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Transition to a labyrinthine phase in a driven granular medium
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Labyrinthine patterns arise in two-dimensional physical systems submitted to competing interactions, in fields
ranging from solid-state physics to hydrodynamics. For systems of interacting particles, labyrinthine and stripe
phases were studied in the context of colloidal particles confined into a monolayer, both numerically by means of
Monte Carlo simulations and experimentally using superparamagnetic particles. Here we report an experimental
observation of a labyrinthine phase in an out-of-equilibrium system constituted of macroscopic particles. Once
sufficiently magnetized, they organize into short chains of particles in contact and randomly orientated. We
characterize the transition from a granular gas state towards a solid labyrinthine phase, as a function of the ratio
of the interaction strength to the kinetic agitation. The spatial local structure is analyzed by means of accurate
particle tracking. Moreover, we explain the formation of these chains using a simple model.
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I. INTRODUCTION

Labyrinthine phases are intriguing two-dimensional (2D)
patterns occurring in various domains of physics, in equilib-
rium and out-of-equilibrium situations. Two distinct phases
form at small-scale well-separated stripes, which are them-
selves entangled, leading to a complex large-scale pattern.
These shapes were experimentally obtained for extremely
varied 2D systems ranging from ferrimagnetic garnet films
[1] in condensed matter, Langmuir monolayers [2] in soft
matter, granular fluid suspensions in which air penetrates [3,4],
ferrofluid drops [5] and biphasic ferrofluid-oil layers [6] in
fluid mechanics, to chemical reaction-diffusion systems [7].
The common denominator of these systems is the competition
between long-range repulsion and short-range attraction,
which leads to the phenomenology of modulated phases [8].
Moreover, a wide range of ordering effects that lead to different
patterns can also be related to the competition between
interactions and geometrical frustration, as specifically shown
for magnetic thin films [9].

By analogy with the phenomenology of these continuous
systems, labyrinthine and stripe phases have been introduced
for systems of particles. In particular, in the context of colloidal
monolayers, several Monte Carlo simulations [10–13] and one
molecular dynamics simulation [14] have been performed. It
was shown that, to observe stripes and labyrinthine phases,
a long-range repulsive potential is needed, together with a
short-range attraction, which can be replaced by a core-
softened potential [10,11]. Tuning geometrical frustration in
noninteracting colloidal monolayers [13,15] leads also to
stripe phases. Moreover, the only experimental observation
of a labyrinthine phase in a colloidal system was obtained
using superparamagnetic colloids under a magnetic field,
inducing dipolar interactions [16]. Labyrinthine phases were
indeed found as equilibrium states at a high enough density
of micrometric spheres, in agreement with dedicated Monte
Carlo simulations [12,16]. In contrast, similar labyrinthine or
stripe phases have not been described in a macroscopic and
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out-of-equilibrium system whose particles can be individually
identified.

Here, we report the observation of such a labyrinthine
phase. A monolayer of soft ferromagnetic spheres 1 mm
in diameter is vibrated to form a 2D granular gas [17–22].
Under mechanical agitation particles undergo a Brownian-like
motion, but due to the dissipative nature of the collisions,
the granular gas reaches a stationary out-of-equilibrium state.
Then immersed in a vertical external magnetic field B, the
soft ferromagnetic spheres are magnetized and interact with
each other as induced dipoles. When the magnetic field is
increased, the granular gas solidifies into a phase composed of
chains of a few particles in contact, similar to the labyrinthine
phase observed with colloids [16]. In contrast to this colloid
study, which focuses on equilibrium states, the transition
from gas to labyrinth is here clearly described, using accurate
particle tracking. Finally, as a remark, we emphasize that the
physical mechanisms at play in labyrinthine and stripe phases
of interacting particles differ from those in chain and cluster
phases reported in some interacting granular gases [23–25],
despite visual similarities. Indeed, these phases are composed
of head-to-tail dipoles and were observed when attractive
behavior is dominant at a large scale, because permanent
dipoles are considered [23,25] or because the hypothesis of
a quasi-2D system is not verified [24].
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FIG. 1. Experimental setup. 5000 chromed steel spherical par-
ticles (diameter a = 1 mm and mass m = 4.07 mg) are vertically
vibrated (acceleration � = 21.9 m · s−2) inside a horizontal, square
aluminium cell (area S0 = 9 × 9 cm2) with a rough bottom plate and
a polycarbonate top lid (gap size h = 1.5a). In the presence of a
vertical magnetic field B, particles repel each other with a force �Fm.
The region of interest is of area S = 5.7 × 5.7 cm2.

1539-3755/2015/92(6)/062205(7) 062205-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062205


MERMINOD, JAMIN, FALCON, AND BERHANU PHYSICAL REVIEW E 92, 062205 (2015)

(a) (b) (c) (d)

FIG. 2. (Color online) Top views of the system of particles. In (a) and (b), images of the spheres have been replaced by white disks of
diameter a for better visualization, whereas (c) is from a direct image from the camera and (d) is the result of particle tracking. (a) Dissipative
granular gas state at a moderate B (80 G). (b) Labyrinthine phase at a high B (170 G). The particles organize into an amorphous phase mostly
composed of chains of a few particles. The region within the red square is enlarged in (c) and (d). (c) Thick circles are reflections of lighting
on the spheres and appear smaller than the actual overlapping particle radii (thin circles). (d) Buckled chains (red spheres, top particles; blue
spheres, bottom particles) mostly compose the amorphous phase.

II. FROM A GRANULAR GAS TOWARDS A
LABYRINTHINE SOLID PHASE

The experimental setup is similar to the one used in [26].
Soft ferromagnetic spherical particles of diameter a = 1 mm
are confined between two horizontal parallel plates separated
by a gap of h = 1.5a in order to form a monolayer as depicted
in Fig. 1. Particles are vibrated vertically and are lit by an
annular light-emitting diode (LED) array and imaged from
the top by a fast camera through the transparent top plate.
Particle center positions are tracked and their trajectories are
reconstructed in the horizontal plane [21,27]. Interactions
between particles are introduced by means of an external
vertical magnetic field of amplitude B controlled by the
experimentalist. Additional details on the experimental setup
and protocol, and on the particle detection technique, are given
in the Appendixes.

Magnetized soft ferromagnetic spheres behave as induced
dipoles, whose magnetic moments are vertical and propor-
tional to B. The interaction potential Um of a particle located
at a distance r and a polar angle θ from a second particle [28]
reads in spherical coordinates [29], with μ0 the vacuum
permeability,

Um(r,θ ) = − π

16

B2

μ0

a6

r3
(2 cos2 θ − sin2 θ ). (1)

Two spheres in the same horizontal (θ = π/2) plane are
thus repelling each other. Using this experimental method,
macroscopic transitions were observed in 3D assemblies of
magnetized soft-ferromagnetic particles [30,31]. Then the
number of particles per surface unit is expressed by a
dimensionless parameter, the area fraction φ = (Nπa2)/(4 S),
with N the number of particles tracked in the region of interest
S. For a monolayer of particles, a high enough magnetic
field, and a moderate area fraction (φ = 0.2), the 2D granular
gas solidifies into a hexagonal crystal [26], whose melting
has been found to follow the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) scenario [32].

Here φ is increased to 0.5. For moderate values of the
magnetic field B and continuous shaking, particles undergo
a Brownian-like motion. At a given instant particle positions

are random [Fig. 2(a)] and spheres exchange energy through
dissipative collisions and magnetic interactions. We observe a
2D granular gas, whose properties are similar to those found
at a lower area fraction [26]. Then by increasing B further,
we observe that, despite the magnetic repulsion, small chains
of two or three particles in contact start to form in the bulk
of agitated particles. We remark also that the motions of the
particles belonging to these chains are considerably restricted
compared to those of free particles. At a higher magnetic
field, the quasitotality of the particles are condensed into
these chains [Fig. 2(b)]. At a large scale, the picture of the
assembly of the system does not present an ordered structure.
Thus, by increasing magnetic interactions, the system has been
solidified in an amorphous state. Labyrinthine patterns were
indeed described as globally disordered stripe domains [33].
Due to the presence of chains, the particle assembly presents
striking similarities to the labyrinthine and stripe phases
observed [16] and numerically predicted [10–14], for example,
for 2D colloidal systems under thermal agitation and with
dipolar repulsive magnetic interactions. Here, a transition from
a granular gas phase to a labyrinthine phase for a macroscopic,
out-of-equilibrium system is observed. This transition can
also be visualized by applying a linearly increasing magnetic
field from B = 0 G to B = 200 G (see video in Supplemental
Material [34]). First, pairs aggregate, then triplets, and so on,
homogeneously across the cell, until nearly motionless chains
of various lengths occupy the whole cell, isolating the few
remaining fluctuating particles from each other. We note also
that, starting from the labyrinthine phase, the inverse transition
is observed when the magnetic field is decreased. This shows
that the system does not present any noticeable hysteresis.

By means of accurate particle tracking, chain morphology
can now be quantitatively characterized. Chains are well
separated due to the magnetic repulsion and can thus be
considered as groups of more than one particle, according
to a criterion of the contact distance. Moreover, chains appear
mainly as linear objects because, most of the time, a particle
inside a chain is in contact with two neighboring particles.
Nevertheless, the relative orientations of the chains seem
random. In the following, quantitative analysis of the small-
scale structure reveals that chains correspond to a buckled
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state of particles in contact [Fig. 2(c)]. A particle, once it is
condensed in a chain, is in contact either with the top plate or
with the bottom plate. Using slight differences in lighting for
the two kinds of particles, our detection technique is able to
provide the vertical position of the particles in the chains [as
shown in the virtual image in Fig. 2(d)], which is coded as up

(red spheres) or down (blue spheres). It can be noted that the
particles at the tips of the chains are for the most part down,
revealing an effect of gravity.

III. CHARACTERIZATION OF THE TRANSITION

Let us now quantitatively characterize the transition from a
granular gas to the labyrinthine phase using the particle track-
ing data. The magnetic potential energy Em and the horizontal
kinetic energy Ec per particle can now be computed. From the
interaction potential Um(r,θ ) defined in Eq. (1), the magnetic
energy per particle is computed as the averaged summation
over the pairs of the interaction potential of each pair,

Em = 1

Np

Np∑
i=1

Np∑
j=i+1

Um(rij ,θij ), (2)

with Np the number of particles involved in the calculation
of Em; rij and θij , respectively, the distance and the polar
angle between the two particles i and j ; and · the temporal
average. The magnetic potential energy depends on the local
configuration of the particles, and therefore it fluctuates in
time. Its averaged value, Em, is found to be proportional to B2

[Fig. 3(a)]. The kinetic energy per particle is computed from
velocity measurements,

Ec = 1
2 m

(〈
vx

2
〉 + 〈

vy
2
〉)
, (3)

where m denotes the particle mass, vx (respectively, vy) the
horizontal velocities in the x direction (y direction), and 〈·〉 an
ensemble average. Ec is a measure of the agitation in the sys-
tem. When the magnetic field B is increased, in the first stage
Ec grows [Fig. 3(b)]. Repulsive dipole-dipole interactions
reduce the rate of dissipative collisions, which consequently
increases Ec for a given shaking amplitude [26]. Once chains
start to form, for B ≈ 100 G, Ec drops significantly and nearly
vanishes as the labyrinthine phase is formed for B ≈ 150 G,
illustrating the solidification process. For higher magnetic
excitation values, the labyrinthine phase becomes less and
less mobile as interactions strengthen and fluctuations are
restrained.

Now, let us define the dimensionless control parameter
ε ≡ Em/Ec [26], which is depicted as a function of B in the
inset in Fig. 4(a). ε provides a measure of the competition
between distance interactions and kinetic agitation. By analogy
with an order parameter, the fraction of particles condensed
in the chains ϕ is computed as the ratio of the number of
particles belonging to a group of more than one particle to
the total number of particles tracked in the region of interest.
By plotting ϕ as a function of ε, as shown in Fig. 4(a), the
transition is well depicted. For ε < 60, ϕ is nearly null in
the granular gas phase, whereas for ε > 1000, ϕ is slightly
smaller than 1, for the labyrinthine phase. The intermediate
region of partial solidification corresponds to a coexistence
zone between fluidized particles and particles condensed
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FIG. 3. (Color online) Potential magnetic energy and kinetic
energy per particle. Each symbol corresponds to an independent
experiment. (a) The potential magnetic energy is found to scale as B2

(the dashed curve is a B2 fit). (b) The kinetic energy, which measures
agitation, plotted as a function of B. First, Ec increases due to the
fluidizing effect of the magnetic interactions [26], then it suddenly
drops towards 0 at the onset of solidification (B ≈ 100 G).

in the chains. Let us emphasize that, although the simple
criterion of the variation of ϕ captures well the transition
from a granular gas to a labyrinthine phase, it should fail to
distinguish a stripe phase from a labyrinthine phase. Topology
and morphology would indeed have to be taken into account,
like local orientational properties. Several approaches have
been proposed to analyze or to model labyrinthine patterns,
such as the introduction of a local wave vector [35], the
computation of the wrinkledness [36], and the decomposition
of the pattern into clusters of linear segments [33]. To our
knowledge, the definition of an appropriate order parameter
for labyrinthine patterns remains an open question.

Nonetheless, aiming at quantifying some of the directly
observable morphological changes of the chains, we evaluate
their mean length λ as a function of ε [Fig. 4(b)]. λ is defined
as the average over all chains of the largest distance between
particle centers inside a given chain. Starting from 1.6a at
the formation of first chains, λ seems to saturate for the
highest values of ε around 2.6a. This suggests that competition
between growing chains could limit their extension.

The pair correlation function, which is related to the
probability of finding a particle center at a given distance from
another particle center, provides information on the small-scale
structure of the system. Before the transition, the particle
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FIG. 4. (Color online) Characterizing the transition. Each symbol corresponds to an independent experiment. (a) The fraction of particles
in chains ϕ as a function of the control parameter ε = Em/Ec. It varies from about 0 in the dissipative state to 1 in the fully solidified state.
The horizontal, dashed black line is a guide for the eye. Inset: ε as a function of B. (b) Adimensionalized mean chain length λ/a as a function
of ε, with λ evaluated by computing the largest distance between particle centers inside a given chain. The value of λ averaged over the chains
increases continuously with ε. If the averaging is weighted by the number of particles in the chains, the obtained values are larger by roughly 1
diameter unit, but the trend with ε is similar. (c) Evolution of the radial pair correlation function g(r/a) for increasing values of ε (see arrow):
ε = 14.7 (red), ε = 41.0 (purple), ε = 68.9 (green), ε = 127 (orange), and ε = 649 (blue). As the transition occurs, the r = a peak of g(r/a)
drops down to 0, showing that the in-plane collision probability vanishes for high values of ε. In the meantime, another sharp peak appears at
r/a = xg/a = 0.91, which is the imprint of the buckled chains.

assembly evolves from a purely dissipative gas to an effectively
more elastic gas [26]. Therefore, as Fig. 4(c) (red and purple
lines) displays, the peak at the diameter value flattens while
the effective elasticity rises. From the onset of solidification
(green, orange, and blue lines), surprisingly, an extremely
sharp peak grows from 0 at the distance value r = xg ≈ 0.91a,
which is smaller than the particle diameter. This peak, which
would be impossible to observe in purely 2D systems of hard
spheres, reveals the internal structure of the chains. Here the
gap size is indeed large enough so that partial overlaps of par-
ticles are allowed, leading to the formation of buckled particle
chains in which particles are in contact with the top or bottom
plate [see schematic in Fig. 4(c)]. Geometrical calculations
yielding xg = √

2h a − h2 , one finds h = 1.42 mm, which
corresponds to the announced gap of 1.5 mm diminished
by the the roughness of the bottom plate. Moreover, in the
labyrinthine phase (blue line), g(r/a) also exhibits a shorter
peak at the position 2xg , from the aligned second neighbors,
showing the presence of linear chains. Between these two
peaks, the zero probability at xg � r � 1.2a indicates the void
spaces between the chains, while the nonvanishing probability
for 1.2a � r � 2xg stands for both nonaligned second neigh-
bors in chains and particles from neighboring chains. The 3D
effects related to the gap size h are thus essential to describe the
small-scale structure of the labyrinthine phase. Therefore, we
now discuss how three-dimensionality can explain the stability
of the chains at a high enough area fraction.

IV. CHAIN FORMATION MECHANISM

At a low area fraction (φ = 0.2 and lower), the stable state
of the assembly of spheres in dipolar interaction was found
to be a hexagonal crystal [26,32]. Why does the hexagonal
structure now become unstable at a higher area fraction? How
can we explain the formation of chains of particles in contact?
In Fig. 5(a), we plot the 3D magnetic energetic landscape

(in the vertical plane) for a sphere initially in the center of a
hexagon of six neighboring particles, the projected horizontal
distance between the particles being given geometrically by
d = a

√
π/(2

√
3φ). Let us consider this central particle at

x = 0 to be up [dashed circle in Fig. 5(a)] between six down
neighbors, all at a distance d, and investigate its potential
energy when it moves from x = 0 to the contact position for
several values of φ [Fig. 5(b)]. Contact positions between
spheres are local minima of potential energy, as the dipolar
interaction aims to align spheres along a vertical axis. For
φ = 0.2, the central position is an absolute minimum of energy,
in agreement with the expected stability of the hexagonal
lattice. In contrast, when φ is increased, the energy barrier
decreases and Em(0) augments relatively to Em(±d). For
φ = 0.5 contact positions become absolute minima, which
can be reached by means of mechanical agitation. For φ =
0.6, the central position is not even a minimum anymore.
Therefore for φ = 0.5 and above, we expect that the hexagonal
structure is unstable, leading to local structures of spheres
in contact like chains, despite the isotropic dipolar repulsion
in a purely 2D system. This qualitative model explains the
small-scale attraction leading to particle contacts, needed for
the shaping and the stability of labyrinthine phases [8]. To
improve the description, solid friction between the spheres
and the top and bottom plates should be incorporated, as
this may greatly stabilize the buckled chains. In thermal
systems, similar predictions were obtained using Monte Carlo
simulations [10–12]. In these examples and our system, the
resultant of repulsive interactions of the assembly of particles
over one acts as a magnetic pressure, favoring contact at
a high enough particle density. Additionally, we note that
buckled phases stabilized by pressure and friction can also
appear in thin vibrated granular layers without magnetic
interactions [37] if the density and gap size are sufficiently
large [38]. Nevertheless, in the latter case, the structuring in
separated chains is absent.
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FIG. 5. (Color online) (a) The potential energy landscape Em is
computed for φ = 0.5 and B = 200 G by averaging the pair potential
Um [see Eq. (1)] for six down neighbors forming a hexagon (four
particles are out of the figure plane) and a central up particle moving
along the x axis (dashed line). (b) The profile of Em is plotted along
this trajectory for four values of φ (curves have been rescaled and
shifted vertically for clarity). The circles depict the initial central
position and the crosses show the contact positions. From these
graphs, for φ = 0.2 and 0.35, hexagonal configurations are found
to be stable, whereas for φ = 0.5 and 0.6, the central particle in the
presence of agitation should leave the position x = 0 to reach contact
positions associated with buckled chains.

V. CONCLUSION

In this macroscopic and out-of-equilibrium model ex-
periment, a labyrinthine phase is obtained by applying a
magnetic field to a confined granular gas, by means of
externally controlled dipolar interactions. We describe and
quantitatively characterize the transition from a gas-like phase
towards a globally disordered solid phase. It appears as a
three-dimensional effect occurring in a quasi-two-dimensional
system. The parameters setting the confinement, the gap h/a

and the area fraction φ, are thus essential to explain the phase
diagram of this granular medium, as also shown for colloidal
and hard-sphere monolayers [12,16,39]. Although not pre-
sented here, after a fast increase in B, i.e., a magnetic quench,
the labyrinthine phase exhibits a slow dynamics characterized
by a slow evolution of its structural properties [40]. This aging
phenomenon should thus be compared to the slow dynamics
of structural glasses [41–43]. In the case of labyrinthine
domain patterns arising in continuous systems, the analogy
with glasses was also reported in an analysis of their globally
disordered structure [33] and a study of their relaxation [36].
Finally, whereas the structure of the phases obtained in this
macroscopic experiment resembles that of the phases found at
thermal equilibrium in Monte Carlo simulations and colloidal
monolayers [12,16,44], the kinetics of the transition described

here is intrinsically an out-of-equilibrium process, which
deserves further studies.
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APPENDIX A: POTENTIAL MAGNETIC ENERGY FOR
TWO PARALLEL DIPOLES WITH FINITE MAGNETIC

PERMEABILITY

For two ferromagnetic spheres of identical diameter a

immersed in an unidirectional vertical magnetic field of
intensity B and separated by a distance r , the potential energy
of magnetic interaction reads in spherical coordinates as the
interaction of two vertical magnetic dipoles [28],

Um(r,θ ) = − π

16

B2

μ0

a6

r3

(
μ − μ0

μ + 2μ0

)2

(2 cos2 θ − sin2 θ ),

(A1)
where θ is the polar angle between the two dipoles, μ0 =
4π10−7 H · m−1 is the vacuum permeability, and μ is the
intrinsic magnetic permeability of the sphere material. The
induced magnetic fields of the neighboring particles are
assumed negligible in front of the external magnetic field.
For free-moving particles θ is taken equal to π/2, whereas for
particles belonging to chains θ is computed from the measured
vertical position of the particles (top or bottom). The magnetic
potential energy per particle Em is computed as an average of
Um over interacting pairs of particles [26] and in the limit of
large μ. This approximation holds for soft and linear ferro-
magnetic materials [45], which is the case for our particles.

APPENDIX B: GENERATION OF THE VIBRATED AND
INTERACTING SYSTEM OF PARTICLES

The particles are chromed alloy steel (AISI 52100) spheres
of diameter a = 1 mm and of mass m = 4.07 × 10−3 g.
Using a vibrating sample magnetometer, the magnetization
of one particle was measured by V. Dupuis. The magnetic
permeability μ verifies 122 < μ/μ0 < ∞ in the linear domain
(−2000 G < B < +2000 G), and the remnant magnetic field
Br is below 12 G. The coercive field is small compared with the
values of the magnetic field B used in our experiments. Within
this range of B, the response to magnetic excitation is linear.
The square aluminum cell (side, 9 cm long) containing these
particles (see Fig. 1) is vertically driven by an electromagnetic
shaker. The forcing is sinusoidal at the frequency f0 = 300 Hz
and the root mean square (RMS) acceleration of vibration is
fixed at � = 21.9 m · s−2 = 2.23g for all experiments, with
g the gravity acceleration. This value corresponds to the
upper limit of the linear response domain of the granular
temperature Tg = Ec/m as a function of � [21]. Two coils
in Helmholtz configuration and current-controlled generate
a nearly homogeneous magnetic field B across the cell (the
measured variation is of 3%). Immersed in this magnetic field,
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the particles are magnetized into induced dipoles vertically
oriented (the particle rotation velocity is negligible compared
with the speed of the magnetic domain rearrangements).

APPENDIX C: PARTICLE DETECTION

An annular LED array above the cell produces a high-
contrast circular signal on the chromed particles, whose
positions are recorded from above using a high-speed video
camera at a high resolution (1152 × 1152 pixels at 780 Hz).
The region of interest S is 5.7 × 5.7 cm2 around the cell
center (see Fig. 1). The particle diameter is about 20 pixels.
For individual particle detection, we used a convolution-based
least-squares fitting routine [21,46] completed by an intensity-
weighted center detection algorithm (accuracy estimated as
smaller than 0.3 pixel). Particle trajectories were reconstructed
using a tracking algorithm [27,47].

APPENDIX D: EXPERIMENTAL PROTOCOL

The experimental protocol is fully automated for the sake
of robustness. Every single experiment is noncorrelated with
the others. The amplifiers of the electromagnetic shaker and
of the Helmholtz coils are computer controlled via a data

acquisition card. The experimental protocol routine is written
in Matlab. It also proceeds to the dialogue with the camera,
i.e., configuring and starting the video recordings, as well as
to the recording of the data from the accelerometer and the
Hall effect sensor. All experiments are performed according
to the following protocol. First, the shaking is activated (� =
21.9 m · s−2) while the magnetic field remains 0. The magnetic
field is then linearly increased (the rising rate αq ≡ dB/dt is
kept fixed for all experiments) up to its higher plateau value
B. Afterwards, a waiting time is respected prior to proceeding
to the recordings. It is chosen along with the recording time
length so as to reach the chosen mean aging time τw. In all the
experiments presented here, αq = 1 G · s−1, τw = 30 s, and
recordings last at least 2 s. Note that these two parameters,
αq and τw, have a noticeable influence on the nature of the
labyrinthine state reached for high values of B, implying that
a slow dynamics is at play.

For the 5000 particles introduced in the experiments, the
area fraction evaluated on the cell is equal to 0.485. However,
within the region of interest S, as the boundaries are not
repulsive [26], φ decreases from 0.58 to 0.46 with B until
B ≈ 80 G. From the appearance of the first chains, φ remains
nearly constant.
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