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We study the thermostatistics of a damped bimodal particle, i.e., a particle of mass m subject to a work reservoir
that is analytically represented by the telegraph noise. Because of the colored nature of the noise, it does not fit
the Lévy-Itô class of stochastic processes, making this system an instance of a nonequilibrium system in contact
with a non-Gaussian external reservoir. We obtain the statistical description of the position and velocity, namely
in the stationary state, as well as the (time-dependent) statistics of the energy fluxes in the system considering
no constraints on the telegraph noise features. With that result we are able to give an account of the statistical
properties of the large deviations of the injected and dissipated power that can change from sub-Gaussianity
to super-Gaussianity depending on the color of the noise. By properly defining an effective temperature for
this system, T , we are capable of obtaining an equivalent entropy production-exchange rate equal to the ratio
between the dissipation of the medium, γ , and the mass of the particle, m, a relation that concurs with the case
of a standard thermal reservoir at temperature, T = T .
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I. INTRODUCTION

The problem of Brownian diffusion as studied by Smolu-
chowski and Einstein, or other more generic cases that fit
the Kramers equation, allow us to describe the probabilistic
behavior of a particle of mass m—which we dub the focal
particle—in a medium wherewith it continuously exchanges
heat. It is this endless energy exchange related to an unceasing
production of entropy that makes of this kind of system a
paradigmatic case of nonequilibrium statistical mechanics.
From these models, it is possible to establish relations between
dynamical features of the focal particle—e.g., its typical
square velocity and diffusivity—and physical properties of
the medium—like its dissipation constant and temperature—as
well as other physical constraints the particle is subject to, such
as the form of a confining or interacting potential [1].

From the perspective of a description in the space of
physical observables (position and velocity), problems related
to Brownian motion are based on the Langevin equation, which
assumes that in a infinitesimal interval of time the focal particle
suffers a large number of collisions with the particles of the
medium. Furthermore, those collisions relax instantaneously
and act upon the particle independently one another. Under this
set of assumptions, the outcome is a Gaussian stochastic force.

Nowadays, it is well known that nonequilibrium situations
corresponding to the Langevin equation with standard Gaus-
sian terms (either white or colored) represent a small stake
of the problems that surround us [2–7]. For instance, we just
need to consider a little dense medium for which the impact
of its particles with the focal particle occur at relevant rates,
e.g., of the order of the (inverse of the) relaxation scale of
the system. Other cases include molecular motors [5,8,9] or
colloidal systems [10]. Not being described by Gaussian noise,
the cumulants of order greater or equal than three do not vanish,
which means that a probabilistic treatment of the problem
based on solving an associated Fokker-Planck (or Kramers)
equation is, at best, an approximation [11].

These non-Gaussian noise features pose interesting ques-
tions regarding its impact on the thermostatistical behavior

of a mechanical system. Explicitly, according to the Lévy-Itô
theorem on the decomposition of the measure, any white noise
can be written as the superposition of continuous measure
Wiener (Brownian)—related to Gaussian noise—and singular
measure Poissonian—related to shot-noise—processes [12].
Recently, it was proved that shot-noise systems can have
radically different transport properties, namely when the
system has got nonlinear elements [13–16].

Nevertheless, there are still many situations that do not
fit the superposition of white noises, that is, the case of
the telegraph noise, also known as dichotomous or two-state
Brownian noise, which can assume two values that randomly
alternate between them at given specific rates [17–19] and
whose treatment in probability space is not compatible with
the Fokker-Planck equation. Besides the evident theoretical
interest that a different type of noise prompts, the telegraph
noise is appropriate to a quantitative description of nanome-
chanical problems like intracellular bidirectional transport
on cytoskeletal filaments mediated by two sets of molecular
motors—namely kinesin-1 and cytoplasmic dinein—that pull
the load in opposite directions similar to a random tug of
war [20] or the kinetics of protein markers in capillary
media, e.g., the dynamics of calcium ions in blood plasma
[21] as well as nanometric ratchets [22]. Additionally, the
telegraph noise also fits the quantitative description of transport
properties in amorphous materials [23], chromatography [24],
and quantum effects [25–27], among other systems and
phenomena.

Due to its analytical complexity, the problem of dichoto-
mous noise has been treated considering simplifications,
namely overdamping and equal transition rates between states,
as well as symmetrical values for the states [28–30]. However,
even for such conditions the achievement of an utterly exact
and closed solution to the probability density functions is very
restricted. That said, the main focus of this problem has been
the computation of the probability currents, which are a proxy
for the average velocities, the moments of the velocity and
correlations, always considering an overdamped limit with
symmetric noise.
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The present paper aims to treat the generic model of
a particle subject to a telegraph noise without considering
any of the restrictions aforementioned. Besides the statistical
characterization of position and velocity, we introduce a
thermostatistical survey of the system, namely on the fluxes of
heat and work, that can be related to the large deviations of the
dissipated and injected powers and to the entropy production
and entropy exchange by the system. The intermingle of
time-independent and time-dependent results permits us to
establish a proper definition of (effective) temperature of this
actually athermal system.

II. THE MODEL

The evolution of the position, x, and velocity, v, of our focal
particle with mass, m, is defined by the set of equations

m
dv(t)

dt
= −γ v(t) − k x(t) − ζt

(1)

v(t) = dx(t)

dt
,

representing the fact that it is constrained by a harmonic
potential (k x2/2), subject to dissipation (with constant γ ) and
a stochastic force, ζ , that describes the interaction between
the particle and the (work) reservoir. From a physical point of
view, the potential can mimic the action of an optical tweezer
that has a behavior very close to harmonicity [31] or some
intrinsic feature of the system.

Analytically, the telegraph noise corresponds to a stochastic
process, {ζt } that assumes two values, ζ = {a,b}. In time, one
either has ζ = a or ζ = b according to the transition rates μ,
from b to a, and μ̄ = ρ μ, from a to b.

These conditions allow us to write a master equation (see
Appendix A) that yields a stationary distribution,

f (ζ ) = p δ(ζ − a) + p̄ δ(ζ − b), (2)

with

p ≡ μ

μ + μ̄
= μ

μ (1 + ρ)
= μ

μ ρ̂
= ρ̂−1,

(3)

p̄ ≡ 1 − p = ρ̂ − 1

ρ̂
.

At this point, we address the reader to the Appendix A for
further details on the statistics of the noise. In the stationary
state the correlation function1

〈〈ζ (t1) ζ (t2)〉〉 ≡ 〈ζ (t1) ζ (t2)〉 − 〈ζ (t1)〉〈ζ (t2)〉 (4)

reads

〈〈ζ (t1) ζ (t2)〉〉 = �2 P e−α |t1−t2|, (5)

where

� ≡ a − b, α ≡ μ (1 + ρ) = μ ρ̂, P ≡ p p̄. (6)

From Eq. (5), we verify that the telegraph noise is
colored with frequency α; hence the Lévy-Itô theorem on

1We use 〈. . .〉 to represent averages over samples and 〈〈. . .〉〉 for the
cumulants.

the decomposition of the measure does not apply and the
problem of a bimodal particle fits into a different category.
Moreover, since the fluctuations induced in the system by ζ

are colored and the dissipation only depends on the value of
the velocity at time t (and not its past values), the fluctuations
and the dissipation do not have the same origin and thus the
reservoir is classified as external, i.e., it does not abide by
the fluctuation-dissipation relation [32]. As a matter of fact,
taking into consideration the two-state properties of the noise
we can deem a dichotomous athermal reservoir as a work
reservoir since it performs work on the focal particle by pulling
and pushing it during random periods of time. At this point
we would like to note that in this work—and contrarily to
standard studies on the telegraph noise [32]—we are interested
in analyzing the thermostatistics of a particle subject to a
bimodal reservoir represented by that noise. As we shall see in
the next section, this means that in fixing the average energy
of the particle, there must be a univocal relation between α

and the amplitude of the noise, �, so in the white-noise limit,
α → ∞, the square amplitude �2 must go to infinity as well
with the distribution f (ζ ) preserving its bimodal form for
all α.

Looking at Eq. (1), we identify five time scales: The first is
imposed by the medium,

τr ≡ m

γ
, (7)

and is associated with the existence of dissipation leading to a
stationary solution in the velocity; a time scale related to the
potential,

τs ≡
√

m

k
, (8)

is associated with oscillatory terms. In addition, there are time
scales intimately related to the noise; a scale defined by the
color of the noise,

τ ≡ α−1, (9)

and the typical time the noise has a value ζ = a(b),

τa ≡ μ̄−1, τb ≡ μ−1.

The formulation in the space of observables provided by
Eq. (1) bridges with a description of the process in the
space of the probabilities. Imposing f (x,v,t0 | x0,v0,t0) =
δ(x − x0) δ(v − v0) as the initial condition, the evolution of
the probability density function is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
f ′(x,v, a,t) =

[
− ∂

∂x
v + ∂

∂v

γ v + k x − a

m

]
f ′(x,v, a,t)

+μf ′(x,v, b,t) − μ̄ f ′(x,v, a,t)

∂

∂t
f ′(x,v, b,t) =

[
− ∂

∂x
v + ∂

∂v

γ v + k x − b

m

]
f ′(x,v, b,t)

+ μ̄ f ′(x,v, a,t) − μf ′(x,v, b,t),

(10)

with

f (x,v,t) =
∑

ζ

f ′(x,v, ζ,t). (11)
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The visual inspection of Eq. (10) give us an indication about
the intricate character of the solution to this problem and
explains the simplifications introduced in previous works. For
this reason, we have refrained from solving Eqs. (10) and (11)
and opted to directly treat Eq. (1) resorting to Laplace-Fourier
transforms.

A. Method of solution

Let us define the Laplace-Fourier transform as

Õ(i q + ε) ≡ lim
ε→0

∫
O(t) e−(i q+ε) t dt. (12)

After Fourier-Laplace transforming, Eq. (1) becomes

m (i q + ε) ṽ(i q + ε) = −γ ṽ(i q + ε)

− k x̃(i q + ε) + ζ̃ (i q + ε)

ṽ(i q + ε) = (i q + ε) x̃(i q + ε). (13)

Plugging the second line into the first one, we eliminate the
velocity and we have for the position in reciprocal space

x̃(i q + ε) = ζ̃ (i q + ε)

R(i q + ε)
. (14)

The function R(s) is

R(s) = m(s − κ+)(s − κ−), (15)

with zeros located at

κ± = −θ

2
± i  = −θ

2
± i

√
4 ω2 − θ2, (16)

where

θ = τ−1
r = γ

m
, ω2 = τ−2

o = k

m
. (17)

Because the thermostatistical behavior of the system is ruled
by the position, velocity, or (stochastic) force, we consider
a generic quantity, O(t), that in reciprocal space is recast
as

Õ(i q1 + ε) = h(i q1 + ε) x̃(i q1 + ε). (18)

Accordingly, we have for the velocity hv(s) = s, for the
position hx(s) = 1, and for the noise hζ (s) = R(s). Other
forms of function h(i q1 + ε) can be considered depending
on the observable O.

As we already mentioned, this system reaches a stationary
state and under this circumstance the ergodic property,

〈O〉=O ≡ lim
�→∞

1

�

∫
O(t) dt, (19)

relating averages over samples, 〈O〉, and averages over time,
O, holds. We can connect the computation with the Laplace-
Fourier transform by means of the final value theorem [33],

O = lim
�→∞

1

�

∫
O(t) dt = lim

z→0
z

∫
e−z t O(t) dt. (20)

Using Eq. (12) in Eq. (20) as well as the equality
between time and sample averaging in the stationary state we

Im

i i

i

i

ii

i

Re

FIG. 1. (Color online) Location of the poles of Eq. (22) in the
complex plane. The poles in the lower arch will only be relevant in
time-dependent calculations.

get

〈O〉 = lim
z→0, ε→0

z

∫
dq

2π

∫
dt e−z t+(i q+ε) t 〈O(i q + ε)〉

(21)

〈O〉 = lim
z→0, ε→0

∫
dq

2π

z

z − (i q + ε)
〈O(i q + ε)〉.

For the n-th order moment, the respective equation is straight-
forward from Eqs. (18) and (21),

〈On〉 = lim
z→0, ε→0

∫
z

z −∑n
l=1(i ql + ε)

× h(i q1 + ε) . . . h(i qn + ε)

R(i q1 + ε) . . . R(i qn + ε)

×〈ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)〉 dq1

2π
. . .

dqn

2π
. (22)

The multiple integration in q1, . . . ,qn eliminates all the
modes related to the transient. Analytically, this means that
only combinations of poles that lead to a final expression
proportional to z/z yield an a priori nonvanishing solution.

Only terms proportional to [
∑�

l=1 (i ql + ε)]
−1

are in agree-
ment with that condition. As clear from R(q), those terms arise
from the moments of the noise 〈ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)〉. In
Fig. 1, we introduce the typical structure of the poles related
to Eqs. (21) and (22).

When the reservoir is Gaussian, the computation of
〈ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)〉 is quite simplified because it is
possible to apply the Isserlis-Wick theorem. However, the
distribution of the dichotomous reservoir is bimodal; that
theorem does not apply and 〈ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)〉 has
to be computed without further simplifications besides time
ordering (further details are presented in the Appendix A). This
generally ends up giving quite long expressions. Nevertheless,
we can grasp that

〈ζ̃ (i q1 + ε) . . . ζ̃ (i qn + ε)〉

∝
n∏

l=1

⎡⎣ l∑
j=1

(i qj + ε)

⎤⎦−1
n−1∏
l=1

⎡⎣ l∑
j=1

(i qj + ε) + α

⎤⎦−1

, (23)

where the first product contains the terms that give rise to
nonvanishing calculations of the long-term moments.

062145-3
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If we are interested in obtaining time-dependent statistics,
we can continue using the Laplace-Fourier representation but
without applying the final value theorem,

〈On(t)〉 = lim
ε→0

∫
dq1

2π
. . .

dqn

2π
[e(i q1+ε) t . . . e(i qn+ε) t ]

×〈O(i q1 + ε) . . .O(i qn + ε)〉. (24)

In this case, the poles of the first product lead to the emergence
of the explicit time dependencies, whereas the second product
will lead to damped oscillatory terms that fade out as we
consider times larger than the transient.

III. RESULTS FOR THE LONG-TERM MOMENTS OF THE
VELOCITY AND POSITION

In this section, we intensively use Eq. (22) for O = v and
O = x, implying h(i qj + ε) = (i qj + ε) and h(i qj + ε) =
1, respectively.

For the averages, n = 1, we have

〈v〉 = 0 (25)

and

〈x〉 = A
k

, (26)

with

A ≡ a p + b p̄. (27)

The value 〈v〉 = 0 is a necessary condition for the existence
of a global stationary state, for 〈v〉 	= 0 would lead to a
time-dependent average value of the position. Equation (25)
is independent of the values of the noise {a,b} and its weights
{p,p̄} as well. In other words, during the transient, the system
displaces from x(t = 0) = 0 to move around the average
position Eq. (26), which might not be a minimum of the
potential. As we shall see, this means that there is an energy
cost to maintain that stationary state.

For the variances, 〈〈O2〉〉 = 〈O2〉 − 〈O〉2, we have

〈〈v2〉〉 = 〈v2〉 = �2 P α

γ k̂
, (28)

where

k̂ ≡ k + α (γ + m α). (29)

The second cumulant of the position reads

〈〈x2〉〉 = �2 P γ̂

γ k k̂
, (30)

with

γ̂ ≡ γ + m α. (31)

The value of 〈v2〉 plays a relevant role in nonequilibrium
problems since it is related to the canonical (local) temperature
of the system. Because the telegraph noise is the stochastic
process characterizing our dichotomous reservoir, we christen
the canonical temperature of a bimodal particle the Marconi
temperature which reads

〈K〉 ≡ 1

2
m 〈v2〉 = 1

2
T , T = (γ̂ − γ )

γ k̂
�2 P. (32)

FIG. 2. (Color online) Time evolution of 〈〈v2〉〉 (left panel) and
〈〈x2〉〉 (right panel). The full line corresponds to the results obtained
from 106 numerical implementations of Eq. (1) with m = k = α =
γ = 1, a = −b = 1, and μ = μ̄ = 1/2. The dashed line represents
the stationary state limit 〈〈v2〉〉 = 1/3 and 〈〈x2〉〉 = 2/3 as given by
Eqs. (28) and (33).

Using T , we recast 〈〈x2〉〉 into

〈〈x2〉〉 = γ̂

k (γ̂ − γ )
T , (33)

which differs from the value obtained for a particle subject to a
harmonic potential and in contact with a thermal reservoir with
temperature T = T , 〈〈x2〉〉 = T k−1, which is its white-noise
asymptotic limit.2 The convergence of 〈〈v2〉〉 and 〈〈x2〉〉 to the
stationary state is exhibited in Fig. 2.

The definition of T is also important for understanding the
statistics of the system as we change the rate μ, namely when
it approaches the white-noise limit, μ → ∞ (i.e., τ → 0). If
the temperature is kept constant as we change μ, then the gap
between amplitudes, �, should go as

|�| = T 1
2

√
γ ρ̂ [k + ρ̂ μ (γ + m ρ̂ μ)]

mμρ
∼ T 1

2 μ1/2. (34)

Let us now look at higher-order cumulants that are equal
to zero for Gaussian distributions, namely the third and the
fourth, which are crucial for characterizing the distribution.
For the third-order cumulant,

〈〈O3〉〉 = 〈O3〉 − 3〈〈O2〉〉 〈O〉 − 〈O〉3, (35)

the calculations3 of Eq. (22) yield for the velocity

〈〈v3〉〉 = 2
�3α2 p [1 + p (2 p − 3)] [3 k m − 2γ γ̂ ]

γ̂ k̂ (2γ 2 + k m)[4 k + α (γ + γ̂ )]
, (36)

whereas for the position

〈〈x3〉〉 = 2
�3 P (2p − 1) [k m (5 γ̂ − 3γ ) + 2 γ̂ 2(γ + γ̂ )]

k γ̂ k̂ (k m + 2γ 2) [4 k + α (γ̂ + γ )]
.

(37)

The convergence of these two cumulants to the stationary state
values of 〈〈v3〉〉 and 〈〈x3〉〉 given by the last two equations is
plotted in Fig. 3.

From Eqs. (36) and (37) we compute the skewness,

AO ≡ 〈〈O3〉〉
〈〈O2〉〉3/2 .

2Bear in mind that the stationary distribution of the telegraph noise
is always the bimodal distribution, even in its white-noise limit.

3For the sake of simplicity we assume � > 0.
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FIG. 3. (Color online) Time evolution of 〈〈v3〉〉 (left panel) and
〈〈x3〉〉 (right panel). The full line corresponds to the results obtained
from 106 numerical implementations of Eq. (1) with m = k = α =
γ = 1, a = −b = 1, μ = 2/3, μ̄ = 1/3. The dashed line represents
the stationary state limit 〈〈v3〉〉 = −16/1701 = 9.4 × 10−3 and
〈〈x3〉〉 = −479/1701 = −0.2915 . . . as given by Eqs. (36) and (37),
respectively.

Explicitly, we have for the velocity

Av = 2 γ (2p − 1)[3 k m − 2 γ γ̂ ]

γ̂ (2γ 2 + k m)[4k + α(γ + γ̂ )]

√
α γ 3 k̂

P
(38)

and for the position

Ax = 2
(2 p − 1) [k m (5 γ̂ − 3γ ) + 2 γ̂ 2(γ̂ + γ )]

k γ̂ k̂ (k m + 2γ 2 ) [4 k + α (γ̂ + γ )]

√
α γ 3k k̂

P γ̂ 5
.

(39)

Equation (38) indicates that, for a fixed value of p, the
skewness depends on the relation between the mechanical
parameters and the color of the noise. Explicitly, turning
our attention to the behavior of Av as a function of the
probability p, the skewness of the velocity would concur
with the skewness of the telegraph noise: right-skewed when
p > 1/2 and left-skewed when p < 1/2. However, the sign
of Av changes with the sign of [3 k m − 2 γ γ̂ ] as well.
We explore this fact from different perspectives by finding
asymmetric-symmetric crossover values of the parameters of
the problem (e.g., α) for which Av changes sign

α∗ = max

[
3 k

2 γ
− γ

m
,0

]
. (40)

For α > α∗, the sign of the skewness is opposite to that given
by p and the same otherwise. That change can be expressed
for the mechanical parameters as well,

k∗ = max

[
2 γ (γ + m α)

3 m
,0

]
or

(41)

γ ∗ = max

[√
m (6 k + m α2) − m α

2
,0

]
.

In that case, for k < k∗ or γ > γ ∗, Av has a sign that is contrary
to the skewness of the noise. In order to provide some reasoning
on this fact we center our attention on the dissipation effect
that is taking place in the system. If the telegraph noise has
uneven exchange rates (ρ 	= 1), then we make one state of the
noise to outweigh the other. If the system is due to achieve
a stationary state, then the prevalence of one of the states
of the stochastic force must be set off by the conservative
force (created by the harmonic potential)—that is, a function
of the position and whose skewness is always the same as

FIG. 4. (Color online) Asymmetry of f (v) vs probability p as
given by Eq. (38). For all the cases m = k = γ = 1, a = −b = 1. The
green full line is for α = 1, the purple dashed line is for α = 1/4, and
the magenta dot-dashed line corresponds to α = α∗ = 1/2 for which
the asymmetry of the distribution changes sign in accordance with
Eq. (40).

ζ—and the dissipative force. That said, depending on the limits
established in Eqs. (40) and (41), it might be necessary to have
an asymmetry that is complementary to the skewness of the
noise. Because of the conservative nature of elastic force that
effect must come from dissipation, which implies the change
of the sign of Av . In Fig. 4, we present the behavior of the
skewness of the velocity, Av , for different values of α.

According to the theorem of the characteristic function by
Marcinkiewicz [34], a probability density function either has
two nonvanishing cumulants (and it is a Gaussian) or it must
have an infinite set of nonvanishing cumulants.4 Making no
assumptions on the gap, �, and the ratio between jump rates,
ρ, we make μ going to infinity, so ζ approaches white noise.
Fixing the Marconi temperature, we plug Eq. (34) into Eq. (36)
to get

〈〈v3〉〉 ∼ T 3
2
μ5/2

μ3
→ 0 (μ → ∞). (42)

4Although for symmetric distributions all the odd cumulants
zero out, one always have 〈〈O2 n〉〉 	= 0 (n ∈ N) for non-Gaussian
distributions.

FIG. 5. (Color online) Stationary distribution f (v) vs v (left
panel) and stationary distribution f (x) vs x (right panel) obtained by
the numerical implementation of Eq. (1). For all cases, T = 1/3, m =
k = γ = 1, p = p̄ = 1/2, and b = −a. The legend is as follows:
{α = 1,a = 1} (green); {α = α† = 0.5438 . . . ,a = 1.061 88 . . . }
(red), and {α = 100,a = √

3367/100} (black). The yellow line
represents a Gaussian with variance equal to 1/3 (left panel) and
1/3 (right panel) that corresponds to the asymptotic limits of f (v)
and f (x) when α approaches infinity.
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Although the expressions for the other cumulants get more and
more intricate, it is not difficult to understand that 〈〈vn〉〉 ∼
μ

2−n
2 and the same for 〈〈xn〉〉 for n � 3. This guarantees that

the distributions f (x) and f (v) converge to the Gaussian as
depicted in Fig. 5.

To conclude the statistical analysis of v and x, we
have inspected the non-Gaussian nature of the respective
distributions. This is best done using the kurtosis,

C ≡ 〈〈O4〉〉
〈〈O2〉〉2 , (43)

instead of the fourth-order cumulant that we show in Fig. 6.
The results are the following: For the velocity

FIG. 6. (Color online) Time evolution of 〈〈v4〉〉 (left panel) and
〈〈x4〉〉 (right panel). The full line corresponds to the results ob-
tained from 106 numerical implementations of Eq. (1) with m =
k = α = γ = 1, a = −b = 1, and μ = μ̄ = 1/2. The dashed line
represents the asymptotic stationary state value 〈〈v4〉〉 = −16/273 =
−0.0586 . . . (left panel) and 〈〈x4〉〉 = −166/273 = −0.608 . . . as
obtained from Eqs. (44) and (45), respectively.

Cv = 3
k̂ [18 m k3 F1 + 2 k2 F2 + α γ̂ kF2 + 3α2γ 2 γ̂ 2(γ̂ + γ )F2]

γ̂ P α(3γ 2 + 4k m)[4k + α(γ̂ + γ )][km + γ̂ (γ̂ + γ )][9k + α(γ̂ + 2 γ )]
− 3 (44)

and for the position

Cx = 6
k γ (G1 + k γ̂ G2 + 3k3m2 G3 + k2mG4)

P γ̂ 3(3k + k̂)(3γ 2 + 4km)[9k + α(γ̂ + 2γ )]
[
δ2
γ + 3γ δγ + 2γ 2 + km

] , (45)

where the functions F and G are made explicit in the
Appendix B.

As Fig. 7 shows, the kurtosis of the position is always
nonpositive, i.e., the distribution is platykurtic (sub-Gaussian).
Contrarily, the kurtosis of the velocity is positive (leptokurtic)
for small values of α and for large values it goes to zero from
below. This means that, looking in the Cv-p plane (fixing α

as a parameter), there is a critical value of the color, α†, for
which the distribution p(v) is mesokurtic for p† = p‡ = 1/2,
but non-Gaussian though, as Fig. 5 let us understand. From
that value of α onward, the distribution of velocities has two
leptokurtic regions for p < p† and p > p‡ = p† + 1/2 and is
platykurtic elsewhere (see Fig. 8).

For small values of α, the form of the distributions f (x)
and f (v) can be understood as follows: When the exchange
rates μ and μ̄ are small and also smaller than the relaxation
rate γ /m, we can solve the dynamical equation for the time
spell equal to m/γ assuming a fixed value for ζ . Therefore,
the solution to the equation of motion with initial conditions
x(t = 0) = 0 and v(t = 0) = 0 reads

x(t) = −ζ

k
+ exp

[
− t

2 τr

]{
ζ

k
cos[2  t]

+ γ ζ

k
√

4 k m − γ 2
sin[2  t]

}
. (46)

In this scenario, the system tends to dwell closer to −a/k and
−b/k. This explains the peaks in Fig. 5 (left panel) around
x = ±1 which are more pronounced, the larger the difference
between τr and the scales μ−1 and μ̄−1. The same difference in
the scales explains the strong peak around v = 0 (right panel).
Regarding the U shape between the peaks in the left panel they
are the outcome of the (damping) oscillatory terms. It is worth

noting that the probability density function of a trigonometric
variable, O, is

f (O) = 1

π
√

1 − O2
. (47)

As the two scales concur, the distribution approaches a bell
shape to match the Gaussian in the white-noise limit. The
stationary state solution for the overdamped case and specific
noise features can be found in Refs. [29,30].

IV. ENERGETIC CONSIDERATIONS

Looking at the dynamical equations, the change in the
energy of the particle is the outcome of the superposition of
the dissipative force,

Fdis(t) = −γ v(t), (48)

which performs negative work, and the stochastic force that is
the sole responsible for injecting energy into the system,

Finj(t) = ζ (t). (49)

Putting it mathematically, the total energy change, i.e., varia-
tion of kinetic energy, K , plus the variation of potential energy,
V , between initial time t0 = 0 and some instant t = � is given
by

E(�) ≡ K(�) + V (�)

=
∫ �

0
[−γ v(t)] v(t) dt

+
∫ �

0
ζ (t) v(t) dt

= Jdis(�) + Jinj(�), (50)
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FIG. 7. (Color online) Kurtosis of the the position (left panel) and velocity (right panel) as a function of α and p {m = k = γ = 1, and
b = −a = 1}.

where we define J as the energy fluxes, which are stochastic
processes as well. In the present work, we are only interested
in their long-term behavior so � is much larger than both m/γ

and α−1. At that stage the system will be in a stationary state
and thus the energy injected by the (work) reservoir must be
set off by the dissipation, the flux of which occurs in the form
of heat. This corresponds to an equivalence of both probability
density functions when � is large (see Fig. 9).

Resorting to our Fourier-Laplace method [Eq. (23)] the
moments of each flux are obtained from

〈
J n

inj(�)
〉 = n∏

l=1

∫ �

0
dtl

∫
dq2l−1

2π

dq2l

2π
e[(i q2l−1+i q2l+2 ε)tl ]

× (i q2l + ε)

R(i q2l + ε)

×
〈

n∏
l=1

ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)

〉
(51)

and

〈
J n

dis(�)
〉 = n∏

l=1

(−γ )
∫ �

0
dtl

∫
dq2l−1

2π

dq2l

2π
e[(i q2l−1+i q2l+2 ε)tl ]

× (i q2l−1 + ε)

R(i q2l−1 + ε)

(i q2l + ε)

R(i q2l + ε)

×
〈

n∏
l=1

ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)

〉
. (52)

FIG. 8. (Color online) Kurtosis of the velocity v p with m = k =
γ = 1 and b = −a = 1. The full blue corresponds to α = 1, the
dot-dashed red line is for α = α† = 0.5438 . . . and the dashed green
line α = 45/100.

Once again, the result depends on the moment
〈∏n

l=1 ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)〉, but for the injected
flux the noise factors ζ̃ have different origins. In other
words, for 〈∏n

l=1 ζ̃ (i q2l−1 + ε) ζ̃ (i q2l + ε)〉inj, there are (2n)!
possible arrangements; however, we can only benefit from the
indistinguishability between pairs of terms and thus the total
number of equal terms amounts to n!. On the other hand, for
the dissipative flux, the degeneracy is equal to 2nn! because
the noises ζ̃ (i q2l−1 + ε) and ζ̃ (i q2l + ε) can be swapped
without changing the result.

We define the long-term cumulants as

〈〈J n(�)〉〉 ≡ � lim
t→∞

1

t
〈〈J n(t)〉〉 = � r〈〈J n(�)〉〉, (53)

where r〈〈J n(�)〉〉 is the respective growth rate.
Using Eqs. (51) and (52), we have for the full average fluxes

〈Jinj(�)〉 = γT
m

� +
[

�2 P

k̂
(k − α δγ ) + A2

k

]
= γT

m
� + Einj (54)

and

〈Jdis(�)〉 = −γT
m

� +
{

�2P

γ k̂2
[k (2 γ̂ − γ )

+α (2 γ̂ 2 − 2γ 2 + γ γ̂ )] − A2

2 k

}
= −γT

m
� + Edis. (55)

FIG. 9. (Color online) Probability density function of Jinj(�) and
J|dis|(�) from 106 numerical implementations of Eq. (1) with m =
k = α = γ = 1, a = −b = 1, μ = μ̄ = 1/2, and � = 1000. It is
visible that the two distributions match. We have shifted of 1/2 in the
dissipated flux is made to balance out the constant terms (linked to
the transient) that do not appear in the calculation of Jdis.
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Therefrom, we identify

〈Jinj(�)〉 = |〈Jdis(�)〉| = γT
m

�. (56)

Moreover, adding the time-independent terms we find

Einj + Edis = m

2

�2 P α

k̂
+ �2 P γ̂

2 γ k̂
+ A2

2 k

= 1

2
m 〈v2〉 + 1

2
k 〈〈x2〉〉 + 1

2
k 〈x〉2, (57)

whence we identify the kinetic energy of the stationary
state in the first term, whereas the second and third terms
correspond to the potential energy. The third term is only
nonvanishing if the noise is not balanced (a p 	= − b p̄) and

emerges from the fact that under such conditions the average
position diffes from the minimum of the potential for which
there is an energy cost. In Fig. 10 (left panel), we plot the time
evolution of the average fluxes with time �. For large �, the
difference between the lines (the sum of the fluxes) remains
constant and corresponds to the total energy of the particle. It
is worth noting that this case differs from the thermal reservoir
system since the (average) total energy does not completely
emerge from the dissipative term [35].

Since the results are equivalent, we use the dissipation flux
to compute the variance of J because it has a larger degeneracy.
For the second-order moment we have three different terms,
each one with a degeneracy number equal to 16. Subtracting
〈Jdis(�)〉2 to 〈J 2

dis(�)〉 we have the second-order cumulant,

〈〈J 2(�)〉〉 = P α[a4H11 + 2 a b (a2H12 + b2H13) + a2b2 (H14 + H15) + b4 H16]

4 k k̂3
�

+ a4pH21 + 4 a b P α(a2H22 + b2H23) + 2a2b2 P (H24 + α2H25) + b4p̄H26

k γ γ̂ k̂ [4k + α(γ̂ + γ )]
�

+ a4pH31 + 4 a b P α(a2H32 + b2H33) + 2a2b2 P (H34 + α2H35) + b4p̄H36

k α γ k̂
(
γ 2 − δ2

γ + 4 k m
) �, (58)

with the functions Hij as defined in the Appendix B.
In Fig. 11, we show the comparison between results from

numerical simulation and Eq. (58).
As our calculations demonstrate, the higher the order of

the cumulant 〈〈J n(�)〉〉, the more intricate the analytical
expressions get. Using our method these formulas can be
precisely obtained; however, due to their extension they are
ever harder to understand regarding its physical content. To
circumvent this snag we carried out numerical simulations to
compute the slopes of each cumulant 〈〈J n(�)〉〉 with n =
{3,4}. These results allow us to formulate an approximative
approach based on the Edgeworth expansion to the probability
distribution of J , L(J ), that can be seen as a large deviation
function of the injected or dissipated power. The evolution of
the first four cumulants of the flux with α (for a fixed Marconi

FIG. 10. (Color online) Time evolution of the average fluxes
〈Jinj(�)〉 (full line) and |〈Jdis(�)〉| (dot-dashed line) obtained from
106 numerical implementations of Eq. (1) with m = k = α = γ = 1,
a = −b = 1, μ = μ̄ = 1/2. The dotted line represents the asymptotic
growth given by Eq. (56), 〈J (�)〉 = �/3.

temperature) is presented in Fig. 12. For those numerical
simulation results, we found out that the cumulant rates are
very well described by

r〈〈J 3(�)〉〉 = 1

50
[27.78 + 1.78

(
2.03

α

)1.89

− 22.14

(
2.03

α

)0.4

],

r〈〈J 4(�)〉〉 = 1

50
[−17.04 + 14.05 α − 1.54 α2

+ 0.098 α3 − 0.0027 α4]. (59)

FIG. 11. (Color online) Time evolution of the variance of the
fluxes 〈〈J 2

inj(�)〉〉 (full line) and 〈〈J 2
dis(�)〉〉 (dot-dashed line) obtained

from 106 numerical implementations of Eq. (1) with m = k = α =
γ = 1, a = −b = 1, μ = μ̄ = 1/2. The dotted line has got a slope
equal to 8/36 = 0.2(2) as given by Eq. (58).
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FIG. 12. (Color online) Cumulants of the fluxes, 〈〈J n(�)〉〉, as
a function of the color of the telegraph noise obtained by numerical
simulation with m = k = γ = 1, a = −b = 1 and Marconi tempera-
ture 1/3. The legend is as follows: full gray line, average; dotted black
line, variance; blue dashed line, third-order cumulant; and dot-dashed
green line, the fourth-order cumulant. The 〈〈J n(�)〉〉 has a minimum
located at α � 1.05. For α � 1.5 the distribution changes its kurtosis
going from platykurtic to a leptokurtic.

The curves in Fig. 12 show that the rate of the second-order
cumulant rapidly approaches its white-noise asymptotic limit.
The skewness is always positive, but it has a minimum for α �
1.05 before going to the white-noise limit. On the other hand,
the Gaussianity of the distribution changes its nature with the
rate α; explicitly, for α < α∗ � 1.41, L(J ) is platykurtic and
leptokurtic otherwise. Heed that although for α = α∗ the large
deviation function L(J ) is mesokurtic it is still non-Gaussian.
In other words, similarly to the thermal case, the white-noise
limit of the large deviation function L(J ) is not a Gaussian.
In the latter case we have

L(J ) ∼ exp

[
−
(
J − γ T

m
�
)2

4 T J

]
. (60)

V. FINAL REMARKS

In this manuscript, we have carried out a thermostatistical
study of a linear mechanical system with mass m subject
to confinement, dissipation, and a stochastic dichotomous
force that we understood as the action of an athermal
external (work) reservoir; external for the fluctuations and
the dissipation do not have the same origin and therefore the
fluctuation-dissipation relation is not verified. That description
fits important nanomechanical phenomena like intracellular
bidirectional transport on cytoskeletal filaments mediated by
two sets of molecular motors, the kinetics of protein markers in
capillary media among other types of problems. For instance,
the results herein presented can be used to analyze a molecular
motor system where the load is hauled by a dynein-kinesin tug
of war [20], since it was proved that the simple unconstrainted
(or equivalently overdamped) tug-of-war dynamical scenario
does not work properly [36].

Taking into consideration its colored nature, the telegraph
noise used to represent the dichotomous force lies in a different
class of stochastic processes other than those established by
the Lévy-Itô decomposition theorem. In the latter, every white-
noise stochastic process can be represented by a superposition
of continuous (Brownian) and singular (Poissonian) measures.
This means that Fokker-Planck methods are unfit for an

accurate analysis of such systems as previous studies had
proven. Treating the problem in Fourier-Laplace space, we
were able to develop a statistical description of the position
and velocity imposing no condition on the damping nature as
well as symmetry properties of the noise, contrarily to the state
of the art.

Regarding a stationary state analysis, we have found that
the position always presents the same qualitative properties as
the telegraph noise regarding the skewness and the kurtosis.
In contrast, depending on the set of mechanical parameters of
the system, the skewness of f (v) can be opposed to that of the
noise. This change in the skewness can be comprehended as
follows: When the noise is unbalanced, a p 	= b p̄, there must
be some emerging feature of the system that compensates
the prevalence of one of the sides of the noise; taking into
account that the confining force is conservative—and the sign
of the skewness of the distribution f (x) does not depend on
the mechanical features of the system—the balance can only
come from dissipation that is ruled by the velocity which then
assumes an opposite skewness with respect to the noise. As
concerns the kurtosis, the distribution f (v) is leptokurtic for
small values of α, whereas f (x) is always platykurtic.

From the second-order moment of the velocity, we defined
an effective temperature of the system—the Marconi temper-
ature, T —which plays the role of typical scale of energy of a
bimodal particle. Nonetheless, due to the colored nature of the
noise, the equipartition of the energy does not hold and thus
〈V 〉 = k 〈x2〉/2 	= T /2. That equality is only observed in the
white-noise limit.

Afterwards, since in our analytical procedure we can skip
making the propagator explicit, we have been able to determine
the statistics of time-dependent quantities as well, namely
the total energy fluxes (dissipated and injected), J , that
correspond to the large deviation of the respective powers.
Analyzing the behavior of the respective large deviation
function, L(J ), we have found that its variance converges fast
to the asymptotic white-noise value. Moreover, the function
L(J ) can have different types of non-Gaussianity, i.e., it
is platykurtic for small jump rates of the noise and gets
leptokurtic as the jump rate between states soars.

Last, despite the fact that we are treating an athermal
problem, we recall the existence of an effective temperature
for this system and we look at the entropy production, �, and
entropy exchange, �, that ought to be related to the dissipated
and injected fluxes. Bearing in mind our results we bridge �

with Jinj and � with Jdis. If the system attains a stationary
state, then the condition for the total entropy, S, is

dS

dt
= � − � = 0 (t � m/γ ). (61)

From dimensional analysis, the energy flux up to some time t

is the product of entropy times temperature and therefore we
can easily verify that � = � = γ /m, exactly the same form
obtained for linear systems in contact with reservoirs which fit
the Lévy-Itô conditions. Therefore, the Marconi temperature
is the energy scale that retrieves a universal form of long-term
entropy production or exchange.

The present analysis can be further expanded along different
lines. In a purely thermostatistical perspective, we can consider
a memory kernel for the dissipative term (with same spectrum
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as the noise α) so the dichotomous work reservoir noise is
analogous to a thermal internal reservoir as described by
Kubo and Mori [37]. In this case, we expect to be capable of
establishing an athermal fluctuation-dissipation relation and
analyze the large deviations of the energy fluxes as well as
fluctuation relations for work and entropy. In recent work
by one of us the relevance of nonlinearities in the confining
potential when the reservoir is athermal (white-shot-noise),
namely in the activation of higher-order cumulants that will
act as sources of energy of higher order [13], was shown;
accordingly, it would be interesting to assess the impact
of nonlinearities (either in the confining potential or the
dissipation) along the lines of the current manuscript and
the points we have discussed. These studies can be made
considering single or multiple particle systems in contact with
different reservoirs.

As the present work evinces, the concept of temperature
can be interpreted in a broader sense than that which
thermodynamics imposes. On that account, several thermo-
statistical concepts can be recast taking into consideration the
idiosyncrasies of the system. This works for both physical
problems like superconducting systems where the uncertainty
in the location of the vortices can be read as an effective
temperature [38] and nonphysical problems like a financial
market for which the volatility also fits a temperature concept,
which recently led the analysis of price dynamics to a internal
reservoir approach [39]. Notwithstanding, especially at very
short time scales, trading is more similar to a tug of war
between buyers and sellers than a particle in a medium. In other
words, for a high-frequency dynamics, one verifies that the
price soars and drops very closely to a telegraph noise process.
For little liquid markets, this feature jointly with periods
without activity is even clearer. Therefore an appropriate
analytical description would be a scenario consistent with a
three-state noise for which we can perform a similar analysis.
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APPENDIX A: THE TELEGRAPH NOISE

The telegraph noise, also known as dichotomous or two-
state Brownian noise, corresponds to a stochastic process {ζt }
that assumes two values ζ = {a,b}. In time, the noise switches
from once state to the other according to pre-established
(average) rates: μ when going from b to a and μ̄ = ρ μ

otherwise, which yields the following master equation:

∂ f (a,t | ζ0,t0)

∂ t
= μf (b,t | ζ0,t0) − μ̄ f (a,t | ζ0,t0)

(A1)
∂ f (b,t | ζ0,t0)

∂ t
= μ̄ f (a,t | ζ0,t0) − μf (b,t | ζ0,t0),

where f (a,t | ζ0,t0) + f (b,t | ζ0,t0) = 1. Assuming always the
same initial condition,

f (ζ,t0 | ζ0,t0) = δζ,ζ0 , (A2)

the solution to Eq. (A1) reads

f (a,t | ζ0,t0) = p + exp[−α (t − t0)]
(
p̄ δa,ζ0 − p δb,ζ0

)
f (b,t | ζ0,t0) = p̄ − p̄ exp[−α (t − t0)]

(
p̄ δa,ζ0 − p δb,ζ0

)
,

(A3)

with

p = μ

μ + μ̄

and

p̄ = μ̄

μ + μ̄
.

For long-enough time intervals, i.e., t − t0 � α−1, the
stationary distribution reads

f (ζ ) = p δa,ζ + p̄ δb,ζ . (A4)

From Eq. (A3) one determines the evolution of the noise
between to instants t and t ′,

f (a,t | a,t ′) = p + p̄ e−α(t−t ′),

f (a,t | b,t ′) = p − p e−α(t−t ′),
(A5)

f (b,t | a,t ′) = p̄ − p̄ e−α(t−t ′),

f (b,t | b,t ′) = p̄ + p e−α(t−t ′).

Still from the master equation it is possible to determine
the moments of the n-th order of telegraph noise,

〈ζ (t1) . . . ζ (tn)〉
=

∑
ζ (t1) ,... ,ζ (tn )

(t1>...>tn )

[ζ (t1) . . . ζ (tn)] p(ζ (t1), . . . , ζ (tn))

=
∑

ζ (t1) ,... ,ζ (tn)

[ζ (t1) . . . ζ (tn)] p[ζ (t1)|ζ (t2)] . . .

×p[ζ (tn−1)|ζ (tn)] p[ζ (tn)]. (A6)

Notice that when computing the general expressions for the
moments of n-th order we must include all time orderings.

Regarding the second-order cumulant,

〈〈ζ (t1) ζ (t2)〉〉 = 〈ζ (t1) ζ (t2)〉 − 〈ζ (t1)〉〈ζ (t2)〉
= �2 [P e−α |t1−t2| − p̄2 e−α (t1+t2)]

−� 〈ζ 〉 p̄ (e−α t1 + e−α t2 ). (A7)

In the long-time limit,

〈〈ζ (t1) ζ (t2)〉〉 = �2 P e−α |t1−t2| = BD e−α |t1−t2|, (A8)

where

A = a p + b p̄, B = (a − b) p, D = (a − b) p̄. (A9)

It is worth recalling that maintaining the amplitudes of both
states, i.e., keeping � constant, and increasing the frequency
of the noise (α → ∞), the correlation 〈〈ζ (t1) ζ (t2)〉〉 would
vanish, which does not correspond to the colored Gaussian
noise case.
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1. Numerical implementation of the noise

In order to assess our analytical results and carry out further
numerical analysis (for which the analytics analysis are quite
complex and physically dim) two options occur:

(i) Looking to Eq. (A3) and assuming a given initial
condition, x0, one analyzes the probability that the noise
has a value x at time t , comparing f (x,t | x0,t0) with a
random number, r , uniformly distributed between 0 and 1. If
f (x,t | x0,t0) > r , then the noise gets the value x. This check is
made at some (fixed) time interval �t that should be adjusted
according to the smallest scale the parameters impose.

(ii) Another method is based on the first passage process
and corresponds to the numerical method we have employed.
In that case, the master equation is solved, taking into account
an extra condition,

f (b,t | a,t0) = 0 ⇐ x0 = a
(A10)

f (a,t | b,t0) = 0 ⇐ x0 = b.

The respective solution implies that the probability the
noise changes from a to b after an interval of time δt = t − t0
is equal to

Qa→b(δt ) = μ̄ exp[−μ̄ δt ], (A11)

and the probability the noise switches from b to a after
δt = t − t0,

Qb→a(δt ) = μ exp[−μ δt ]. (A12)

If the noise is equal to a(b) at instant t0, then we pick a
number, δt , exponentially distributed with characteristic
scale μ̄−1(μ−1); the noise keeps its value a(b) and at
instant t0 + δt = t it assumes a new value b(a). Then, for
computational effects, t turns into the new initial time and a
new waiting time δt is computed and so forth. In our case, we
have assumed ξ (t0) = a.

APPENDIX B: EXPLICIT FORMS OF THE FUNCTIONS F , G, AND H

In these functions we have the following simplified expressions:

δγ ≡ γ̂ − γ, δp ≡ p̄ − p.

1. Functions for Eq. (44)

F1 = γ 2 + 3γ δγ + 8 P δ2
γ , F2 = 18 γ 4 + 47 γ 3 δγ + 63(1 − P )γ 2 δ2

γ + 3(10 − 7P ) γ δ3
γ + 26 Pδ4

γ ,
(B1)

F3 = 24γ 4 + 2(7 − 57P )γ 3 δγ + (65P + 6) γ 2 δ2
γ + 2(3 − P ) γ δ3

γ + 4 P δ4
γ , F4 = (2 − 6P )γ + Pδγ .

2. Functions for Eq. (45)

G1 = 3 (5P + 1) α γ̂ 4(γ̂ + γ )2(γ̂ + 2γ ),

G2 = (170P + 33)δ5
γ + 10 (110P + 21) γ δ4

γ + (2411P + 445) γ 2δ3
γ

+ 7(329P + 58)γ 3δ2
γ + 6 (181P + 31)γ 4δγ + 36(6P + 1)γ 5,

G3 = 3(8P + 3)δ2
γ + (144P + 35)γ δγ + 8(6P + 1)γ 2,

G4 = 19(17P + 3)δ4
γ + 3(599P + 105)γ δ3

γ + (2866P + 481)γ 2δ2
γ + (1740P + 277)γ 3δγ + 66(6P + 1)γ 4. (B2)

3. Functions for Eq. (58)

H11 = k k̂ p̄2 + k̂2p2 + Pk(k − δγ α);

H12 = Pα[α γ̂ 2 + k(5 γ̂ + 2 γ )] − k k̂ p̄2 − (k̂ p)2;

H13 = (2P − 1) k2 + α k[P (5 γ̂ + 2 γ ) − γ̂ (2 p̄2 − p2)] + p̄ γ̂ 2 α2δp;

H14 = k̂2 (p̄2 + p2) − 2 P k α γ̂ ;

H15 = k2δ2
p + k α[(1 − 16 P )δγ + (1 − 12 P )γ ] − 4 P γ 2 α2;

H16 = k̂2p̄2 + k k̂ p2 + P k(k − δγ α);
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MEDEIROS AND DUARTE QUEIRÓS PHYSICAL REVIEW E 92, 062145 (2015)

H21 = 4(γ̂ p + γ p̄)k3 + pk2α
[
(4p2 + 5)δ2

γ + (8p + 1)γ δγ + 10γ 2]
+ k γ̂ α2

[
p(5p2 + 1)δ2

γ + 8p2γ 2 + 2 m α γ (6p2 − 4P )
]+ p3α3γ 3(γ̂ + γ );

H31 = 4k3(γ̂ p − γ δp) + [
p(9p2 + 10P − 3 p̄2)k2δ2

γ α + 2(4p3 + 9pP + 8 p̄ P + p̄3)γ δ2
γ

+ γ 2(10 p̄2 − p2 + 5P )
]+ k α2 γ̂

[
p(6p2 + 2P − p̄2)δ2

γ + γ (4p3 + 8pP + 9 p̄ P − 2 p̄3)δγ

+ 2γ 2.(5p̄3 − p3 − pP + 4p̄P )
]+ α3 δ2

γ [(γ 2 + 2 γ γ̂ )p3 + 2γ̂ γ p P + 4γ 2p̄3];

H22 = p2α2γ̂ 3(γ̂ + γ ) + k α γ̂
[
5p2δ2

γ + 4pγ 2 + 2(5p − 1)γ δγ

]+ k2
[
4p2δ2

γ + 2γ 2 + (4p + 1)γ δγ

]
;

H32 = k2[δpγ 2 − 4Pδγ γ + 4(1 + P )δ2
γ

]+ k α γ̂
[
p(2 + 3p)δ2

γ

+ (p2 − 3 p̄2)γ 2 + (2p2 − 2P + 3p̄2)γ δγ

]+ (γ α)2(γ̂ p − γ )(γ̂ p − 2γ δp);

H23 = p̄2α2γ̂ 3(γ̂ + γ ) + k α γ̂
[
4p̄γ 2 + 2(4p̄ − p)δγ γ + 5p̄2δ2

γ

]+ k2[2γ 2 + (4p̄ + 1)γ δγ + 4(p̄ δγ )2];

H33 = k2[(1 + 4P )γ δγ + 4(1 + p)p̄ δ2
γ − δpγ 2]

+ k α γ̂
[
p̄ (2 + 3p) δ2

γ + γ 2(p̄2 − 3p2) + γ δγ (3p2 − 2P + 2 p̄2)
]+ (γ̂ α)2(γ p̄ − γ )(2γ δp + γ p̄)

H24 = Pα2γ̂ (γ̂ + γ ) + k α γ̂
[
(5P + 1) δ2

γ + 5γ δγ + 2 γ 2
]+ 4k3m + k2

[
(4P + 1)δ2

γ + 9γ δγ + 2γ 2
]
;

H34 = 4k3γ̂ − k2α
(
9γ 2 − 4Pγ δγ + 4Pδ2

γ

)+ P k α2 γ̂
(
2δ2

γ + 7δγ γ − 2γ 2
)+ p α2γ̂ 3(γ̂ − 4γ );

H25 = 2P α γ̂ 3(γ̂ + γ ) + k γ̂
(
10 P δ2

γ + 5γ δγ + 2γ 2
)+ 2 k2m (γ + 4 P δγ );

H35 = α γ̂ 3[2γ̂ P + γ (1 − 8P )] + k γ̂
[
6 P δ2

γ − (1 − 14P )γ δγ + (
δ2
p γ
)]− 2 k2m

(
γ δ2

p + 4 P δγ

)
;

H26 = 4 k3(γ̂ p̄ + γ p) + p̄ α k2
[
(4 p̄2 + 1)δ2

γ + 10 γ 2 + (8 p̄ + 1)γ δγ

]
+ k γ̂ α2

[
p̄(5 p̄2 + 1) δ2

γ + 2(p2 − 2P + 7p̄2)γ δγ + 8(p̄ γ )2
]+ (p̄ α γ̂ )3(γ̂ + γ̂ );

H36 = 4(γ δp + γ̂ p̄)k3 + [p̄(9 p̄2 − 3 p2 + 10P )k2 α δ2
γ + 2(p3 + 8pP + 9 p̄P + 4 p̄3)γ δγ + (10 p2 + 5P − p̄2)γ 2]

+ [
p̄(6 p̄2 − p2 + 2 P ) k α2 γ̂ δ2

γ + (4 p̄3 − 2p3 + 9pP + 8 p̄ P )γ δγ − 2(5p3 + 4pP − p̄P − p̄3)γ 2
]

+ γ̂ 2α3
[
δ2
γ p̄3 + 2 p̄ P δγ γ + γ 2(4p3 − 2 p̄ P − p̄3)

]
.
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M. O. Cáceres, Phys. Rev. E 67, 016102 (2003).

[30] P. Allegrini, P. Grigolini, and B. J. West, Phys. Rev. E 54, 4760
(1996); P. Allegrini, P. Grigolini, L. Palatella, and B. J. West,
ibid. 70, 046118 (2004).

[31] L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645
(1997).

[32] N. G. van Kampen, Stochastic Processes in Physics and
Chemestry (Elsevier, Amsterdam, 2007).

[33] B. van der Pol and H. Bermmer, Operational Calculus Based on
the Two-Sided Laplace Integral (Cambridge University Press,
Cambridge, 1950); E. Gluskin, Eur. J. Phys. 24, 591 (2003).

[34] J. Marcinkiewicz, Math. Z. 44, 612 (1939).
[35] W. A. M. Morgado and S. M. Duarte Queirós, Phys. Rev. E 90,

022110 (2014).
[36] A. Kunwar, S. K. Tripathy et al., Proc. Natl. Acad. Sci. U.S.A.

108, 18960 (2011).
[37] H. Mori, Prog. Theor. Phys. 33, 423 (1965); R. Kubo (ed.), 1965

Tokyo Summer Lectures in Theoretical Physics (Benjamin, New
York, 1966).

[38] F. D. Nobre, E. M. F. Curado, A. M. C. Souza, and R. F. S.
Andrade, Phys. Rev. E 91, 022135 (2015).

[39] Y. Yura, H. Takayasu, D. Sornette, and M. Takayasu, Phys. Rev.
Lett. 112, 098703 (2014).

062145-13

http://dx.doi.org/10.1007/BF01012035
http://dx.doi.org/10.1007/BF01012035
http://dx.doi.org/10.1007/BF01012035
http://dx.doi.org/10.1007/BF01012035
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/PhysRevLett.69.2318
http://dx.doi.org/10.1103/PhysRevLett.69.2318
http://dx.doi.org/10.1103/PhysRevLett.69.2318
http://dx.doi.org/10.1103/PhysRevLett.69.2318
http://dx.doi.org/10.1016/j.bpj.2010.02.037
http://dx.doi.org/10.1016/j.bpj.2010.02.037
http://dx.doi.org/10.1016/j.bpj.2010.02.037
http://dx.doi.org/10.1016/j.bpj.2010.02.037
http://dx.doi.org/10.1016/0378-4371(95)00241-X
http://dx.doi.org/10.1016/0378-4371(95)00241-X
http://dx.doi.org/10.1016/0378-4371(95)00241-X
http://dx.doi.org/10.1016/0378-4371(95)00241-X
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104532
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104532
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104532
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104532
http://dx.doi.org/10.1080/00018737800101474
http://dx.doi.org/10.1080/00018737800101474
http://dx.doi.org/10.1080/00018737800101474
http://dx.doi.org/10.1080/00018737800101474
http://dx.doi.org/10.1021/j150527a009
http://dx.doi.org/10.1021/j150527a009
http://dx.doi.org/10.1021/j150527a009
http://dx.doi.org/10.1021/j150527a009
http://dx.doi.org/10.1016/S0378-4371(03)00525-9
http://dx.doi.org/10.1016/S0378-4371(03)00525-9
http://dx.doi.org/10.1016/S0378-4371(03)00525-9
http://dx.doi.org/10.1016/S0378-4371(03)00525-9
http://dx.doi.org/10.1016/S0301-0104(02)00547-5
http://dx.doi.org/10.1016/S0301-0104(02)00547-5
http://dx.doi.org/10.1016/S0301-0104(02)00547-5
http://dx.doi.org/10.1016/S0301-0104(02)00547-5
http://dx.doi.org/10.1103/PhysRevLett.85.3301
http://dx.doi.org/10.1103/PhysRevLett.85.3301
http://dx.doi.org/10.1103/PhysRevLett.85.3301
http://dx.doi.org/10.1103/PhysRevLett.85.3301
http://dx.doi.org/10.1103/PhysRevE.56.3968
http://dx.doi.org/10.1103/PhysRevE.56.3968
http://dx.doi.org/10.1103/PhysRevE.56.3968
http://dx.doi.org/10.1103/PhysRevE.56.3968
http://dx.doi.org/10.1088/0305-4470/30/24/009
http://dx.doi.org/10.1088/0305-4470/30/24/009
http://dx.doi.org/10.1088/0305-4470/30/24/009
http://dx.doi.org/10.1088/0305-4470/30/24/009
http://dx.doi.org/10.1103/PhysRevE.67.016102
http://dx.doi.org/10.1103/PhysRevE.67.016102
http://dx.doi.org/10.1103/PhysRevE.67.016102
http://dx.doi.org/10.1103/PhysRevE.67.016102
http://dx.doi.org/10.1103/PhysRevE.54.4760
http://dx.doi.org/10.1103/PhysRevE.54.4760
http://dx.doi.org/10.1103/PhysRevE.54.4760
http://dx.doi.org/10.1103/PhysRevE.54.4760
http://dx.doi.org/10.1103/PhysRevE.70.046118
http://dx.doi.org/10.1103/PhysRevE.70.046118
http://dx.doi.org/10.1103/PhysRevE.70.046118
http://dx.doi.org/10.1103/PhysRevE.70.046118
http://dx.doi.org/10.1103/PhysRevLett.79.645
http://dx.doi.org/10.1103/PhysRevLett.79.645
http://dx.doi.org/10.1103/PhysRevLett.79.645
http://dx.doi.org/10.1103/PhysRevLett.79.645
http://dx.doi.org/10.1088/0143-0807/24/6/005
http://dx.doi.org/10.1088/0143-0807/24/6/005
http://dx.doi.org/10.1088/0143-0807/24/6/005
http://dx.doi.org/10.1088/0143-0807/24/6/005
http://dx.doi.org/10.1007/BF01210677
http://dx.doi.org/10.1007/BF01210677
http://dx.doi.org/10.1007/BF01210677
http://dx.doi.org/10.1007/BF01210677
http://dx.doi.org/10.1103/PhysRevE.90.022110
http://dx.doi.org/10.1103/PhysRevE.90.022110
http://dx.doi.org/10.1103/PhysRevE.90.022110
http://dx.doi.org/10.1103/PhysRevE.90.022110
http://dx.doi.org/10.1073/pnas.1107841108
http://dx.doi.org/10.1073/pnas.1107841108
http://dx.doi.org/10.1073/pnas.1107841108
http://dx.doi.org/10.1073/pnas.1107841108
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1103/PhysRevE.91.022135
http://dx.doi.org/10.1103/PhysRevE.91.022135
http://dx.doi.org/10.1103/PhysRevE.91.022135
http://dx.doi.org/10.1103/PhysRevE.91.022135
http://dx.doi.org/10.1103/PhysRevLett.112.098703
http://dx.doi.org/10.1103/PhysRevLett.112.098703
http://dx.doi.org/10.1103/PhysRevLett.112.098703
http://dx.doi.org/10.1103/PhysRevLett.112.098703



