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Dynamic stabilization of a coupled ultracold atom-molecule system
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We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system
which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable
equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution
gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied
that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further
interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the
dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed
by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis
is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the
applicability of the mean-field results.
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I. INTRODUCTION

The inverted pendulum is a typical example of the unstable
equilibrium phenomena in classical mechanics, which repre-
sents a hyperbolic fixed point in the phase space corresponding
to a metastable orientation of the pendulum. It is well known
that even if a perfect preparation of the metastable orientation
is initially possible, in reality both thermal fluctuations
and unavoidable quantum fluctuations would still perturb
the pendulum from the metastable orientation and lead to
further dynamical evolution [1,2]. However, the unstable
equilibria of physical systems can be dynamically stabilized
by external periodic forcing. For the inverted pendulum, it
can be stabilized by vibrating the pivot point (Kapitza’s
pendulum) [3]. The rapid advances in ultracold atomic physics
over the past several decades provide opportunities to explore
similar dynamical behavior in quantum many-body systems
[4–6]. Dynamic stabilization of nonequilibrium Bose-Einstein
condensate (BEC) has been suggested by changing the sign
of the scattering length [7–10], tuning the spin-dependent
interaction strength [11], and varying the trapping potential in
a double-well BEC [12–14]. The nonequilibrium dynamics of
an unstable quantum pendulum [15] and dynamic stabilization
[16] in a spin-1 BEC have been investigated experimentally.
The relevant study in this field has been used for controlling the
superfluid-Mott insulator phase transition [17], and generating
squeezed states [18–22] and non-Gaussian states [15], which
are potential resources for quantum enhanced measurements
[23] and quantum information processing [24].

Recently, the field of associating ultracold atoms into
molecules has received more interest [25,26] owing to the
applications, ranging from research on BCS-BEC crossover
[27–29] to the exploration of quantum phase transition [30].
In addition, the coupled atom-molecule systems have deep
quantum optical analogies [31,32]. Bosonic molecules coupled
to bosonic atoms is a matter-wave analog of parametric
coupling of photons, which has important applications in
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generating nonclassical light fields. Matter-wave bistability
[33], periodic modulation effects on phase transitions [34], and
virtual monopoles [35] in coupled ultracold atom-molecule
quantum gases have been investigated. However, the dynamic
stabilization of the systems has never been demonstrated.
In this paper we explore the dynamic stabilization of a
coupled bosonic atom-molecule system including many-body
interactions between particles, which lead to the existence of
an unstable equilibrium state. We stabilize the system to this
state by employing a short-pulse phase-periodic modulation.
We find that a long-pulse modulation will drive the system
into high-amplitude periodic motions or chaotic motions.
In particular, we show that these mean-field results can be
strongly modified when we take into account the effects of
quantum fluctuations.

II. MEAN-FIELD MODEL

We start from a three-mode model which describes the
atom-heteronuclear molecule conversion with two atomic
modes and one molecular mode. The basic assumption here is
that the spatial wave functions for the three modes are fixed so
that we can associate each mode with an annihilation operator
âj of a particle in atomic mode j = 1,2 or in molecular mode
j = m. Under this approximation, the Hamiltonian takes the
form [36]

Ĥ = �Nm +
∑
i,j

χijNiNj + η(e−iφ â
†
1â

†
2âm + H.c.), (1)

where the detuning � represents the energy difference between
the molecular and the atomic modes, which can be tuned by an
external field, ηe±iφ refers to the atom-molecule coupling, and
χij = χji denotes the interaction between mode i and mode j

proportional to the s-wave scattering length. In this model,
the total atom number N = N1 + N2 + 2Nm (Nj = â

†
j âj )

is a conserved quantity. Indeed, D = â
†
1â1 − â

†
2â2 is also a

conserved quantity, which characterizes the particle-number
imbalance between the two atomic modes. Note that the
coupling parameter ηeiφ is complex. To achieve this, one can
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split the laser pulse into two beams and then recombine and
focus them on the system. As a result, the phase factor φ can
be determined by the difference in optical paths between the
two laser beams [37]. It should be mentioned that the above
single-mode approximation concentrates on condensate modes
only and neglects the effects of the particles occupying other
modes, which is only valid at zero temperature [38] or when
the energy distribution of the thermal particles characterized by
kBT (kB is the Boltzmann constant and T is the temperature)
is much smaller than the effective coupling strength η

√
N

[39]. In the present study, we restrict our consideration to the
symmetric case where the two atomic modes have the same
particle number, i.e., D = 0. In this situation, the Hamiltonian
can be simplified by using the conserved quantities. By
neglecting the trivial constant terms, we have

Ĥ = χN2
m + βNm + η(e−iφ â

†
1â

†
2âm + H.c.), (2)

where χ = χ11 + χ22 + χmm + 2(χ12 − χ1m − χ2m) and β =
� − N (χ11 − χ1m) − 2Nχ12 − N (χ22 − χ2m). We assume
that the phase φ(t) = �θ · δτ is a periodic function of time,
where δτ = δ(t − nτ ) is the δ function, with n = 0,1,2, . . . ,
and �θ is the magnitude of phase shift when t = nτ . We
further suppose that the phase shift is turned on only at certain
times of a period τ .

Subsequently, we use the mean-field approach to describe
the system, which has been proven to be a powerful tool for the
study of BECs. In this description, we can treat the operator
âj as a complex number in Heisenberg’s equation due to the
bosonic nature of the particles, i.e., âj ∼ √

Naj , and then the
dynamical equations become (� = 1)

i
d

dt

(
aa

am

)
=

(
0 
e−iφa∗

a


2 eiφaa β + 2α|am|2

)(
aa

am

)
, (3)

where aa = a1 = a2 means that the dynamical properties of
two atomic modes are identical. The effective particle interac-
tion and atom-molecule coupling are α = Nχ and 
 = √

Nη,
respectively. The normalization condition becomes 2(|aa| +
|am|) = 1. Actually, in the large-particle-number limit, i.e.,
N � 1, the mean-field model, (3), gives a nice approximation
of the quantum model, (1), with quantum fluctuations of order
1/N [40].

To simplify the problem, we express the complex variable
al by its module and phase, i.e., al = √

nle
iθl , with l =

a,m. Considering the fact that the system consists of two
conserved quantities N and D, our problem can be described
by two independent variables: the normalized population in
the molecular mode p = nm ∈ [0,1/2] and the relative phase
q = 2θa − θm between the atomic and the molecular modes. In
this description, the normalized population in the atomic mode
is na = (1 − 2p)/2. As a result, Eq. (3) can be expressed as

dp

dt
= 


√
p(1 − 2p)2 sin(q + φ), (4)

dq

dt
= β + 2αp + 


1 − 6p

2
√

p
cos(q + φ). (5)

It is noted that the variables p and q in Eqs. (4) and (5) are
canonically conjugate. With the help of dp/dt = −∂H/∂q

and dq/dt = ∂H/∂p, we can obtain the corresponding

FIG. 1. (Color online) Classical energies and fixed point distri-
bution in the (p,q) phase space with β = 
 = 1 and α = −3. The
central filled (red) circle denotes the unstable saddle point (1/4,π ).

classical Hamiltonian as

H(t) = αp2 + βp + 

√

p(1 − 2p)2 cos[q + φ(t)]; (6)

when φ = 0, in a simple mechanical analogy, H describes
a nonrigid pendulum, of tilt angle q and length proportional
to 


√
p(1 − 2p)2 that varies with p. It can be found that

the nonlinearity of the system arises from two factors:
the collisional particle interactions and the atom-molecule
coupling. We denote the fixed points in the (p,q) phase space
(p̄,q̄), which can be determined by the equilibrium equations
dp/dt |(p̄,q̄) = dq/dt |(p̄,q̄) = 0.

In a suitable range of parameter values, i.e., −9
2(2 +√
3 + 9
2)/(−2 + 18
2) < α < −(1 + √

2
), with β = 1,
there are three stationary solutions of q with q + φ = π .
Further analysis shows that the middle solution is dynamically
unstable and the other two are stable [36]. Such behavior is
typical in bistable systems [41]. In Fig. 1, we illustrate the
classical phase-space structure for β = 
 = 1 and α = −3.
In this case, a saddle point, i.e., (p̄,q̄) = (p0 = 1/4,π ), rep-
resents an unstable equilibrium state possessing an imaginary
excitation frequency which gives a signature of dynamical
instability or matter-wave bistability [33]. The existence of
this point corresponds to the occurrence of a swallowtail loop
structure for the mean-field energy levels [42], which can lead
to the breakdown of adiabaticity of the tunneling [43] and
the delocalization for the dynamics [44]. The unstable fixed
point is located at the intersection of the lines p = 1/4 and
q = π , and the trajectory passing through this point develops
a separatrix that separates the whole classical phase space
into three regions with different orbital motions. It should
be mentioned that the fixed points in the classical phase
space just correspond to the eigenstates of the mean-field
model, (3). From this perspective the saddle point denotes
a metastable eigenstate with local maximum energy and refers
to a situation with a mixture of equal atoms and molecules
(i.e., 2nm = 2na = 1/2).
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FIG. 2. (Color online) Map of the stability region for molecular
population p after 100 of evolution. The stable region is dark blue
and the unstable region is dark red. The results shown are the relative
deviations |p̄ − p0|/p0 obtained from time-averaged calculations. A,
B, and C indicate the modulation parameters used for the data in other
figures.

III. DYNAMIC STABILIZATION

The numerical simulation begins from the unstable state
(p0,π ) by employing the fourth- through fifth-order Runge-
Kutta algorithm with an adaptive time step. Dynamic sta-
bilization, expecting very small fluctuations of p0, can be
achieved by using a periodic phase shift that denotes a sudden
translation along the q direction in the classical phase space.
We investigate the range of modulation periods and amplitudes
that provides stabilization of the atom-molecule conversion
dynamics. The calculated results are shown in Fig. 2, which
displays a map of the stability region versus the modulation pe-
riod τ and amplitude �θ . The stability criterion applied here is
|p̄ − p0|/p0 < 0.15, with p̄ = ∫ t

0 pdt ′/
∫ t

0 dt ′, for more than
10 runs at 100 of evolution indicated by the dark-blue region
corresponding to a nearly maximum atom-molecule (50:50)
mixing state. In Fig. 2 we see that the stability region covers
both short- and long-pulse periodic modulation and its area is
almost as large as the instability region indicated in dark red.

To show the validity of the stability diagram obtained
by using the time-averaged criterion, we demonstrate the
time evolution of the molecular population p for different
modulation parameters. Both case A and case C correspond
to the time sequences indicated in the stability region. Case
B is chosen to produce a more unstable condition. We
find that in the modulated case (see Fig. 3), the period of
the oscillation of p around p0 is completely determined
by the period of the modulation and the nonperiodicity of
the oscillation increases with increasing modulation period.
The heavy gray line showing the unmodulated evolution is
given for comparison. In the unmodulated case, the period of
Rabi oscillation from the initial state (p′

0 = 0.25001, q = π ),
which slightly deviates from the unstable fixed point, can be
easily evaluated by making use of the conservation of the
classical energy, (6), whose value is determined to be −0.1875

FIG. 3. (Color online) Evolution of p from p0 for different
modulation parameters �θ and τ (cases A–C in Fig. 2). The thick
gray line showing the unmodulated evolution is given for comparison.

from the initial condition. With the help of the expression TR =∮ |∂q/∂H|dp = 2
∫ pmax

p′
0

|∂q/∂H|dp, with pmax corresponding

to the maximum (
.= 0.4812) of the reachable molecular

population p, we obtain TR
.= 42 and find that it is in good

agreement with the numerical results shown in Fig. 3. From the
time evolutions, it can be seen that the dynamic stabilization
works well in case A and the maximum fluctuation of p0

(i.e., |p(t) − p0|) is less than 0.08. However, in case B and
case C the maximum deviations can reach 0.16 and 0.25,
respectively. These results imply that in both these cases
dynamical instability occurs. Unstable dynamics showing
free evolution of atom-molecule conversion is not our goal.
Obviously, the stability phase diagram illustrated in Fig. 2
based on the time-averaged criterion can not ensure dynamic
stabilization during the whole time-evolution process.

For comparison, we calculate the maximum deviations from
the initial value p0 during the process of dynamical evolution
with different modulation parameters. The maximum deriva-
tion is defined by δpmax = max[|p(t) − p0|/p0] with the time
range from 0 to 100. The dependence of δpmax on both the
modulation period τ and the amplitude �θ is demonstrated in
Fig. 4. We also adopt δpmax < 0.15 as a stability criterion and
then we find that the stability region is significantly reduced
compared with that in Fig. 2. In particular, we see that the
stability region in Fig. 4 only covers the range of modulation
with short periods, which is very different from that in Fig. 2.

Similarly, we choose three typical points in Fig. 4, referring
to three sets of modulation parameters, to show the validity
of the stability diagram based on the maximum deviation
criterion with the help of the time evolution of the molecular
population p. The corresponding results are demonstrated
in Fig. 5. Case A′ is chosen to produce a stable condition,
while case B′ and case C′ correspond to the time sequences
indicated in the instability region. We see that in both the stable
(A′) and the weakly unstable (B′) cases the atom-molecule
conversion dynamics display periodic oscillations and the
period is completely determined by the period of modulation.
However, in the strongly unstable (C′) case the atom-molecule
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FIG. 4. (Color online) Map of the stability region for population
p0 after 100 of evolution. The stable region is blue and the unstable
region is red. Results shown are the maximum deviations max[|p(t) −
p0|/p0] during evolution. A′, B′, and C′ indicate the modulation
parameters used for the data in the other figures.

conversion dynamics show a nonperiodic stochastic motion.
From the time evolutions, it can be found that the dynamic
stabilization works well only in case A′ and the maximum
fluctuation of p0 (i.e., |p(t) − p0|) is less than 0.02. In case
B′ and case C′ the maximum deviations can reach 0.15 and
0.25, respectively. Therefore, the stability diagram based on
the maximum deviation criterion shown in Fig. 4 can ensure
dynamic stabilization. In contrast to the stability diagram
based on the time-averaged criterion, the range of modulation
parameters for stability greatly decreases. For short-pulse
modulation, the system can be stabilized over a wide range
of modulation amplitudes.

The above results can be explained in terms of tracing
the orbits of motion in the classical phase space. In Fig. 6
we illustrate two orbits starting from the same fixed point
O and employing modulations with different periods and the

FIG. 5. (Color online) Evolution of p from p0 for different
modulation parameters δθ and τ (cases A′, B′, and C′ in Fig. 4).

FIG. 6. (Color online) Traces of time evolution of an unstable
point (1/4,π ) in phase space during the first five periods for different
modulation parameters.

same amplitudes. For simplicity, we only show partial orbits
corresponding to the first five periods of modulation. It is clear
that, during every period of time evolution, for a short-pulse
modulation (case A′) the trajectory formed is very short and
thus the derivation from p0 is very small, while for a long-pulse
modulation (case C′) the trajectory formed is very long and
thus a great derivation from p0 is seen. It should be mentioned
that all results of q are shown modulo 2π due to the periodicity
of the classical phase space.

To see the overall dynamical characteristics, for the previ-
ous six cases we obtain the Poincaré section of the trajectories
at moment t = nτ , with n being an integer as shown in
Fig. 7. From the modulation period τ it is easy to obtain the
corresponding frequency ωm. For cases A, B, C, A′, B′, and C′,
they are, respectively, 2π/0.5, 2π/1, 2π/4, 2π/0.1, 2π/2,

FIG. 7. (Color online) Poincaré section of the trajectories formed
by evolving the system from the unstable point (1/4,π ) for different
modulation parameters. Points plotted only at time t = nτ . The
dashed horizontal black line denotes p0 = 1/4.
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and 2π/4. We can divide these cases into two classes by
comparing the modulation frequency ωm with the frequency
of the intrinsic motion of the system, characterized by 
 = 1.
When ωm � 
 we denote them off-resonance cases, including
cases A, B, A′, and B′. When ωm ∼ 
 we call them resonance
cases such as cases C and C′. In the off-resonance cases, the
snapshots of the orbits at multiple periods exhibit periodic
motions; i.e., as evolution proceeds, the snapshots can link into
lines (see cases A, B, and A′) or repeat at some fixed points (see
case B′ ). In the strong resonance cases, the dynamical behavior
of the molecular population is very complicated due to the
resonance between Rabi oscillation and periodic modulation.
For different modulation parameters, it can be seen that p

shows different behavior. In this situation we cannot find a
periodic orbit as that in the off-resonance modulation cases.
In Fig. 7 we see that the chaotic motion appears and one can
verify this by calculating the maximum Lyapunov exponents
[34].

IV. QUANTUM SIMULATION

In this section, we give a brief analysis beyond the mean-
field description. The numerical simulations are based on the
second quantized Hamiltonian, (2), with D = 0. We begin the
analysis by writing Hamiltonian (2) in the Fock basis |j,j,N −
j 〉 (where j is the number of atoms in each atomic mode and
N − j is the number of particles in the molecular mode with
j = 0,1, . . . ,N ). Since the Hamiltonian conserves the total
atom number N and D = 0, for N = 2M it is convenient
to adopt the so-called “pairs” basis |n,M − n〉 (where n and
M − n is the number of pairs of atoms in atomic and molecular
modes, respectively, n = 0,1, . . . ,M). In this basis, the state of
the system in vector form reads ψ(t) = �

M=N/2
n=0 Cn|n,M − n〉

and the Hamiltonian can be written as a tridiagonal ma-
trix, i.e., Hl,n = χ (M − n)2δl,n + β(M − n)δl,n + ηe−iφ(n +
1)

√
M − nδl,n+1 + ηeiφn

√
M − (n − 1)δl,n−1, and the evolu-

tion equation becomes

i
∂

∂t
Cj = �M

l=0Hj,lCl. (7)

For a fixed N , we evolve the system from a coherent state
(i.e., Gross-Pitaevskii state) [40], ψ(t = 0) = 1√

M!
(aa† +

ba
†
m)M = �M

l=0

√
M!

l!(M−l)! (
√

1−2p0)leiql(
√

2p0)M−l|l,M − l〉,
with p0 = 1/4 and q = π , where a† is the atom-pair creation
operator and |0〉 is the vacuum state. According to [40],
the above coherent state corresponds to an eigenstate of the
quantum system and the maximum difference in population
probability between the two states is of the order 1/N .

The quantum dynamical simulation is performed by nu-
merical integration of Eq. (7). For the situation without
modulation (see Fig. 8), it can be seen that the deviation of
the time-average fraction of molecules from 2p0 decreases
monotonically as the total atom number N increases at very
short time evolution (e.g., t = 2). This verifies the validity of
the mean-field description at the large-particle-number limit.
However, when t = 150, the deviation will oscillate with N

and this phenomenon reflects the effects of initial quantum
fluctuations on the long time evolution.

FIG. 8. (Color online) Quantum evolution results at t = 2 and
t = 150 for different particle numbers N = 2M .

For the situation with modulation, we choose N = 40
as an example to show the dynamic stabilization when the
system evolves at t = 150. In Fig. 9 we show the results for
various modulation amplitudes and periods. Similarly to the
mean-field case in Fig. 2, we also adopt the stability criterion
|p̄ − p0|/p0 < 0.15 and indicate it by the dark-green and
blue regions. Compared with the mean-field situation, two
noticeable features are found: (i) the stability region only
covers the supershort-pulse periodic modulation, and (ii) in the
supershort-pulse region, there are instability regions, indicated
in yellow and red, near the modulation amplitude �θ = π . The
above results imply that in a finite quantum system the quantum
fluctuations become very significant and the mean-field picture
is not sufficient. However, the mean-field study can also

FIG. 9. (Color online) Map of the stability region from quantum
evolution after 150 with N = 40. The stable region is dark green
or blue, while the unstable region is yellow or red. Results shown
are the relative deviations |p̄ − p0|/p0 obtained from time-averaged
calculations.
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provide important assistance in qualitative analysis of the
corresponding quantum system.

V. CONCLUSION

In summary, we have numerically presented the dynamical
stabilization of the atom-molecule conversion dynamics of
ultracold bosonic quantum gases. In this study the many-body
effect of the coherent particle interactions has been considered
and a periodic phase modulation has been used to stabilize the
system. In the mean-field treatment, we find that the unstable
equilibrium state corresponds to a saddle point in the classical
phase space, which can be dynamically stabilized by applying
a short-pulse modulation. However, a long-pulse modulation
will drive the unstable state in the instability region. In
particular, when a strong resonance modulation is used the
dynamical motion of the system will be chaotic. The stability
diagram for the range of modulation periods and amplitudes
that stabilizes the dynamics is given. We find that the stability

region obtained from the time-average calculation is very
different from that based on a maximum absolute deviation
analysis. By using the orbit tracking method, we show that
the latter results are more believable, although the stability
region greatly decreases in this situation. Finally, a brief
quantum analysis is given and a qualitative agreement with
the mean-field analysis is shown. In experiments, similarly to
the quantum many-body spin-1 BEC [15,16], the binary BEC
could be a promising candidate for verifying our theoretical
analysis due to the advanced experimental techniques available
in the fields of atomic and optical physics [45].
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