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Structural characterization of the packings of granular regular polygons
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By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random
packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction
on the packing structures are investigated by various structural parameters, including packing fraction, the
radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that
packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by
the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the
microstructures, such as the variations of the translational and orientational orders and local configurations. In
particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described
by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings
of regular polygons.
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I. INTRODUCTION

Particle packing is of fundamental importance to granular
materials which are commonly encountered in nature and
industry [1,2]. It is also of great interest to various topics
in physics and mathematics [3,4], including jamming states,
self-assembly, glass transition, and optimization problems.
However, particle packing is still far from well understood.
Essentially, packing structure, which determines the properties
of a packing, is still not able to be predicted by a general model
that can consider various controlling variables, from material
properties to packing methods. Previously, the majority of
work has been done for spherical particles. Significant progress
has been made in characterizing the structures of the packings
of monosize to multisize [5] and noncohesive to cohesive
spheres [6] in terms of different structural parameters, such
as the radial distribution function, coordination number,
bond-orientation order, Voronoi and Delaunay tessellations
[7,8], and clusters [9,10]. These analyses have improved the
understanding of the packing structures of spheres [11] and
facilitated theoretical modeling [12,13].

However, in nature particles are generally not spherical and
particle shape plays an important role in controlling packing
structures [14]. A number of studies have been conducted
for the packings of particles of different shapes, e.g., ellipses
[15,16] and polygons [17–19] in two dimensions (2D) and
polyhedral [20,21], ellipsoids [14,22], and cylinders [23,24]
in three dimensions (3D), etc. In particular, great efforts
have been made in the pursuit of the densest packings, some
of which have even overturned our previous understanding
[14,20]. On the other hand, for the random packings of
nonspheres, mean-field theory has been attempted [23]. These
studies have gradually revealed the controversial effect of
particle shape on particle packing. However, compared to the
enormous research on the structures of sphere packings, the
structures of nonsphere packings are very poorly understood.
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Theoretically particle packing can be in any dimensions.
Granular packings are generally in 3D. However, the packings
of nonspherical particles in 2D have also attracted increasing
interest in recent years. Such packings are related to not only
the applications of certain low-dimensional particles, such as
films and monolayers, but also the self-assembly and phase
transition of 2D colloidal systems [25,26]. Two kinds of shapes
are typical for the 2D nonspherical particles, namely, polygons
and ellipses. For polygons, it is found that regular triangle,
square, and hexagon have higher packing fractions than
others as they can perfectly fill a two-dimensional space [19].
However, other regular polygons also present rich crystalline
and/or quasicrystalline packing structures [17,27].The effects
of packing method and size distribution on these packings have
also been studied recently [28,29]. For ellipses, the highest
packing fraction can be found at an aspect ratio of 1.6 [15],
and clusters of ellipses with similar orientations can be clearly
identified when the aspect ratio is high, with large-size voids
between clusters [16].

In these studies, however, the packing structures have
not been comprehensively characterized. For example, the
structural analyses are often limited to coordination num-
ber, with only a few radial distribution functions given. In
particular, the Voronoi tessellation analysis, which is very
useful in linking the local and global packing properties
[23], is rather limited. This may be due to the difficulty
in obtaining the Voronoi tessellations for the packings of
nonspherical particles, although some efforts have been made
[30,31]. On the other hand, structural analyses related to
phase transitions have been performed on the jamming
or annealing of the thermal nonspherical particle systems
[25,32,33], but these systems may not be exactly the same
as the mechanical stable packings of granular particles under
gravity, in which the mechanical contact forces such as
friction play more important roles, though some results can
be comparable to the granular packings, similar to the com-
parative studies between the critical states of granular sphere
packings and the phase transitions of hard sphere systems
[9,11].
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In this work, we investigate the effects of edge numbers
(n) and sliding friction coefficient (µ) on the packings of
regular polygons. The packings are simulated by using the
discrete element method (DEM). Compared to experiments,
DEM simulation provides a more easily controlled and
cost-effective way to obtain packing structures. Unlike other
simulation methods, such as the random absorption and global
rearrangement methods, DEM uses first principles to model the
motion of each particle without any arbitrary assumptions and
considers the forces between particles in a more realistic way.
It has been testified that DEM can generate more comparable
results to experimental data for the packings of granular beads
[34,35]. By using DEM, the packings of regular polygons are
obtained and the structures are characterized in terms of the
radial distribution function, coordination number, and Voronoi
tessellation. The results quantify different structural features
for the packings of granular regular polygons, which can not
only improve the understanding on the effects of shape and
friction on these packings, but also pave a way to the theoretical
modeling of the packing structures of nonspherical particles.

II. METHOD DESCRIPTION

A. Simulation method and conditions

A recently developed method called ODDS (orientation
discretization database solution) has been adopted in DEM to
simulate the packings of nonspherical particles. This method
can handle the different types of contacts between two
polygons, such as edge-to-edge, vertex-to-vertex. and vertex-
to-edge contacts in a uniform scheme. The method has been
validated by a wide range of agreements with experimental
data. The details of the simulation algorithm can be found in
Dong et al. [36]. The nonspherical particles studied in this work
include regular polygons with three to 11 edges. Table I lists the
material properties and other controlling parameters adopted
in the simulations. The size of a particle, d, is the diameter
of the circumcircle of the polygon. Figure 1 schematically
shows the simulation setup and process. Initially, the particles
are generated randomly in a container with width of 50d (X
axis) and height of 300d (Y axis). The number of particles
is adjusted for different shapes in order to make a consistent
initial porosity, ε ≈ 0.9. The particles are then settled under
gravity along the–Y direction. Periodic boundary conditions

TABLE I. Material properties of the particles and other control-
ling parameters used in the simulations.

Parameter Value

Young’s modulus, Y 1.0 × 107Pa
Poisson’s ratio, σ 0.29
Normal damping coefficient, γ n 0.3
Normal damping coefficient, γ t 0.2
Sliding friction coefficient, μ 0.1−0.9
Rolling friction coefficient, μr 0.005
Particle size, d 1 mm
Particle density, ρ 2.5 × 103kg/m3

Time step, �t 2 × 10−7s

Particle number 3000–10000

are applied along the X axis and a bottom plane is put at
Y = 0. Note that unlike in previous studies [17–19] where the
packings of polygons were obtained from isotropic contraction
or compression of random generated particles without gravity,
the packing method here is similar to the pour packing in
experiments [2,22,24], and it has been widely used in the
DEM simulations of granular packings [5–7,15,22,36].

In the simulations, the translational and rotational motions
of the particles are governed by Newton’s second law and
the governing equations are solved by time integration. When
a particle has an overlap with another particle or a wall,
the contact force and torque between them are calculated
based on the overlap. The dynamic packing process finishes
and a stable structure is obtained when the velocities and
rotations of all particles diminish to nearly zero due to the
energy dissipations in the particle-particle and particle-wall
collisions. The packing fraction is measured in this final
state. Different polygons and/or with different sliding frictions
may generate different packing fractions through their effects
on the particle-particle and particle-wall in8teractions, while
there are no other rules in controlling the packing fraction.
Although packed under gravity, the simulated packings are
homogeneous, which can be seen from Fig. 2. For each
packing, ρ measured with different heights just fluctuates
slightly but deviates obviously only when the height is too
low or too high, which is due to the boundary effect. Similar to
the treatments in the previous studies [6,22,36], the particles
in the top and bottom regions of 5d thick are not included in
our analyses to eliminate such effect.

Generally a packing system with given controlling vari-
ables, including well-defined packing method, should yield
reproducible packing fractions. To validate the reproducibility
of our results, we have first tried the simulations with different
dimension sizes. Figure 3 demonstrates that when the width of
the simulation zone is larger than 20d, the variations of packing
fraction are negligible. Secondly, we have tried particles with
different randomized initial positions and orientations. As
shown in Fig. 4, the resulting packing fractions are also nearly
the same for a kind of regular polygon with a specific sliding
fraction coefficient. For all the tested cases, the variations of ρ

are within ± 0.005, which confirms the reproducibility of our
results.

B. Voronoi tessellation by using space discretization

Although Voronoi tessellation has a simple definition, to ob-
tain such tessellations for a packing of nonspherical particles is
not easy in an analytical way. Originally Voronoi tessellation is
applied to a set of seed points in a space. For a given seed point,
the region consisting of all points closer to it than to any other
seed points is defined as its Voronoi tessellation. When it is
extended to the assembly of particles, the Voronoi tessellation
of a particle contains the points with distance to its surface no
greater than those to other particles. For uniform spheres, such
a Voronoi tessellation can be obtained by the intersecting of
the bisect planes between a particle and its neighbors, which
always gives a polyhedron (or polygon in 2D). This method
can be extended to radical tessellations for multisized spheres.
Several open-source programs have been developed to obtain
the Voronoi or radical tessellations for sphere packings; e.g.,
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FIG. 1. (Color online) Snapshots show the formation of a packing of regular pentagons at (a) 0 s; (b) 0.11 s; and (c) 0.3 s.

see recent work done by VORO + + [5,37]. For nonspherical
particles, however, the Voronoi tessellations could have curved
surfaces, and are called Voronoi S regions [30,38]. As the
distance of a point to a nonspherical particle surface is often
much more complicated than that of a spherical particle, there
is no simple method to obtain the Voronoi tessellations for
general nonspherical particles. Several advanced algorithms
have been developed [30,31]. A more simple and universal
numerical method has been proposed in x-ray tomography
[39], which is used in this work and briefly described below.

After obtaining a packing, we first digitize the whole
packing space into an image composed of finite pixels. The
pixels inside the particles (with its center inside) are labeled
“0” and other pixels “1,” as shown in Fig. 5(a). Then the
boundary pixels are identified by checking the surrounding
pixels. After that, we “burn” those void pixels adjacent with

FIG. 2. Packing fraction measured with different heights for the
packings of regular polygons with different edge numbers and sliding
friction coefficients: ©, n = 4, μ = 0.1; �, n = 9, μ = 0.3; ×, n =
5, μ = 0.9.

the identified boundary pixels of all particles simultaneously,
which yields a layer of pixels with 1 pixel distance from the
particle boundary [see Fig. 5(b)]. These “burned” pixels are
then treated as the “new” boundary pixels and the last step
will be reiterated. The medial axes of the voids are obtained
when two or more “fires” meet, which are equidistant to the
surface of at least two particles. The obtained medial axis of
voids constructs the boundaries of the Voronoi tessellations,
and the pixels burned from the boundary of a particle are
closer to that particle than to any other ones, which construct
the inside space of the Voronoi tessellation. This method is
general to any convex shapes and is simple to be realized in a
computer program though other methods can also be used for
obtaining the Voronoi tessellation for the studied packings
[31]. The obtained Voronoi tessellations conform to the
genuine definition while the errors can be controlled by using
enough fine pixels. Figure 5(c) shows the Voronoi tessellations

FIG. 3. Packing fraction as a function of the width of the
simulation zone for different polygons: ©, n = 4, μ = 0.1; �, n = 9,
μ = 0.3; ×, n = 5, μ = 0.9.
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FIG. 4. (Color online) Comparison of packing fractions obtained
using particles with different randomized initial positions and
orientations. Each bar represents a simulation case: group 1, n = 5,
μ = 0.9; group 2, n = 9; group 3, n = 4, μ = 0.1.

for a packing of polygons obtained by the proposed method as
an example.

III. RESULTS AND DISCUSSION

A. Packing fraction

We firstly investigate the simulated packings in a global
scale. Figure 6 visualizes the final packing structures obtained
for different polygons. The particles are colored by their local
packing fractions obtained from Voronoi tessellations which
will be discussed later. It can be seen that for all regular
polygons, there are always some densely packed regions in the
packings and the boundaries between them are loosely packed
regions with relatively large voids, which are similar to the
clusters and voids found in the piling of ellipses [16]. Generally
the dense regions become larger with the increase of edge

number. However, these regions have different configurations
for different polygons, which are mainly dependent on whether
the polygon shape is geometrically frustrated or not. It is
known that the regular polygons can be classified into two
groups: Group 1 (G1) includes regular triangle, square, and
hexagon, which are able to fill a plane perfectly, and Group
2 (G2) contains all other regular polygons which cannot.
As can be seen from Fig. 6, for G1 polygons, the densely
packed regions can be almost with no voids and the local
packing fractions reach nearly 1.0, while for G2 polygons,
there are still voids in the these regions with the local packing
fractions obviously lower than 1.0. For G1 polygons, particles
have almost perfect edge-edge contacts in the dense regions,
while for G2 polygons, the contacts are more diversified with
imperfect edge-edge and also edge-vertex contacts. On the
other hand, the densely packed regions for G2 polygons are
mostly hexagonal lattice structures which are similar to those
of the dense packings of disks, especially when the edge
number is large [e.g., n = 11, Fig. 6(d)]. This trend has also
been observed by Ciesla and Barbasz [28].

Figure 7 shows the packing fraction ρ for the simulated
packings. It can be seen that generally G1 polygons possess
higher ρ than G2 polygons as they are not geometrically
frustrated. In G1, the regular hexagon yields the highest ρ

while regular triangle the lowest, which is in agreement with
the results obtained by Mirghasemi et al. [19]. The regular
pentagon, although it has an edge number between those of
square and regular hexagon, yields a significantly lower ρ than
the other two shapes as it belongs to G2. Note the packing
fraction of regular pentagon at μ = 0.1 is 0.850, which is
in agreement with the value 0.85 obtained in the contact
dynamics simulations of frictionless pentagons [29] and close
to the value 0.84 obtained in a Monte Carlo simulation of
hard pentagons when phase transition occurs [32]. For G2
polygons, the regular heptagon has the lowest ρ, which is
in line with the hypothesis that this shape has the lowest
packing fraction for the densest packings of regular polygons

(a) (b) (c)

FIG. 5. (Color online) Digitized Voronoi tessellation. (a) Particle identification. Pixels of particles are labeled “0” and those of voids “1.”
(b) Distance transformation of voids from the boundary of particles. (c) Obtained Voronoi tessellations for a packing of pentagons. Particles,
pores, and boundaries of Voronoi tessellations are colored in blue (dark gray), green (light gray), and red (medium gray), respectively.
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FIG. 6. (Color online) Simulated packings of regular polygons
with different edge numbers. Particles are colored according to their
local packing fractions.

FIG. 7. Packing fraction as a function of polygon edge number
under different sliding friction coefficients: ©, μ = 0.1; ×, μ = 0.3;
�, μ = 0.5; +, μ = 0.9.

[17]. When the edge number n increases from 7, ρ increases
monotonically and approaches that of the densest packing of
disks [π/(2

√
3) ≈ 0.907] at the large n. These changes are in

agreement with the observations in other studies [17,28,40],
but different from Mirghasemi et al. [19] in which ρ decreases
with n when n > 6. Such a difference probably results from
the different packing methods, as in the other study [19] the
packings are obtained from isotropic compression, so that the
particles may be difficult to rearrange under the constrain of
the compressive force. On the other hand, a higher sliding
friction coefficient always leads to a lower packing fraction
for all kinds of regular polygons. This is in agreement with
the effect of friction on the packings of granular spheres and
nonspheres in three dimensions [22,36] and will be further
discussed.

B. Radial distribution function

Packing fraction is only a global structural parameter,
whereas the microstructure of a packing is rather complicated
and normally needs to be characterized by different parame-
ters. The radial distribution function (RDF), which quantifies
the possibility of finding another particle at a given distance
r from the reference particle, is a very useful indicator of
the translational order of a packing. The RDF is shown in
Fig. 8 for the packings of the regular polygons. The curves
generally have the first and highest peak at a minimum r . And
with the increase of r , subpeaks emerge at different positions
for different polygons but gradually diminish. At a large r ,
the curves just slightly fluctuate near 1. Such kind of RDF
curve indicates that these packings have translational orders to
certain ranges, but are still disordered in the long range.

The heights and positions of the RDF peaks represent the
specific translational orders of the systems and are normally
called characteristic peaks. We look at the positions first.
Figure 9(a) shows the radial distances of the first and second
RDF peaks for different regular polygons. These values are
compared to the distance between two polygons with perfect
edge-edge contact, given by de = d sin( π

n
), and the average

contacting distance d. Here we consider the two contacting
polygons with random orientations as shown in Fig. 9(b),
and the average contacting distance d is defined as 〈d〉 =

1
4π2

∫∫ 2π

0 r(θ1, θ1)dθ1dθ2, which is obtained by numerical
integration. For G1 polygons, the first and highest peak is
always at r = de. Actually, the positions of the ssubpeaks after
the second peak are generally corresponding to the structures
perfectly packing the whole space, in which a polygon
always has perfect edge-edge contacts with other ones, as
demonstrated in the inset figures in Fig. 8. Interestingly, for
n = 3 and 4, the second peak is at r = d, showing a certain
ratio of contacting polygon pairs in random orientations.
Such a subpeak cannot be found in the RDF of regular
hexagon, indicating that packings of regular hexagons are
more ordered than those of regular triangles and squares.
For G2 polygons, the positions of the first RDF peak are
not at r = de but rather close to r = d, except for regular
pentagon. This indicates that for these regular polygons, two
contacting polygons are mostly random oriented which does
not favor any specific configurations. The regular pentagon is
special, as besides a strong peak at r = d, there is another
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FIG. 8. (Color online) Radial distribution functions of regular polygons with different edges at μ = 0.3. Insets show the neighbor particles
that represent the peaks.

strong peak corresponding to a quasicrystalline structure as
demonstrated in the inset figure. This structure is shown
to be more mechanically stable [17] than other possible
quasicrystalline structures of regular pentagons [27], and has
also been identified in other pentagon packings [29,32]. Note
that the nearest and second nearest neighboring particles in this
structure have similar distances (r = 0.829d and r = 0.861d,
respectively) to the center particle, which thus merge into one

(a) (b)

FIG. 9. (Color online) (a) Symbols are the radial distances of the
first RDF peak (�) and second RDF peak (•) versus the edge number
for the packings of regular polygons (μ = 0.3). The solid line is the
distance between two polygons with perfect edge-edge contact. The
dashed line is the averaged distance between two contacting polygons
with random orientations. (b) Schematic of two contacting particles.

peak (r = 0.845d). Such a peak has also been observed in the
packing of frictionless pentagons [29], but is not evident in
the Brownian pentagons even at a high volume fraction 0.88
[25], indicating that the related quasicrystalline structure is
very sensitive to the thermal perturbations. With the further
increase of r , all the G2 polygons show the subpeaks at about
r = √

3d, 2d,
√

7d, . . ., corresponding to the hexagonal
lattice structure.

Secondly, when looking at the heights of the peaks, it
can be seen that with the increase of n, the first peak is
normally higher and the subpeaks more distinct, demonstrating
an increase in the short-range translational order. In particular,
for G1 polygons, regular triangle has the lowest peaks, regular
hexagon the highest, and square in between. Therefore even all
of them can form the maximum densest packing with ρ = 1;
regular triangle yields the lowest ρ and regular hexagon the
highest. This is probably because the particles are randomly
oriented at the beginning and need to be rearranged to form
a denser structure, in which less rotation is required for a
polygon of a higher n than that of a lower n, as the former has
a higher order rotational symmetry.

Figure 10 further shows the effect of sliding friction
coefficient on the RDF. For all these polygons, the change
of μ does not alter the positions but just the heights of
the peaks. With a lower μ, the peaks become higher and
more distinct, showing that the system’s translational order is
increased. Accordingly packing fraction increases. This is also
different from the colloidal systems composed of polyhedral
particles, in which the peaks will emerge or disappear in the
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FIG. 10. (Color online) Radial distribution functions of regular
polygons with different edges under different sliding friction coeffi-
cients: blue, μ = 0.1; red, μ = 0.3; green, μ = 0.9.

RDF when ρ varies [25,26], as a granular packing is always
a jammed athermal system and the colloidal particles are
affected by the thermal perturbations, which are likely to bring
or eliminate specific translational orders. On the other hand,
under the athermal condition the effect of friction on the extent
of translational order is shown to be important and deserves
further study.

C. Coordination number

Another common structural parameter to characterize a
packing is the coordination number (CN), which is the number

FIG. 11. Mean coordination number of the packings of regular
polygons as a function of polygon edge number under different sliding
friction coefficients: ©, μ = 0.1; ×, μ = 0.3; �, μ = 0.5; +, μ =
0.9.

of the contacting particles of a given one. Figure 11 shows the
mean coordination number, 〈CN〉, for the packings of different
polygons under different sliding friction coefficients. Note that
to avoid numerical round-off errors, two particles are regarded
as in contact when their surface distance is less than a cutoff
value 0.02d, which is similar to the treatment in analyzing
sphere packings [11].

From Fig. 11, firstly it can be seen that 〈CN〉 is between
3.8 and 5.8, which are close to the theoretical bounds 4 and
6 given by the isostatic conjecture for 2D ellipses [14,15].
However, here the bounds are related to the specific local
structures formed by different polygons. The lower bound 3.8
is given by the packing of regular triangles, in which a perfectly
ordered structure actually gives CN = 3 with three triangles
enclosing a central one. However, with a slight distortion, an
extra neighbor triangle may be added, as indicated by the
second peak of the RDF (Fig. 8). On the other hand, the upper
bound 5.8 is given by regular hendecagon rather than regular
hexagon, as regular hendecagon is close to disk in shape and
hence easily forms the hexagonal lattice structure.

The relationship between 〈CN〉 and n can also be divided
into G1 and G2 as shown in Fig. 11. For both groups, 〈CN〉
increases with the increase of n and the decrease of μ. And
with the increase of n, the effect of μ on 〈CN〉 becomes more
profound. This is probably also because the rearrangement
of a regular polygon with more edges requires less rotation.
When μ � 0.3, 〈CN〉 for regular hexagon is always the
highest, whereas when μ is decreased to 0.1, 〈CN〉 of G2
polygons increases more sharply with n, and 〈CN〉 for regular
hendecagon is even larger than that of regular hexagon and
closer to 6, probably because the hexagonal lattice of regular
hendecagon can stand more distortions than that of regular
hexagon.

The relationship between CN and ρ is always interesting
to researchers as it can be related to the modeling of ρ by
isostatic conjecture [13,14]. From the application view, such
relationships can help model transport properties of packings
using a single macroscopic parameter ρ [41]. Here we plot
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FIG. 12. (Color online) Mean coordination number as a function
of packing fraction for regular polygons with different edges
under different sliding friction coefficients. Literature data are from
Duparcmeur et al. [18] for regular pentagon.

ρ and 〈CN〉 for the packings of regular polygons in Fig. 12.
Interestingly ρ presents a simple positive linear correlation
with 〈CN〉 for each kind of polygon with different μ. However,
the slope of the linear correlation is dependent on n. For
G1 polygons, regular triangle has the flattest slope, whereas
square has a steeper slope and regular hexagon the steepest,
in accordance with the effect of μ on 〈CN〉. For G2, regular
pentagon has a similar slope as that of regular hexagon. Note
that the results are comparable to a previous study of the
random close packing of regular polygons [18]. When n � 7,
the slopes are even steeper than those of regular hexagon but
rather similar for different n. This finding indicates that the
relationship between local structures and the global packing
fraction could be different for different polygons, especially
when n < 7.

D. Voronoi analysis

We use the aforementioned digitizing method to obtain
the Voronoi tessellation for each particle in a packing. The
accuracy of such method is dependent on the dimensions of the
pixels. To test how small is enough for the pixels, we have tried
different-sized pixels to digitize random orientated polygons,
and the areas of the pixels inside the polygons are summed and
compared to the theoretical areas of the polygons. It is found
that reasonable accuracy with less than 1% can be obtained
by choosing a pixel of dimensions 0.025d × 0.025d. After
obtaining the Voronoi tessellations as shown in Fig. 5(c), we
perform analysis on both their topological property (neighbor)
and metrical property (area).

1. Voronoi neighbor

Two particles are regarded as Voronoi neighbors to each
other if their Voronoi tessellations share a boundary. The
number of Voronoi neighbors for a particle is defined as VN,
which is similar to but different from CN, as it is not necessary
for a Voronoi neighbor to be in contact with the given particle.
Figure 13 shows that the mean Voronoi neighbor number 〈VN〉

FIG. 13. The mean Voronoi neighbor per particle as a function
of polygon edge number under different sliding friction coefficients:
©, μ = 0.1; ×, μ = 0.3; �, μ = 0.5; +, μ = 0.9.

increases with polygon edge number sharply from n = 3 to
n = 5, and then almost levels off at a constant value. Such a
constant value is about 5.9 when μ = 0.1 but decreases with
the increase of μ. At μ = 0.9, 〈VN〉 is all about 5.8 when
n � 5. This again indicates that the local structures for the
packings of regular polygons of five or more edges will mainly
be like a hexagonal lattice, with six particles enclosing a center
one, as observed in Fig. 6. However, the real contact number,
i.e., 〈CN〉 could be smaller and more sensitive to n and μ,
as a polygon may needs to contact with fewer particles to be
mechanically stable. That is, when n � 5, regular polygons
could be mostly caged in a hexagonal lattice as speculated in
other studies [17,32], but could have different CN depending
on their shapes. The slight gap of 〈VN〉 from 6 is due to
some very irregular local arrangements in the packings, which
are small in ratio but will be increased by the increase of
μ. On the other hand, for regular triangle and square, 〈VN〉 is
significantly lower than 6 and decreases with the decrease of μ,
as these two polygons will have their specific local structures
which are very different from the hexagonal lattice and these
local structures will be enhanced by a lower friction.

2. Voronoi area

We divide the area of a Voronoi tessellation by that of the
enclosed particle, and obtain the reduced Voronoi area α. Its
reciprocal can be regarded as the local packing fraction, which
has been used in Fig. 6. For a packing of identical particles
the global packing fraction can be given as ρ = 1/〈α〉. To
find the relationship between the local and global packing
fractions is important to the theoretical modeling of packings
[12,13,23,42], while it is found that the Voronoi area or
volume can be better modeled than local packing fraction.
For generality, here we use the reduced free Voronoi area as
ζ = α − 1, and thus make ζ start from 0. Such a concept is
often used in the amorphous systems. Figure 14 demonstrates
the distributions of ζ for different regular polygons. It is found
that these distributions can always be described by log-normal
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FIG. 14. (Color online) Probability distributions of the reduced
free areas of Voronoi tessellations for the packings of different regular
polygons (μ = 0.3). Lines are the fitted log-normal distributions.

distributions given by

f (ζ ) = 1

σ
√

2πζ
exp[−(ln ζ − ν)2/2σ 2], (1)

where f (ζ ) is the probability density; v and σ are the
geometrical parameters for the distribution, which are fitted
for each packing. Such findings are in agreement with the
distributions of reduced Voronoi volume for the packings of
spherical particles [7]. In other studies, there are some different
distributions applied, e.g., the gamma distribution of the scaled
Voronoi volume in the jamming of spheres [8,12] and the
Gaussian distribution of the local packing fraction for the
packings of ellipsoidal particles [42]. The differences probably
result from the different distribution variables used and the
different packing systems considered which deserve further
study. Notably here the log-normal distribution is observed by
all the studied regular polygons.

The log-normal distributions are just controlled by the
two parameters v and σ , while their dependencies on the

edge number and the sliding friction coefficient are given
in Fig. 15. It can be seen that, still, they can be clearly
divided into G1 and G2. In both groups, ν decreases with
the increase of n and the decrease of μ, while the effect of
μ is more profound for G1 polygons. On the other hand,
σ is significantly larger for G1 polygons, and also changes
more remarkably with the varying μ, whereas σ for G2
polygons only slightly increases with n increasing, and nearly
collapses for different μ except for the lowest μ. For an
ideal log-normal distribution defined by Eq. (1), the mean
and variance of ζ can be given by eν+σ 2

and (eσ 2 − 1)eν+σ 2
,

respectively. We thus calculate the mean ζ and then the packing
fraction according to ρ = 1/(〈ζ 〉 + 1). The calculated packing
fractions are compared to the simulated ones in Fig. 16(a). The
errors are within ± 5%, which demonstrates the accuracy of
the log-normal distribution fitting. It can be seen that normally
ρ is underestimated, which is because the ideal log-normal
distribution has an infinite long tail with ζ → ∞, whereas
actually ζ has an upper bound due to the stability limit. Hence
the mean ζ of the distribution will be higher than the real
mean ζ , resulting in a lower ρ. The variance of ζ has also
been calculated and shown in Fig. 16(b), from which it can be
seen that the distributions are significantly more dispersed for
G1 polygons than those of G2 polygons. This is probably
because for G1 polygons the densely and loosely packed
regions are more different in ζ than those for G2 polygons.
Thus the variances of ζ for G1 polygons also undergo a more
complicated change with µ.

E. Bond-orientational order Q6

In parallel to the translational order, the orientational order
can be evaluated by the so-called bond-orientational order
based on a particle and its neighbors [6,25,32,43]. The n-fold
bond-orientational order of particle j can be described by [32]

qj
n =

∣∣∣∣∣∣
1

Nj

Nj∑

k=1

eniθjk

∣∣∣∣∣∣
, (2)

where k is a neighbor particle of j,Nj is the number of the
neighbors, and θjk is the angle between an arbitrary fixed axis

(a) (b)

FIG. 15. Parameters v and σ for the log-normal distribution as a function of polygon edge number under different sliding friction coefficients:
©, μ = 0.1; ×, μ = 0.3; �, μ = 0.5; +, μ = 0.9.
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(a) (b)

FIG. 16. (a) Calculated packing fraction (from the mean value of the log-normal distributions of free Voronoi area) versus simulated packing
fraction. (b) Variances of the log-normal distributions as a function of polygon edge number under different sliding friction coefficients: ©,
μ = 0.1; ×, μ = 0.3; �, μ = 0.5; +, μ = 0.9.

and the vertex from particle j to k. The mean local bond-
orientational order is averaged over all particles as Qn =
q

j
n = 1

N

∑
q

j
n , where N is the particle number. Since in the

previous analyses we find the hexagonal lattice structure is
most favorable in our packings, we focus on the analysis of
Q6 here.

Figure 17 shows that with a fixed sliding friction coefficient,
generally Q6, increases sharply with the edge number up to
n = 6 and then almost levels off. The decrease of μ always
increases Q6, which is the same as its effect on the translational
order. Regular triangle and square have significantly low Q6

as they do not pack into hexagonal lattices. Regular pentagon
yields a relatively higher Q6 but still obviously lower than
those with n � 6, suggesting that in the packing of regular
pentagons, local bond-orientational orders are close to but
still a certain distance from the sixfold symmetry. This can
be related to the RDF peaks of regular pentagon packings
in Fig. 8, in which the first peak representing the sixfold
symmetric configuration is not much stronger than the second

FIG. 17. The sixfold bond-orientational order Q6 as a function
of polygon edge number under different sliding friction coefficients:
©, μ = 0.1; ×, μ = 0.3; �, μ = 0.5; +, μ = 0.9.

peak. On the other hand, for n � 6, Q6 almost flattens out,
indicating that the regular polygons with more than six edges
also tend to form the hexagonal lattice structures as regular
hexagon, which is consistent with other analyses. And when
μ is low, Q6 almost reaches 1.0 for n � 6, showing an almost
perfect sixfold symmetry for the particle-neighbor bonds.
However, as shown in the above analyses, particles themselves
will have disordered orientations which result in distortions
in the lattices and hence different packing fractions. But
these disordered orientations are not considered in Q6 since
the bond-orientational order is dependent only on the bonds
connecting the centers of two particles. It is thus expected that
a more comprehensive orientational order parameter can be
proposed for nonspherical particles.

IV. CONCLUSION

We have simulated the packings of 2D granular regular
polygons by using a recently developed DEM-based nu-
merical model. The effects of shape and friction on the
packing structures have been quantitatively analyzed both
globally and locally. In general, the group of geometrically
nonfrustrated polygons, including regular triangle, square,
and hexagon, have higher packing fractions than the other
group consisting of geometrically frustrated polygons. In the
first group, ρ increases with the increase of edge number
n, while in the second group, ρ is the lowest at n = 7
and approaches the maximum ρ of disks with the increase
of n. The decrease of sliding friction coefficient µ always
increases ρ.

The changes in ρ have been linked with the microstructure
quantities in terms of radial distribution function, coordination
number, Voronoi tessellation, and bond-orientational order.
Specifically, the characteristic peaks in the RDF become more
distinguished with the increase of n and the decrease of µ,
while their positions are only dependent on n. Generally
the stronger peaks represent the increase in the translational
order which leads to the increase of ρ. On the other hand,
Q6 increases with the increase of n and the decrease of µ,
indicating the increase of the sixfold bond-orientational order
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as well. The increase of µ decreases the mean coordination
number, and its effect is more profound for polygons with a
higher n. Interestingly there is a positive linear relationship
between 〈CN〉 and ρ while the slope is dependent on n. Free
areas of Voronoi tessellations, which can be related to the local
packing fractions, are found to always present a log-normal
distribution form. The effects of n and µ on the distribution
parameters are quantified.

These analyses establish a clearer picture for the mi-
crostructure of the packings of regular polygons and provide
more comprehensive relationships between the microstructure
and the global packing fraction, which can pave a way to the
theoretical modeling of the effects of shape and friction on the
packing structures of nonspherical particles.

Finally we should note that the simulated packings in
this work are obtained with a well-defined packing method,
which is comparable to pour packing under gravity. The
structures of some of these packings have been shown to be
comparable to those obtained using other methods in terms
of packing fraction and some structural parameters, whereas
we cannot assert that these packings are method independent.
In the last two decades, it is found that for the packings

of uniform spheres, there are several critical packing states
with reproducible packing fractions, which are independent of
packing protocols but represent the critical structure changes
of the system. For example, random close packing (RCP)
originally defined from the packing method can be more
precisely defined as the maximally random jammed (MRJ)
state by using certain structural parameters [43]. But currently
it is not clear if these states also exist in other packing
systems such as the packings of polygons. We think the critical
packing states for nonspherical particles will be much more
complicated than those for uniform spheres, which are actually
not the focus of this work. However, we believe that the
improved understandings of the structures of the nonsphere
packings, as presented in this work, could help achieve such
findings in the future.
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