = 1,2). Using the same driving free energy functional
F as in the Sec. II and further illustrated in Appendix A,
the generalized Langevin equation corresponding to the four
“slow” variables {ρs,gs} for s = 1,2 are obtained [14]:

∂ρs

∂t
+ ∇ · gs = 0, (58)

∂gis

∂t
+ ∇j

gisgjs

ρs

+ ρs∇i

δFU

δρs

+ Lss ′
ij

δF

δgjs ′
= ξis . (59)

In writing Eq. (58), the self- and interdiffusion of the two
species in the density equations have been ignored. This is
equivalent to writing gs = (ρs/ρ)g. The thermal noise ξs in
the equations for the momentum density gs follows the FDR
to the bare transport coefficients,

〈ξis(x,t)ξjs ′ (x′,t ′)〉 = 2kBT Lss ′
ij δ(x − x′)δ(t − t ′). (60)

Renormalization of the bare transport coefficients, as a result
of the nonlinearities in the equations for the momentum
currents is computed within the self-consistent mode coupling
approximations of dominant density fluctuations. To the one
loop order the contributions to the longitudinal component of
the various elements of the transport coefficient matrix Lss ′

are obtained as

L̃ss ′ (q,t) = n0

2nsns ′

∫
d3k

(2π )3

∑
μ,σ,μ′,σ ′

Vsμσ (q,k,k1)

×Vs ′μ′σ ′ (q,k,k1)Gμμ
′ (k,t)Gσσ ′(k1,t), (61)

where k1 = q − k and n0(=n1 + n2) is the total number
density with n1 and n2 being the individual number densities
of species 1 and 2, respectively. The expression for the vertex
function Vsμσ is given by

Vsμσ (q,k) = n

mμmσ

[q̂ · kδsσ csμ(k) + q̂ · k1δsμcsσ (k1)]. (62)

Starting from the above set of equations of motion, it is
straightforward to obtain (using the MSR theory outlined in

Sec. III) a set of nonlinear integro-differential equations or
the so called memory function equations for the elements
of the correlation function matrix Gss ′ . The location of the
ENE transition in the model is obtained by considering the
long time limit of the equations for the time evolution of
the correlation functions. The dynamical transition point in
the previous version of MCT model is located by using a
matrix equation similar to Eq. (53),

F (q) = 1

q2
S(q)L(q)[S(q) − F (q)], (63)

where the matrix related to the structure is defined as S(q) =√
xixjSij and Lss ′ (q) is the long time limit of the memory

function Lss ′ (q,t). These integral equations for the NEPs are
similar to the equations we obtain in our model discussed in
the earlier section. The actual form of the integral equations
in the respective cases are determined from the wave-vector
dependent structure factors or the equilibrium correlation
functions which are used as an input in the model. These
structural inputs are determined by the driving free energy
functional F for the system. In this respect it is useful to note
that same free energy functional or wave-vector dependence of
the equilibrium correlations are used here for all the models.
In the present model the ENE transitions corresponding to
various choices for the thermodynamic parameters for mixture
occur at higher packing fraction values than that predicted
from Eqs. (63). This also agrees well with the results seen
in the computer simulations on binary systems [7,8]. Details
of such differences between the two types of mode coupling
models have already been reported in Ref. [14].

In the present section we focus on the limiting case in
which the previous MCT models [4] agree with predictions of
our work with respect to the location of the ENE transition. It
is clear from the deductions presented above that the primary
difference between the two models come from the treatment
of the momentum densities for the two different species of
the mixture. The individual momentum densities {g1,g2} are
not conserved variables and there is no physical basis in
assuming a separation of slow and fast time scales in their
dynamics. However, the existing mode coupling model is
obtained using separate Langevin equations for each of the
momentum densities {g1,g2}. On the other hand, the total
density g = g1 + g2 is a conserved mode and has been treated
as a slow mode in our model. For the Brownian particle, it is
appropriate to write a Langevin equation for the momentum
density of the single particle with high inertia. For the coarse
grained tagged particle, the momentum density gB(x,t) and
the corresponding mass density ρB(x,t) are related by the
continuity equation,

∂ρB

∂t
+ ∇ · gB = 0. (64)

For tagged-particle momentum density gB(x,t), the following
equation is written

∂gB
i

∂t
+ ρB∇i

δF

δρB
+
∫

dx′�B
0

δF

δgB
i

= f B
i . (65)

The bare friction coefficient �B
0 is related to the noise fB

through the usual FDR. For the collective density ρ and
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FIG. 4. Comparison between existing MCT model (mass ratio
independent) and the present model in the Brownian limit of large
mass ratio κ = m2/m1 = 104. For a mixture with size ratio α =
σ2/σ1 = 102, packing fraction η = 0.6, and for x2 = 0.1, the NEPs
f22(q) (main figure) and f11(q) (inset a) vs qσ2. Inset (b) is the same as
main figure for x2 = 0.01. For all three figures, solid lines are results
from Eq. (53) of present work and dashed lines are from Eqs. (63) of
Ref. [4] of existing MCT.

current g, the corresponding equations of motion follow from
microscopic conservation laws; it is not so for gB . In this case
the total momentum density g is approximated well by the rest
of the “mixture.” Therefore, only for the case of a Brownian
particle can the set of four equations for the conserved
densities (58) and (59) can be identified, respectively, with
the set (9) and (10) and set (64) and (65) in our present model.
Hence, in this case the results obtained in the existing MCT
model comes close to the present formulation which keeps
a proper account of the conservation laws. The mass ratio
dependence of the ENE transition with the NEP Eqs. (53)
and the wave-vector dependence of the corresponding NEPs
has been reported in detail in an earlier work [33]. In the
present section we demonstrate this equivalence of the two
MCT models for the case of a single Brownian particle (large
inertia) in a simple liquid being treated as a mixture. Using
a very large mass ratio and very small concentration of the
heavier particle, i.e., κ → large and x → small (signifying the
Brownian limit), the results for the NEP in the present model
for most wave-vector values are very close to the predictions
of the existing model. For comparison of the two models, it is
convenient to consider the nonergodicity parameters defined
in terms of the corresponding species. The quantity fss ′ is
same as defined in Eqs. (51) and (52), but with {α,σ } ∈ s,s ′,
for s,s ′ = 1,2. This is shown in Fig. 4. In the inset where f11

is shown, the q → 0 behaviors of the two models are very
different. To see this we need to take into account the behavior
of the tagged-particle correlation φs in the two models. Taking
the form of the Laplace transform φs(q,z) in the form of a
diffusive pole with generalized diffusion coefficient Ds(q,z),
the long time limit of the correlation function or the so called
NEP fs is obtained as

fs(q)

1 − fs(q)
= z

iq2Ds(q,z)
. (66)

0 10 20 30 40
qσ2

0.4

0.6

0.8

1.0

f 22
(q

)

FIG. 5. Comparison between existing MCT model and the
present model in the Brownian limit of the large mass ratio. Results
are for the same mixture as in Fig. 4 with size ratio α = σ2/σ1 = 102,
packing fraction η = 0.6, and for x2 = 0.1. The NEPs f22(q) (main
figure) and f11(q) (lower inset) and f12(q) (upper inset) vs qσ2. For
all three figures, results from Eq. (53) of present work for mass
ratio κ = m2/m1 = 106 (solid line), = 102 (dotted line), and from
Eqs. (63) of Ref. [4] of existing MCT (dashed line).

Since for the existing MCT models, self-diffusion constant
vanishes in the small frequency limit as Ds ∼ z, we note
from Eq. (66) that the NEP fs(q) gets pinned at the value
1 in the same limit. However, in our model Ds is finite
in the z → 0 limit, i.e., z/Ds for a fixed q is vanishing in
this limit. The relation (66) implies vanishing of the NEP fs

for small wave numbers. For the existing MCT model, the
predictions for the dynamics are, in fact, independent of mass
ratio. In Fig. 5 we show another comparison of the two models
at the same packing fraction η = 0.6 for a mixture having
size ratio α = 102 and x2 = 0.1. The two mass ratios used
here are κ = 102 and 104, respectively. Therefore, though in
the Brownian limit the two MCT models are approximately
matching, differences with our model show up at small q due
to role of the conservation laws. For the other component f22,
both models essentially represent the collective correlations
for a homogeneous liquid and, hence, they agree. However
positivity of self-diffusion for interacting Brownian particles
with hard core has been rigorously demonstrated [34].

VI. SINGLE-PARTICLE DYNAMICS

We now consider the implications of the MCT developed
here on the dynamics of a tagged particle in a sea of identical
particles. In this nonperturbative analysis we follow a method
developed recently in Ref. [18] to establish, with the use of
the available fluctuation dissipation relations in the MSR field
theory, the long time behavior of time correlation functions.
This was developed for analyzing the asymptotic dynamics
of the correlation functions for the collective variables in
a one component fluid. Here we apply this method for the
binary mixture to prove an ENE transition beyond a critical
density. Furthermore, the 1/ρ nonlinearities in the dynamics
are ignored in this case. We then consider the model in the
so called one component limit (to be explained below) to
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study the nature of a tagged-particle motion in a homogeneous
liquid. This analysis demonstrates the decoupling between the
collective and single-particle dynamics in a dense liquid.

A. The ENE transition in the mixture

We consider Eq. (38) for the correlation function for
the MSR theory outlined above for a binary system. The
ENE transition is characterized by the density and concen-
tration correlation functions {Gρρ(ω),Gρc(ω),Gcc(ω)}, each
developing a δ-function contribution. Using the one loop
results (55) and (57), respectively, for the corresponding
memory functions, we make the following observations.

(A) The generalized transport coefficient L(ω), which is
the Laplace transform of L(q,t) defined in Eq. (55), involves
the correlation of the ρ and c. Hence, at the ENE transition,
L(ω) has a singular part with δ(ω) contribution. This conforms
to the physics of the viscosity of the mixture diverging in
the ideal glass phase. Equivalently, the self-energy �ĝĝ blows
up at small frequencies and hence is written with a general
nonperturbative expression:

�ĝĝ = −Aδ(ω) + �R
ĝĝ. (67)

The second term on the RHS represents parts of the self-energy
contribution which are regular in the ω → 0 limit. In writing
the above expression wave-vector dependence in the model is
not ignored but suppressed to keep the notation simple.

(B) From Eq. (57), since it follows that the renormalization
of the ν(q,z) involves only derivatives of the correlations of ρ

and c, it has no singular contribution [∼δ(ω)] of ν(ω) or ν ′(ω)
in the small ω limit.
To test compatibility with the Dyson equation corresponding to
the MSR action (B7), we substitute Eq. (67) back into Eq. (38).
This involves setting both α and β equal to ρ in Eq. (38). It is
straightforward to obtain that the singular contribution of Gρρ

comes from that in the self-energy �ĝĝ in the form

Gρρ = −AGρĝδ(ω)Gĝρ + �̄R
ĝĝ, (68)

where �̄R is the part of the correlation function contributed
by the regular part �R . For an ENE transition to occur, it
is needed that the response function Gρĝ does not vanish
as ω → 0. The response functions Gαβ̂ are calculated from
Eq. (37), where Nαβ̂ are as given in Table III,

Gρĝ = Nρĝ

D = q(ω + iq2ν)

D . (69)

The RHS of the above equation is nonzero since ν(ω) and
ν ′(ω), as defined in Eqs. (46) and (47), respectively, are
nonzero in the ω → 0 limit. In the same zero frequency limit,

TABLE III. Elements of matrix G−1
α̂β in terms of the renor-

malized transport coefficients L, ν, and ν ′ respectively defined in
Eqs. (45)–(47). The symbols υ2 and c2 are explained in the text.

ρ c g

ρ̂ ω 0 −q

ĉ iq2ν ′ ω + iq2ν −�ĉg

ĝ −qc2 −qυ2 ω + iq2L

the determinant D does not blow up as ωL, c2, and ν are
finite. With these assumptions, D(ω → 0) is not infinite;
hence, Gρĝ �= 0 in the low frequency limit. Therefore, the
density correlation function Gρρ develops a δ(ω) part. In an
similar way it follows that the correlations Gρc and Gcc each
develop a singular part [∼δ(ω)] by coupling to �ĝĝ . This is a
consequence of the fact that both ν(ω) and ν ′(ω) are nonzero
in the small ω limit.

In comparison to the above result, the correlation functions
involving a momentum index g do not contain a δ-function
peak at zero frequency. To demonstrate this, we note that if
either of the indices α or β on the LHS of Eq. (38) is set equal
to g, then the singular contribution in �ĝĝ is coupled to the
response function Ggĝ . From Table III, it follows that

Ggĝ = ω(ω + iq2ν)

D(ω)
, (70)

which means that Ggĝ vanishes as ω → 0 as long as
D(ω = 0) �= 0. Therefore, the correlation functions involving
a momentum index g do not show a δ-function peak at zero
frequency.

To summarize, for a binary mixture all the three correlations
Gρρ(ω), Gρc(ω), and Gcc(ω) develop a singular piece ∼δ(ω)
or equivalently develop a nonzero long time limit signifying an
ENE transition. It is important to note here that the possibility
of the ENE transition requires that both ν(ω) and ν ′(ω) are
nonzero in the small ω limit.

B. Tagged-particle dynamics

We consider the system for which the two species are
identical, i.e., the size ratio α and mass ratio κ are both equal
to 1 and the number of the particles N1 = 1 and N2 = N − 1.
This is referred to as the one component limit in the following.
For large N , the relative fractions for the two species are
x1 → 0 and x2 → 1. The concentration variable c, defined in
Eq. (8) reduces to the tagged particle density ρs and hence the
correlation function Gcc reduces to tagged-particle correlation
function Gs [35]. The present theory therefore reduces to
the MCT for the total and tagged-particle dynamics in a
one component liquid. We first consider the behavior of the
corresponding static susceptibilities χρρ , χcc, and χρc. The
inverse static susceptibilities are respectively obtained in the
one component limit as

βχ−1
ρρ (k) = 1

m2nS(k)
, βχ−1

cc (k) = 1

m2nx1x2
,

βχ−1
ρc (k) = 0. (71)

Here S(k) denotes the static structure factor [16] of the
one-component liquid. The above results also agree with
the wave-vector dependent formulas [15] obtained by using
Ornstein-Zernike relations [16,17,36] for the partial structure
factors of a binary liquid. The key point here is that the
off diagonal element (ρ − c) vanishes and the susceptibility
matrix is diagonal in the one component limit. From the
definition (47) it directly follows that ν ′(ω) which is nonzero
for a binary mixture, vanishes in this limit. As a result of
this, we obtain Ncĝ → 0. The above analysis implies that
the correlation function Gcc does not have any contribution
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coming from the singular part [∼δ(ω)] in the self-energy �ĝĝ .
Hence, Gs → 0 in the small frequency limit. However, with
ν ′(and hence ν1) vanishing, we have

Gρĝ = q

ω2 − q2c2 + iq2ωL
. (72)

Thus, Gρĝ is nonzero in the small ω limit. Applying the
same argument used above with Eq. (68), the collective
density correlation function Gρρ has the singular contribution
from �ĝĝ self-energy. Thus, in the one component limit the
collective density correlation function freezes at the ENE
transition although the tagged particle correlation Gs(q,t) goes
to zero in long time limit. The corresponding self-diffusion co-
efficient for the tagged particle is nonzero in the hydrodynamic
limit. Thus, the single particle dynamics decouples from the
dynamics of collective variables. In this respect the conclusion
of the present work differs fundamentally from existing mode
coupling model for binary systems.

VII. DISCUSSION

We have studied here the mode coupling dynamics of a
binary mixture in terms of the microscopically conserved den-
sities for the two component system, namely the total density ρ,
the concentration variable c, and the total momentum density
g. The dynamics is described in terms of nonlinear Langevin
equations for the modes with white noise. The correlations
of the noise in the respective stochastic equations of motions
define the bare transport coefficients for the system. In the
present formulation, keeping consistency with the white noise,
there are two transport coefficients, namely the bare viscosity
L0 and the γ0 for the interdiffusion. Using a MSR field
theory we have studied the effects of the nonlinearities in
the Langevin equations of the slow variables on the long time
limit of dynamic correlations. From a careful consideration
of the renormalizability of the theory, we obtain the relevant
mode coupling contributions which drive the system to an ENE
transition. It is shown respectively in Eqs. (B14) and (B15)
that the renormalized interdiffusion γ0 couples through the
respective static correlations χ−1

cc and χ−1
ρc . Two effective

transport coefficients ν and ν ′ appear and for the mixture of two
species, with finite concentrations of each, both are nonzero.
For such a mixture, we have shown that the feedback
mechanism from slowly decaying density fluctuations drives
the system in to an ENE transition at which all three correlation
functions {Gρρ,Gρc,Gcc} freeze in the long time limit.

We also demonstrate here the conditions in which our
results agree with existing formulation of MCT for a mixture.
In the existing theory the individual momentum densities are
treated as slow variables with separation of time scales in
its dynamics, though these are nonconserved modes. For the
Brownian limit (with high inertia), however, it is appropriate
to write a Langevin equation for the momentum density of
the single particle. A key aspect of our formulation of the
MCT is that the location of the ENE transition as well as
the nature of the dynamic correlation is now dependent on the
mass ratio of the constituent particles of the mixture [33]. This
is also in agreement with computer simulation results [37].
Study of our model with large mass ratio and very low
concentration of one of the species shows that its results

agree closely with the corresponding prediction of the NEP
in the existing MCT model. The distinct nature of the
single-particle dynamics in a sea of identical particles, ob-
served here, is primarily a consequence of taking into account
the conservation laws properly in the present theory. The
physics involved is very different from that for the situation
where a tagged-particle diffusion differs from collective
dynamics in a very asymmetric mixtures with sufficient size
disparities [38] of the constituent particles. Hence, it is more a
geometrical effect and is linked to the peculiarities of the
physics of cage formation process in such mixtures having very
dissimilar components. Finally, though somewhat speculative
at this point, it is useful to note here that the observed
decoupling of collective dynamics from single particle motion,
is more indicative of the violation of the Stokes-Einstein
relation [39] than the converse. In existing MCT, since diver-
gences are driven by that of the relaxation time of the density
correlations, the Stokes-Einstein relation is not violated.

Dynamical light-scattering experiments for a bidisperse
mixture of colloidal particles [40] with size ratio of 0.6
interacting nearly by a hard-sphere potential indicate that,
increasing the concentration of smaller particles beyond a
certain value slows down the dynamics in the system. This
so called plasticization effect, which has been observed
in existing MCT [38], is also confirmed from our model
equations. In Fig. 3, the plot of the critical packing fraction ηc,
i.e., the minimum packing fraction at which the binary mixture
undergoes an ENE transition for a particular size ratio and con-
centration, against the concentration of smaller particles x1 is
displayed for five different size ratios. The plasticization effect
holds for all values of the size ratio. The effect is, however,
more pronounced for mixtures with high size disparity.

The present formulation of MCT reduces to the dynamics
of both collective as well as the tagged-particle density
correlation functions for a one component system. In the final
section of the paper we have considered this so called one
component limit of our model. Our analysis demonstrates that
the dynamics of the tagged particle correlation and the total
density correlation are decoupled in this limit. The role of the
static correlations is vital here. In the one component limit
ν ′ becomes zero due to the vanishing of the susceptibility
factor in Eq. (B15). In this case we show that the collective
correlation freezes at the transition while the single-particle
correlation decays to zero. Hence, the self-diffusion coefficient
remains finite. In the existing MCT model for one component
systems [30], with the same static correlation matrix, the
tagged-particle dynamics is slaved to that of the total density
correlation. According to these theories, at the ENE transition
of the MCT, both time autocorrelation functions, collective
as well as single particle, are simultaneously nonzero in the
long time limit. This implies that the self-diffusion coefficient
vanishes at the ENE transition. This is where our result is
crucially different from existing MCT for one component
systems. In this regard it would be useful to reexamine the
practice of “locating” the ENE transition point in simulation
studies or experiments are by extrapolating the diffusion
constant of a tagged particle to zero. This so called MCT
transition point does not agree with the same obtained from
the integral equations of MCT [7] using equilibrium structure
factor as an input.
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APPENDIX A: STRUCTURE AND DYNAMICS
OF THE MIXTURE

In this Appendix we provide a brief description of the
structure and dynamics of the binary mixture in terms of the
hydrodynamic modes in the system. The first involves the free
energy functional in terms of which equilibrium correlation
are defined. The dynamics is described with stochastic nonlin-
ear equations of generalized hydrodynamics.

1. Free energy functional

The equal time correlations of the hydrodynamic modes
and the structural properties of the mixture are obtained from
the averages taken in terms of the equilibrium probability
distribution for the fluctuations [see Eq. (3) for a definition].
For this, the corresponding free energy functional expressed
in terms of the slow modes is necessary. In the construction
of the generalized Langevin equation (1), the the free energy
F as a functional of the slow modes {ψα} is also needed.
The functional F is generally divided into two parts: The
momentum density dependent part is generally referred to as
the kinetic part FK and the rest as the potential part FU :

F = FK + FU . (A1)

The kinetic part FK is given in Eq. (13). The potential part of
the free energy functional FU dependent on ρ and c is taken
to be Gaussian in these variables at the simplest level in the
present theory. The so called potential part FU [ρ,c] has two
contributions,

FU [ρ,c] = Fid + Fin, (A2)

with Fid the so called ideal gas part for a noninteracting system.
In terms of the slow variables {ρ1,ρ2}, the ideal gas part is
obtained as

Fid =
∑
s,s ′

1

ms

∫
dxρs(x)

[
ln

(
ρs

ρ0s

)
− 1

]
. (A3)

The ideal part of free energy functional is non-Gaussian. How-
ever, the log term is approximated to have a Gaussian form.
Fin is the interaction part. The standard density functional
expansion [15] of the interaction part of the free energy Fin

is obtained in terms of a functional Taylor series expansion
involving the direct correlation functions css ′ , where s,s ′ = 1,2
for the mixture,

Fex = F0 −
2∑

s,s ′=1

1

2msms ′

∫
dx1

∫
dx2css ′ (x1,x2; n0)

× δρs(x1)δρs ′(x2) + · · · , (A4)

where F0 is the free energy of the uniform liquid state. The
direct correlation functions css ′ are defined in the density
functional formulation as

css ′ (x,x′) = δ2Fin[n(x)]

δns(x)δns ′ (x′)

∣∣∣∣
0

, (A5)

with the “0” implying that the functional derivative is evaluated
for the equilibrium liquid state. In terms of the fields {ρ,c} the
functional FU is written in the Gaussian form,

FU [ρ,c] = 1

2

∑
α,σ

∫
dx
∫

dx′δρα(x)χ−1
ασ (x − x′)δρσ (x′).

(A6)

In the above expression for the free energy the χ−1
ασ denotes the

ασ th element of the inverse of the equal time correlation matrix
or the so called susceptibility matrix χασ , where α,σ ∈ {ρ,c}.
The above free energy is also conveniently expressed as a
Gaussian functional of the pair {ρ1,ρ2} instead of the set {ρ,c}
as

FU [ρs] = 1

2

∫
dx
∫

dx′
2∑

s,s ′=1

δρs(x)χ−1
ss ′ (x − x′)δρs ′ (x′).

(A7)

Using the results (A2), (A3), and (A5), and doing a quadratic
order expansion in density fluctuations, the χss ′ ’s are expressed
in terms the corresponding direct correlation functions css ′

for a mixture through Ornstein-Zernike relations [16,36]. The
elements of the static susceptibility matrix χασ (q) are obtained
in terms of the direct correlation functions cασ , with α,σ ∈
{ρ,c}, as

χ−1
ρρ (q) = β−1

m2
1n0

[
x1 + x2

κ2
− cρρ(q)

]
, (A8)

χ−1
ρc (q) = β−1

m1m2n0

[
κ − 1

κ
− cρc(q)

]
, (A9)

χ−1
cc (q) = β−1

m2
2n0

[
κ2

x1
+ 1

x2
− ccc(q)

]
, (A10)

where cρρ(q), cρc(q), and ccc(q) are given by the following
expressions:

cρρ(q) = x2
1 c̄11(q) + 2(x1x2/κ)c̄12(q) + (x2

2/κ2
)
c̄22(q),

(A11)

cρc(q) = x1κc̄11(q) + (x2 − x1)c̄12(q) − (x2/κ)c̄22(q),

(A12)

ccc(q) = κ2c̄11(q) − 2κc̄12(q) + c̄22(q). (A13)

We have used in Eq. (A11) the notation c̄ss ′ (q) = n0css ′ (q) for
s = 1,2. The quantity κ is the mass ratio m2/m1 of the two
species and the relative abundance is denoted as xs = Ns/N

for s = 1,2.

2. The generalized Langevin equations

The Langevin equation (1) involves a deterministic or slow
part expressed in terms of the variables ψα and a stochastic
part. These are respectively given by (a) the first two terms on
the RHS and (b) the third term on the RHS. The calculation
of reversible part of the Langevin equations for the slow
variables requires the Poisson bracket relations between the
slow variables.
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a. Poisson brackets

Using the basic Poisson bracket relations between the phase
space coordinates and the microscopic Eqs. (4)–(8) for the slow
variables ρ(x,t), c(x,t), and g(x,t), we obtain

{ρ(x),gi(x′)} = −∇i[δ(x − x′)ρ(x)], (A14)

{c(x),gi(x′)} = −∇i[δ(x − x′)c(x)], (A15)

{gi(x),gj (x′)} = −∇j [δ(x − x′)gi(x)] + ∇′
i[δ(x − x′)gj (x′)].

(A16)

All other Poisson brackets between the different members of
the set {ρ,c,g} are zero.

b. Bare dissipation coefficients

Next we consider the dissipative and stochastic contribu-
tions respectively given by the second and third terms in
the RHS of Eq. (1). The bare transport matrix has been
introduced as �0

αβ in Eq. (1) in the main text, with the
superscript “0” signifying that it represents the short time
uncorrelated dynamics. In the present section, we will suppress
the superscript 0 of the � matrix to avoid cluttering with
indices. This modified notation is adopted for this section only.
The various elements of the matrix �ασ are chosen keeping
consistency with the structure of the Langevin equations. The
continuity equation is maintained for the density equation. For
the density field ρ(x,t) and the corresponding current, i.e., the
momentum density field g(x,t) is conserved, all the dissipative
terms involving ρ, viz.�ρψ = �ψρ = 0. For determining the
elements of the noise correlation matrix between g and c,
the symmetry considerations and compatibility with the white
noise both play important roles. In this respect we note that
the dissipative tensor �ασ should follow the time reversal
symmetry given by

�ασ (−t) = εαεσ�ασ (t), (A17)

where εα = ±1 represents the time reversal signature of the
slow variable ψα . Applying this to the diagonal elements
�cc and �gigj

we obtain �cc(−t) = �cc(t) and �gigj
(−t) =

�gigj
(t). However, for the element �cgi

the implications are
different:

�cgi
(−t) = −�cgi

(t). (A18)

The element �cgi
is related to the correlations of noise f (say)

in the c equation and that in the g equation, i.e., θ through a
fluctuation-dissipation relation,

〈f (x,t)θi(x′,t ′)〉 = 2β−1�cgi
δ(t − t ′)δ(x − x′). (A19)

We note here that the symmetry (A18) cannot be maintained
if �ασ (t) represents white noise, i.e., is represented by a δ

function. However, for construction of the FNH equations
and validity of the formalism adopted here the white noise is
an essential input. For the conserved modes considered here,
the separation of time scales is valid. Therefore, to maintain
consistency with the white noise we take �cgi

= �gic = 0. The
noise correlation in the c and g equations is given by fluctuation

dissipation relations:

〈f (x,t)f (x′,t ′)〉 = 2β−1�ccδ(x − x′)δ(t − t ′), (A20)

〈θi(x,t)θj (x′,t ′)〉 = 2β−1L0
ij δ(x − x′)δ(t − t ′), (A21)

〈f (x,t)θi(x′,t ′)〉 = 0. (A22)

For the diagonal element �cc, for keeping consistency with
conservation laws, we have �cc = γ0∇2. On the other hand,
�gigj

elements which appear in the momentum equation are
represented in terms of the bare viscosities �gigj

= L0
ij . For an

isotropic system the L0
ij matrix is described in terms of two

independent quantities; namely, the bulk viscosity ζ0 and the
shear viscosity η0 are defined as

L0
ij = −

(
ζ0 + η0

3

)
∇i∇j − η0δij∇2. (A23)

The longitudinal viscosity is defined as L0 = ζ0 + 4η0/3.
Taking into account the Poisson bracket relations given by
Eqs. (A14)–(A16) and Eqs. (13), (A6), and (A1) for the
free energy functional F , we obtain the following Langevin
equations respectively for the set of slow variables {ρ,c,g}
stated in Eqs. (9) and (11).

APPENDIX B: THE MARTIN-SIGGIA-ROSE
FIELD THEORY

1. The MSR action functional

In the standard MSR formalism, the correlation and
response functions are determined using an action functional
constructed for the field theory. For a set of fields {ψα} with
equations of motion given by (1), the average of a functional
f [ψ] is obtained as [23]

〈f [ψ]〉 =
∫

Dψ
∫

Dψ̂f [ψ] exp[−A[ψ,ψ̂]]∫
Dψ

∫
Dψ̂ exp[−A[ψ,ψ̂]]

. (B1)

The action functional A[ψ,ψ̂] is obtained as

A[ψ,ψ̂] =
∫

d1
∫

d2ψ̂(1)β−1�0(12)ψ̂(2)

+ i

∫
d1ψ̂(1)

{
∂ψ(1)

∂t1
+ [Q + �0]

δF

δψ

}
, (B2)

where we have not explicitly written the the field indices to
avoid cluttering. The expression (B1) for the average of the
functional f (ψ) is used to write the averages of fields and
higher order correlation functions in terms of a generating
functional Zξ . Assuming f (ψ) ≡ ψ , we write

〈ψ(1)〉 = δ

δξ (1)
ln Zξ . (B3)

with

Zξ =
∫

Dψ

∫
Dψ̂ exp[−Aξ [ψ,ψ̂]]. (B4)

We have defined the generating functional Zξ by including a
linear current term in the corresponding action Aξ functional,

Aξ [ψ,ψ̂] = A[ψ,ψ̂] −
∫

d1ξ (1)ψ(1). (B5)
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The multipoint correlation functions of the variables ψ’s are obtained from the generating functional,

〈ψ(1), . . . ,ψ(m)〉 = 1

Zξ

δ

δξ (1)
· · · δ

δξ (m)
Zξ

∣∣∣∣
ξ=0

. (B6)

From the expression for the MSR action (B2) and the equation of motion (1) it follows that the linear part of the dynamics
produces a MSR action functional quadratic (Gaussian) in the fields. Using the explicit forms of the equations of motion (9)–(11)
we obtain the corresponding MSR functional in the form

A =
∫

dt

∫
dx

⎛
⎝∑

i,j

ĝiβ
−1L0

ij ĝj + ĉβ−1�0
ccĉ + iρ̂

[
∂ρ

∂t
+ ∇ · g

]
+ i
∑

i

ĝi

⎡
⎣∂gi

∂t
+ ρ∇i

{
χ−1

ρρ δρ + χ−1
ρc δc

}

+ c∇i

{
χ−1

cc δc + χ−1
ρc δρ

}+
∑

j

∇j {givj } +
∑

j

L0
ij vj

⎤
⎦+ iĉ

[
∂c

∂t
+ ∇i{cvi} + γ0∇2

{
χ−1

ρc δρ + χ−1
cc δc

}]⎞⎠. (B7)

a. Invariance of the MSR action

Here we demonstrate that the MSR action functional given by Eq. (B7) is invariant under the transformation (23) for the set
of slow modes {ρ,c,g}. Changing t to −t in Eq. (B7) and applying the time transformation rules for the above set and their
corresponding hatted counterparts, the action reduces to

A[ψ(−t),ψ̂(−t)] =
∫

dt

∫
dr
[{

−ĝi + iβ
δF

δgi

}
β−1Lij

{
−ĝi + iβ

δF

δgi

}
+
{
ĉ − iβ

δF

δc

}
β−1�0

cc

{
ĉ − iβ

δF

δc

}

+ i

{
ρ̂ − iβ

δF

δρ

}{
−∂ρ

∂t
− Qρgi

δF

δgi

}
+ i

{
−ĝi + iβ

δF

δgi

}{
∂gi

∂t
+ Qgigj

δF

δgj

+ Qgiρ

δF

δρ
+ Qgic

δF

δc
+ Lij

δF

δgj

}

+ i

{
ĉ − iβ

δF

δc

}{
−∂c

∂t
− Qcgi

δF

δgi

+ �0
cc

δF

δc

}]

= A[ψ,ψ̂] + iβ

∫ ∞

−∞
d1

{
δF

δψα

Qαδ

δF

δψδ

}
+ β(F∞ − F−∞). (B8)

The second term inside the curly brackets on the RHS vanishes
since the dummy indices α and δ are summed over and the
Poisson bracket Qαδ is odd under the interchange of the
indices. The last term involving the F ’s also vanishes due to
equilibrium. Hence, the MSR action is invariant under the time
reversal transformations defined by Eq. (23).

2. Renormalized correlation functions

The construction of the field theoretical model fixes some
basic characteristics of the structure of the correlation and
the response functions. Let us first consider an important
characteristic of the Green’s function matrix G and G0 in the
MSR theory. For the cases in which both indices in the matrix
Eq. (32) correspond to the unhatted fields, the following hold:

(a) [G0
−1]αβ = 0, which follows from the action (B7)

obtained in the MSR field theory;
(b) �αβ = 0, which follows from causal nature of the

response functions in MSR field theory.
From the Schwinger-Dyson equation (32) we obtain that the
elements of the G−1 matrix corresponding to the unhatted
fields, [G−1]αβ = 0. Inverting the matrix G−1 which has the
above structure, we obtain for the correlation functions of the
physical, unhatted field variables,

Gαβ = −
∑
μν

Gαμ̂Cμ̂ν̂Gν̂β, (B9)

where greek letter subscripts take values ρ,c and the longitudi-
nal components of the vector field g. The matrix Cμ̂ν̂ is given by

Cμ̂ν̂ = [C0]μ̂ν̂ − �μ̂ν̂ (B10)

and is listed in Table II. The double-hatted self-energies �μ̂ν̂

and Cμ̂ν̂ vanish if either index corresponds to ρ̂, since there is
no noise or nonlinearity in the continuity equation (9).

The response part of G−1
α̂β is obtained using Eq. (32) in

terms of the corresponding elements of the matrix of [B0 − �].
The elements of the G−1

α̂β matrix are listed in Table III. The
renormalized response function Gαϕ̂ is obtained in the form

Gαϕ̂ = Nαϕ̂

D , (B11)

where the elements of matrix Nαϕ̂ are given in Table IV. The
denominator D in the RHS of Eq. (37) is obtained as

D(q,ω) = (ω + iq2ν)[ω2 − q2c2 + iωLq2] + iq4υ2ν1.

(B12)

The various renormalized transport coefficients appearing
on the RHS of Eq. (B12) are expressed in terms of the
corresponding response self-energies,

Lq2 = L0q
2 + i�ĝg, (B13)

νq2 = γ0χ
−1
cc q2 + i�ĉc, (B14)

ν ′q2 = γ0χ
−1
ρc q2 + i�ĉρ. (B15)
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TABLE IV. Elements of matrix Nαβ̂ in terms of the renormalized
transport coefficients L, ν, and ν ′, respectively defined in Eqs. (45)–
(47). The symbols υ2 and c2 are explained in the text. γĉg is the leading
order contribution to the corresponding self-energy �ĉg = −iq3γĉg .

ρ̂ ĉ ĝ

ρ (ω + iq2L )(ω + iq2ν) q2υ2 q(ω + iq2ν)
+iq4υ2γĉg

c −iq2{ν ′(ω + iq2L) ω(ω + iq2L) −iq3(ν ′ + ωγĉg)
+q2c2γĉg} −q2c2

g −iq3υ2ν ′ + qc2(ω + iq2ν) ωqυ2 ω(ω + iq2ν)

The quantity ν1 in the last term on the RHS of definition (B12)
is obtained as ν1 = ν ′ + ωγĉg in terms of the leading order
nonzero contributions to the self-energy �ĉg = −iq3γĉg

in the small q limit. c2 and υ2 respectively represent the
renormalized expressions for the sound speeds c2

0 = ρ0χ
−1
ρρ

and υ2
0 = ρ0χ

−1
ρc obtained in terms of the self-energies

c2 = c2
0 + q−1�ĝρ, (B16)

υ2 = υ2
0 + q−1�ĝc. (B17)

3. Analysis of the FDRs

We begin with the FDR (24) corresponding to ψ = g,

Ggiϕ(q,ω) = −2β−1ρ0ImGĝiϕ(q,ω). (B18)

Using the definitions (37) and (38) for the correlation and
response functions, respectively, in the above fluctuation-
dissipation relation we obtain the result

∑
α̂,γ̂

Ggi α̂Cα̂γ̂ Gγ̂ ϕ = 2β−1ρ0ImGĝiϕ,

∑
α̂

Ggi α̂Cα̂γ̂ = −iβ−1ρ0

∑
β

[
Gĝiϕ − G∗

ĝiϕ

]
G−1

ϕγ̂ , (B19)

∑
α̂

Ngi α̂Cα̂γ̂ = −iβ−1ρ0

⎛
⎝Dδĝi γ̂ +

∑
β

N∗
ĝj ϕ

G−1
ϕγ̂

⎞
⎠.

On substituting γ̂ = ĉ and ĝ in Eq. (B19), we obtain respec-
tively the following equations:

NgĉCĉĉ + NgĝCĝĉ

= −iβ−1ρ0
(
N∗

ĝρG
−1
ρĉ + N∗

ĝcG
−1
cĉ + N∗

ĝgG
−1
gĉ

)
, (B20)

NgĉCĉĝ + NgĝCĝĝ

= −iβ−1ρ0
(
D + N∗

ĝρG
−1
ρĝ + N∗

ĝcG
−1
cĝ + N∗

ĝgG
−1
gĝ

)
. (B21)

Equating the real and imaginary parts from both sides and
using the fact that the elements Cĝĝ and Cĉĉ are real while Cĝĉ =
C∗

ĉĝ are not, we obtain a set of relations between the correlation
and response self-energies. For the self-energy elements Cĝĝ

and Cĉĉ we respectively obtain the results

Cĝĝ + |Ngĉ|2
M C ′

ĉĝ

= 2β−1ρ0

[
N ′

gĉ

M
{
N ′

ĝgG
−1′′
gĝ + N ′

ĝcG
−1′′
cĝ + N ′

ĝρG
−1′′
ρĝ

}

+ N ′′
gĉ

M
{
N ′′

ĝgG
−1′′
gĝ + N ′′

ĝcG
−1′′
cĝ + N ′′

ĝρG
−1′′
ρĝ

}]
, (B22)

Cĉĉ + |Ngĝ|2
M C ′

ĉĝ = 2β−1ρ0

[
N ′

gĝ

M
{
N ′

ĝρG
−1′′
ρĉ − N ′′

ĝρG
−1′
ρĉ

+N ′
ĝgG

−1′′
gĉ − N ′′

ĝgG
−1′
gĉ

}]
, (B23)

with M = N ′
gĝN

′
gĉ + N ′′

gĝN
′′
gĉ. The single and double primes

above indicate the real and imaginary parts of the correspond-
ing complex quantity, respectively.

Next we consider the FDR (30) to obtain another set of
relations between the correlation and response self-energies.
Evaluating the functional derivatives ζc for a Gaussian free
energy, we obtain the result

χ−1
ρc Gρϕ(q,ω) + χ−1

cc Gcϕ(q,ω) = −2β−1ImGĉϕ(q,ω).

(B24)

Following the same procedures as in the case of the FDR,
Eq. (B24) reduces to the form∑

α̂

[
χ−1

ρc Nρα̂Cα̂γ̂ + χ−1
cc Ncδ̂Cδ̂γ̂

]

= −iβ−1

⎧⎨
⎩Dδĉγ̂ +

∑
β

N∗
ĉϕG−1

ϕγ̂

⎫⎬
⎭. (B25)

Setting γ̂ = ĉ in Eq. (B25), we obtain

χ−1
ρc (NρĉCĉĉ + NρĝCĝĉ) + χ−1

cc (NcĉCĉĉ + NcĝCĝĉ)

= −iβ−1
[
D + N∗

ĉρG
−1
ρĉ + N∗

ĉcG
−1
cĉ + N∗

ĉgG
−1
gĉ

)]
. (B26)

Next, substituting γ̂ = ĝ in Eq. (B25), we obtain

χ−1
ρc (NρĉCĉĝ + NρĝCĝĝ) + χ−1

cc (NcĉCĉĝ + NcĝCĝĝ)

= −iβ−1
[
NĉρG

−1
ρĝ + NĉcG

−1
cĝ + NĉgG

−1
gĝ

)]
. (B27)

Comparing real and imaginary parts of Eqs. (B26) and (B27),
we obtain the following results, respectively, for Cĉĉ and Cĝĝ:

Cĉĉ + |J |2
Q C ′

ĉĝ

= 2β−1

[J ′

Q
{
N ′

ĉρG
−1′′
ρĉ + N ′

ĉcG
−1′′
cĉ + N ′

ĉgG
−1′′
gĉ

}

+ J ′′

Q
{
N ′′

ĉρG
−1′′
ρĉ + N ′′

ĉcG
−1′′
cĉ + N ′′

ĉgG
−1′′
gĉ

}]
, (B28)

Cĝĝ + |K|2
Q C ′

ĉĝ = 2β−1

[K′

Q
{
N ′

ĉρG
−1′′
ρĝ − N ′′

ĉρG
−1′
ρĝ

+N ′
ĉgG

−1′′
gĝ − N ′′

ĉgG
−1′
gĝ

}]
. (B29)
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In the above equations we have defined the quantities J , K,

and Q in terms of the matrix elements of Nαβ̂ and χ−1
αβ as

follows:

J = χ−1
ρc Nρĝ + χ−1

cc Ncĝ, (B30)

K = χ−1
ρc Nρĉ + χ−1

cc Ncĉ, (B31)

Q = J ′K′ + J ′′K′′. (B32)

In general, for finite wave number (q) and frequency (ω) the
FDRs (B22), (B23), (B28), and (B29) between the real and
imaginary parts of the correlation and response self-energies
are complicated and difficult to resolve. Here we analyze their
implications in the hydrodynamic limit of small q and ω by
writing the dependence of the various self-energy elements to
leading order in the wave number q using simple symmetry
arguments.

4. Self-energy relations

We begin by considering the correlation self-energy matrix
element �ĝi ĝj

(q,ω). From the MSR action functional for
the two component mixture given by Eq. (B7), it follows
that the cubic vertices with a ĝi(q) leg each, contribute
an explicit qi factor. The self-energy �ĝi ĝj

(q,ω) has two
vertices with external legs of ĝi(q) and ĝj (q). Hence, this
self-energy involves an explicit factor of qiqj ; i.e., �ĝi ĝj

∼
−qiqjγĝĝ ≡ −q2γĝi ĝj

. Let us now consider the self-energy
element �ĉĉ(q,ω). The cubic vertex with a ĉ(q) leg contributes
a q factor. Hence, using similar arguments as above, the
self-energy �ĉĉ(q,ω) also involves an explicit factor of q2.
However, in this case the vector indices must be contracted
to produce a scalar form. Therefore we obtain, �ĉĉ ∼ −q2γĉĉ.
We also verify these results explicitly at the one loop order by
considering the corresponding diagrams for �ĝi ĝj

and �ĉĉ.
Next, we consider the response self-energy �ĝigj

(q,ω)
which contains only one external ĝi contributing a factor qi .
The other leg of this self-energy involves the vector field gj

and hence the O(q) level contribution must have the external
qi factor [due to the hatted field ĝi(q)] multiplied to an
explicit internal kj wave vector. The internal wave vector
is integrated out. At this O(q), the external q is set equal
to zero in the integral for the diagrammatic contribution.
However, this integral vanishes for being odd in k, due to
the k → −k symmetry. Hence, this response self-energy is
at least of the O(q2), and writing this out explicitly, we
obtain �ĝi ĝj

∼ −iq2γĝigj
. Using similar arguments for the

self-energy �ĉc(q,ω), we note that since ĉ is a scalar field the
O(q) contribution must have the external q factor contracted
to an explicit k internal wave vector which is integrated out.
Again, since at this order the external q is set equal to zero,
the integral vanishes being odd in k. Hence, we define taking
into account this factor �ĉc ∼ −iq2γĉc. We also verify these
behaviors explicitly at the one loop order by considering the
diagrams for the �ĝigj

and �ĉc.
Next the self-energy �ĝiρ(q,ω) is considered. Due to the

the external leg ĝi in a vertex an explicit factor of qi appear.
To consider the O(q) contribution of this self-energy, we
therefore set q = 0 in all the internal integrations and thus this
contribution vanishes. We can establish this result at the one

TABLE V. q dependence of self-energies �α̂β and �α̂β̂ .

ρ c gj ĉ ĝj

ĉ −iq2γĉρ −iq2γĉc −iq3γĉgj
−q2γĉĉ −q3γĉĝj

ĝi −iq3γĝiρ −iq3γĝi c −iq2γĝi gj
−q3γĝi ĉ −q2γĝi ĝj

loop order by considering the detailed nature of the vertices
which contribute to this self-energy. These are of the following
two types: (a) those which have one ρ leg [such vertices in the
present model have one other leg with a vector index gi or ĝi

(for example, the vertices Vĝiρρ , Vĝiρc, and Vĉgiρ)]; (b) those
which have one ĝi leg [such vertices in the present model have
two other legs each with a vector index gj , etc. (for example,
the vertices Vĝigj gi

), or without any other leg having a vector
index (for example, Vĝiρc, Vĝiρρ , and Vĝicc)]. As a result of this,
the internal integration involved in the one loop diagrammatic
contribution involves either one or three powers of the internal
vector k. For the isotropic liquid, such an integral must vanish,
since using the k → −k symmetry the integrand is an odd
function. Thus, the O(q) contribution to �ĝiρ(q,ω) is taken to
be zero. The next order surviving contribution must therefore
be O(qiq

2). Hence, we write this self-energy as

�ĝiρ(q,ω) = −iqiq
2γĝρ(q,ω) ≡ −iq3γĝiρ(q,ω). (B33)

In a similar way we can show that �ĝic(q,ω) ∼ −iq3γĝic(q,ω).
Finally, the self-energy �ĉĝi

has a factor qi due to the
external leg ĝi and a factor of qj due to the leg ĉ. The
latter must be contracted with an internal kj vector. Hence,
the O(qiqj ) contribution involves an integral which is odd in
k. The latter vanishes making the lowest order contribution
to the self-energy being of O(qiq

2). Therefore, we write
�ĉĝi

(q,ω) = −iqiq
2γĉĝ(q,ω) ≡ −iq3γĉĝi

(q,ω). The leading
order contributions to these self-energies are listed in Table V.
Substituting the relevant elements of matrix G−1

αβ̂
and matrix

Nα̂β in Eqs. (B22) and (B23), we obtain by comparing leading
order terms the following relations between the correlation and
response type self-energies,

γĉĉ = 2β−1
γ ′

ĉρ

χ−1
ρc

, (B34)

γĝĝ = 2β−1ρ0γ
′
ĝg, (B35)

and the comparison of next higher order terms from these two
equations respectively obtain the self-energy relations,

γĉĝ = 2β−1ρ0γ
′
ĉg, (B36)

γĉĝ = 2β−1
γ ′

ĝρ

χ−1
ρc

. (B37)

In a similar way, using elements of matrix G−1
αβ̂

and matrix Nα̂β

in Eqs. (B28) and (B29) and by comparing leading order terms
the following relations between the correlation and response
type self-energies, we obtain

γĉĉ = 2β−1 γ ′
ĉc

χ−1
cc

, (B38)

γĝĝ = 2β−1ρ0γ
′
ĝg. (B39)
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Note that we have now reached the relation between γĝĝ

with the corresponding response, self-energy γĝg [Eqs. (B35)
and (B39)] and either of these self-energies can be used to
renormalize the longitudinal viscosity. On the other hand,
Eqs. (B34) and (B38) link two response self-energies γĉρ and
γĉc to a single self-energy γĉĉ as

γĉĉ = 2β−1
γ ′

ĉρ

χ−1
ρc

= 2β−1 γ ′
ĉc

χ−1
cc

. (B40)

This proves an important relation by which two different
transport coefficients are renormalized in terms of the same
self-energy γĉĉ. Finally, comparing the next order terms from
Eq. (B29) and making use of the Eq. (B37) linking γ ′

ĝρ with
γĉĝ , we obtain the result

γĉĝ = 2β−1
γ ′

ĝc

χ−1
cc

. (B41)
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