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Percolation and jamming of linear k-mers on a square lattice with defects: Effect of anisotropy
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Using the Monte Carlo simulation, we study the percolation and jamming of oriented linear k-mers on a square
lattice that contains defects. The point defects with a concentration d are placed randomly and uniformly on the
substrate before deposition of the k-mers. The general case of unequal probabilities for orientation of depositing
of k-mers along different directions of the lattice is analyzed. Two different relaxation models of deposition that
preserve the predetermined order parameter s are used. In the relaxation random sequential adsorption (RRSA)
model, the deposition of k-mers is distributed over different sites on the substrate. In the single-cluster relaxation
(RSC) model, the single cluster grows by the random accumulation of k-mers on the boundary of the cluster
(Eden-like model). For both models, a suppression of growth of the infinite (percolation) cluster at some critical
concentration of defects dc is observed. In the zero-defect lattices, the jamming concentration pj (RRSA model)
and the density of single clusters ps (RSC model) decrease with increasing length k-mers and with a decrease
in the order parameter. For the RRSA model, the value of dc decreases for short k-mers (k < 16) as the value
of s increases. For k = 16 and 32, the value of dc is almost independent of s. Moreover, for short k-mers, the
percolation threshold is almost insensitive to the defect concentration for all values of s. For the RSC model, the
growth of clusters with ellipselike shapes is observed for nonzero values of s. The density of the clusters ps at
the critical concentration of defects dc depends in a complex manner on the values of s and k. An interesting
finding for disordered systems (s = 0) is that the value of ps tends towards zero in the limits of the very long
k-mers, k → ∞, and very small critical concentrations dc → 0. In this case, the introduction of defects results
in a suppression of k-mer stacking and in the formation of empty or loose clusters with very low density. On the
other hand, denser clusters are formed for ordered systems with ps ≈ 0.065 at s = 0.5 and ps ≈ 0.38 at s = 1.0.
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I. INTRODUCTION

Deposition of large particles such as colloids, polymers,
or nanotubes on substrates can be considered and studied
as random sequential adsorption (RSA) [1]. During RSA,
objects randomly deposit on the substrate; this process is
irreversible and the newly adsorbing objects cannot overlap
or pass through previously deposited ones. The substrate may
be prepatterned (see, e.g., [2]) or include some impurities
(defects) (see, e.g., [3]). The adsorbed objects may be identical
or present a mixture of objects of different sizes and shapes
(see, e.g., [4,5]). Moreover, anisotropy can be introduced
by postulating unequal probabilities for the deposition of
elongated objects along different axes (see, e.g., [5,6]). The
anisotropy of deposition can reflect the influence of external
fields, flows, or anisotropy of the substrate. The adsorption
of the elongated particles in the presence of external fields
produces anisotropic layers (see, e.g., [7,8]).
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Very often, during RSA, a substrate can be considered as
a discrete space, e.g., a regular or irregular lattice, or as a
tree. The simplest but most commonly used instance of a
discrete substrate is the square lattice. The objects selected to
be adsorbed onto a square lattice are generally linear in shape.
Such linear segments (also depicted as needles, linear chains,
stiff rods, or k-mers) consist of k successive connected sites.

If deposition of the objects can continue indefinitely, a
jamming state is reached. At the jamming state, there are
still voids on the substrate between the previously deposited
objects, but their sizes or shapes are not sufficient to allow the
deposition of even one additional object.

For a perfect lattice (a lattice without any defects), the
jamming coverage pj is the fraction of the sites occupied by
deposited objects. For a diluted (disordered and disturbed)
lattice (a lattice containing defects or impurities), there are
several ways to define the jamming coverage [9–11]. In the
present work we use only the pure object jamming limit and
defined it as the jamming concentration pj for short. The pure
object jamming limit pj is defined as the fraction of the total
number of lattice sites occupied by the deposited objects [10].

Ben-Naim and Krapivsky obtained an important analytical
result for the jamming concentration in a one-dimensional
case [9]. If the concentration of the deposited objects on the
substrate is sufficiently large, there may be a path through
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FIG. 1. (Color online) Examples of the jamming states (top row) and the percolation clusters (bottom row) of anisotropically deposited
k-mers on a square lattice with defects for (a) s = 0.25, (b) s = 0.5, and (c) s = 1. Both pictures (top and bottom) in each pair (a)–(c) comes
from the same Monte Carlo run. The lattice size is 1024 × 1024, k = 8, and a fragment of the lattices with 128 × 128 sites is shown. The
concentration of defects on the lattice is 0.09. The horizontal k-mers are shown in red, vertical k-mers are shown in blue, k-mers not belonging
to the percolation cluster are shown in the same colors but with a different hue, empty sites are shown in white, and defects on the lattice are
shown in black.

the objects from one side of the system to its opposite
side. Below this concentration, there is no spanning path
through the system, while above this concentration, there is
a connected component of the order of the size of the system.
This concentration is called the percolation threshold. (See,
e.g., [12] for details; the state of the art may be found, e.g.,
in [13].) For some systems, percolation never occurs, even
at the jamming concentration (e.g., when the adsorbed layer
is produced by the deposition of equally sized squares on a
square lattice and when the side of the square is greater than
the length of three sites [14]). In fact, the percolation threshold
corresponds to a phase transition, e.g., an insulator-conductor
transition. Different definitions of the percolation threshold are
used for lattices with defects similar to the definitions of the
jamming concentration. In the present work we use the term
percolation threshold pc as the ratio of the sites occupied by
the objects to the total number of lattice sites.

Cornette et al. [11,15] investigated numerically the perco-
lation of polyatomic species in the presence of impurities on
a square lattice with periodic boundary conditions. Bond and
site percolation problems have been taken in consideration.
Linear k-mers as well as so-called self-avoiding-walk k-mers,
i.e., segments of a self-avoiding walk, have been studied up
to k = 9. A phase diagram where the critical concentration of
impurities is plotted as a function of k has been offered.

The kinetics of the random sequential adsorption of line
k-mers (with values of k up to 64) has been studied on a
disordered substrate occupied by the point impurities [10]. The
coverage of the surface and the jamming limits are calculated
by the Monte Carlo method. The coverage has an asymp-
totically exponential behavior at low concentration of the

impurities. The jamming limits depend on the concentrations
of the impurities d. At d < d∗ the jamming limits decrease
as the value of d increases. At d > d∗ the jamming limits
increase as the value of d increases, where the value of d∗
depends on k. In the one-dimensional case, the results are
in good agreement with the published analytical results [9].
The coverage and the jamming limits on a two-dimensional
disordered lattice are similar to the one-dimensional case. The
jamming limits decrease monotonically as the length of the
line segments increases.

Recently, the impact of defects on percolation in the random
sequential adsorption of linear k-mers on square lattices was
investigated for a particularly wide range of k-mers (k-mer
lengths from 2 to 256) [16]. Two different cases were studied:
(i) where it was assumed that the initial square lattice was
nonideal and some fraction d of the sites was occupied by
nonconducting point defects (impurities) and (ii) where it
was assumed that some fraction d of the sites in the k-mers
themselves consisted of defects, i.e., was nonconducting, while
the initial square lattice was perfect.

Mixed site-bond percolation was studied for the RSA of
k-mers on heterogeneous lattices with variable connectivity
z [17]. The simulations were performed for k = 1–3 on a
triangular lattice. Percolation phase diagrams in terms of
the percolation threshold pc versus lattice connectivity z

were obtained. For the RSA deposition of monomers onto a
triangular lattice with defects preliminarily filled with k-mers,
the percolation (k = 3–24) [18] and the jamming (k � 50) [19]
were investigated by means of Monte Carlo simulations. The
nonmonotonicity of the percolation threshold as a function of
the impurity concentration was observed [18].
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FIG. 2. (Color online) Probability curves for k = 4, s = 0.75,
and the criterion AND: (a) R(p) and (b) R(d). The insets show the
scaling. The statistical error is smaller than the marker size.

The RSA of polydisperse mixtures of k-mers has also been
extensively investigated [5,20,21]. A phase diagram separating
percolating from nonpercolating regions for mixtures of
monomers and k-mers on a square lattice (k = 2–7) has been
also determined [20]. The jamming coverage for a mixture has
been found to be greater than the jamming coverage of either
of the components making the mixture [5]. On the other hand,
the percolation threshold for a mixture was slightly greater
than that of the longest k-mer [21]. The continuum random
sequential adsorption of a polymer on a flat and homogeneous
surface has also been studied [22]. The polymers were modeled
as stiff or flexible chains of monomers.

However, most of the previous studies have been devoted
to the two-dimensional (2D) deposition of randomly oriented
anisometric particles on the substrates. In several works,
problems with unequal probabilities for the orientation of the
deposition of k-mers along different directions of the lattice
have also been analyzed. The degree of anisotropy can be
characterized by the order parameter s defined as

s = |N| − N−|
N| + N−

, (1)

where N| and N− are the numbers of vertically and horizontally
oriented adsorbed particles.

The anisotropic RSA of dimers on a square lattice has been
investigated using Monte Carlo simulation [6,23] and time-
series expansion [6]. Data from the Monte Carlo simulations
evidence that the orientational order parameter s influences
both the values of the percolation threshold pc and the jamming
concentration pj . In particular, the value of pj decreases as
the order parameter s increases [6,23]. An interesting finding
is that in the limit of s → 1, the asymptotic fraction of
dimers with horizontal direction does not vanish but equals
e−2[1 − exp(−2e−2)]/2 ≈ 0.016 046 [6]. The properties of
the anisotropic RSA of flexible k-mers on a 2D triangular
lattice have been studied numerically by means of Monte Carlo
simulations [5]. It was shown that the relaxation time to the
jamming limit increases with the degree of anisotropy of the
elongated particles.

The effect of anisotropic deposition of k-mers on the
jamming [24] and the percolation [25] has also been inten-
sively studied by means of Monte Carlo simulations. These
detailed studies revealed that the RSA model does not allow
preservation of the order parameter s and in fact the substrate
selects the k-mer with appropriate orientation, resulting in
deviation of the predetermined order parameter s from the one
actually observed one s0. A special variant of relaxation for
the RSA model (the RRSA model) with better preservation of
the predetermined anisotropy has been developed [24]. In the
RRSA model, the binding of a k-mer to the adsorbing substrate
is strong and the k-mer has additional possibilities for joining
the surface after an unsuccessful attempt.

The problem of 2D continuous random percolation of
conducting sticks (unoriented or partially oriented) has also
been the topic of intense study [26–36]. In particular, excluded-
volume theory for estimation of the percolation threshold
of fully penetrable particles has been widely applied. This
theory predicts the following relation for the percolation filling
fraction particles ϕc [28,33]:

ϕc = 1 − exp(−BcV/Vex),

where Bc is the number of bounds on one particle, V is the
self-volume of the particle, and Vex is the excluded volume
of the particle. The value of Bc is commonly estimated from
computer simulations.

For rectangular particles Vex/V = (4 + r2 sin γ

π/4+r
), where γ is

the angle between the particles and r = L/d is an aspect ratio
(L is the length and d is the diameter of the particle). For unori-
ented particles (random orientations) Vex/V = 4 + 2r2/π

π/4+r
and

at r � 1, Vex/V ≈ 2r/π . For 2D sticks Bc = 3.57–3.7 [28]
and one can obtain the following estimation:

ϕc ≈ Bcπ/2r.

Note that for impenetrable particles with a hard core the
probability of direct contact between particles is low and the
percolation for this system is absent at any r [37]. However,
the percolation is possible for the anisotropic sticks with a
core-shell structure [33,38]. The percolation of sticks in 2D
continuum deposition models with different rules in spatial
correlations between deposited sticks was also studied [36,39].
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FIG. 3. (Color online) Examples of the clusters in the absence (top row) and in the presence (bottom row) of defects for the RSC model at
different values of the order parameter: (a) s = 0.0, (b) s = 0.5, and (c) s = 1. The lattice size is 1024 × 1024, k = 8, and a fragment of the
lattices with 128 × 128 sites is shown. The concentration of defects on the lattice d is near the critical dc: 0.215 (s = 0.0), 0.186 (s = 0.5), and
0.134 (s = 1.0). The horizontal k-mers are shown in red, vertical k-mers are shown in blue, empty sites are shown in white, and defects on the
lattice are shown in black.

Note that in practical applications of colloidal suspensions
and deposits on their base the effects of particle clustering (or
flocculation) are very important [40]. These interactions were
accounted for in different variants of lattice site interactive
models [41–46]. In these models the tendency of particles to
form clusters is taken into account. The single-cluster model
and the flocculation model for continuous fiber deposition were
also studied (see [36] for a review).

The present work analyzes the relaxation single-cluster
(RSC) and RRSA models. The RSC model is an extension
of the Eden growth model [47] for the case of k-mers on
a lattice with defects. In the RSC model the cluster grows
at its perimeter, starting from an active seed in the center
of the lattice, whereas in the RRSA model the deposition is
distributed over different sites of the lattice. Our aim is to study
the influence of anisotropy on the percolation threshold and
the jamming concentration of linear k-mers on a square lattice
with point defects. The results for the multiple-cluster RRSA
model and the RSC model are compared.

The rest of the paper is organized as follows. Section II
describes our RRSA and RSC models of k-mer deposition.
The results obtained using finite-size scaling theory and the
dependences of the percolation threshold pc and the jamming
concentration pj vs the order parameter s and the defect
concentration d are examined and discussed in detail in
Sec. III. We summarize the results in Sec. IV.

II. METHOD

In both the RRSA and the RSC models, the square lattices
are initially randomly filled with point defects at a given
concentration d. Before deposition of the k-mers, we choose an
appropriate orientation in the horizontal or vertical direction
according to the given value of the order parameter s. The

lattice sites are then occupied by the addition of k-mers.
The defects and previously deposited k-mers can inhibit the
deposition of newcomers. If the attempt is unsuccessful, a
new lattice site (the RRSA model) or a new empty cluster
perimeter site (the RSC model) is randomly selected until the
object could be deposited. The objects may move over all
the substrate (RRSA model) or over all the cluster perimeters
(RSC model) searching for a sufficiently large empty space.
Additional specific details are presented below.

A. The RRSA model

In the RRSA model, the deposition terminates when a
jamming state is reached along one direction [24]. We con-
sidered a lattice with periodic (toroidal) boundary conditions
to eliminate the border effects and, in contrast to [48], treated
spiral clusters as wrapping (percolating). We checked the
percolation in two perpendicular directions and used two
criteria: There is percolation in both directions (criterion AND)
and there is percolation at least along one direction (OR).

Figure 1 presents examples of the jamming states (top row)
and the percolation clusters (bottom row) at different values of
the order parameter s. The concentration of defects d on the
lattice is 0.09.

For each given order parameter s and concentration of
defects d we filled the lattice with k-mers to a concentration
p or to jamming and checked whether there was percolation.
We repeated this 1000 times and found the probability R(p)
that percolation occurs at a particular concentration of the
k-mers. The abscissa of the inflection point of the curve was
treated as the estimate of the percolation threshold for the given
lattice size. We used lattices of sizes L = 100k,200k,400k

and performed finite-size analysis to obtain the percolation
threshold at the thermodynamic limit (L → ∞) pc ∝ L−1/ν ,
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where ν = 4/3 is the critical exponent of the correlation length
for the 2D random percolation problem [12]. All probability
curves intersect each other at one point with the coordinates
(pc,R

∗), where R∗ = R(pc) ≈ 0.78. The value of R∗ depends
on how the percolation is defined [48]. The intersection point
offers another way to estimate the percolation threshold. The
examples of probability curves and scaling are shown in
Fig. 2. We compared our numerical simulation for completely
aligned k-mers (s = 1) with the analytical results [9] and found
that there is no visible difference between the analytical and
numerical results.

B. The RSC model

The RSC model assumes the presence of strong interactions
(attractions) between deposited particles. This model is an
extension of the Eden growth model. The Eden algorithm [47]
was applied to grow a single cluster from an active seed k-mer
on the square lattice. In the RSC model the initial seed k-mer
is placed at the center of the lattice and it has 2k + 2 initial
perimeter sites. The RSC algorithm uses the following steps.

Step 1. Randomly choose one empty cluster perimeter site
and try to add a new k-mer to any available lattice sites, if such
deposition is not inhibited. Repeat this step using the same
orientation of the k-mer until the attempt is successful.

Step 2. Determine the new cluster perimeter sites.
Step 3. Repeat the previous steps until there remain no

untested cluster perimeter sites or the cluster reaches one of
the four boundaries of the lattice.

Examples of clusters in the absence and presence of defects
for the RSC model (k = 8) with different order parameters
s are shown in Fig. 3. When defects are absent, an infinite
cluster can grow on the lattice and the formation of stacks
of identically oriented k-mers (horizontal and vertical) can be
observed. These stacks are rather similar to those observed for
the RSA or the RRSA models [24,25]. Visual observations of
the patterns at different concentrations of defects allow us to
draw the conclusion that the presence of defects restricts the
formation of stacks and can prohibit the growth of an infinite
single cluster for some critical concentration of defects dc.

For each given anisotropy s and concentration of defects
d we repeated the Monte Carlo experiments 1000 times and
found the probability Rb(d) that the single cluster reaches one
of the boundaries of the lattice at a given concentration of
defects d. We used lattices of different sizes in the interval
L = 8k–2048k. Examples of the probability Rb(d) curves
for a disordered system (s = 0) using two different values
of k are shown in Fig. 4. The values of Rb decrease as the
concentration of defects d increases. The commonly applied
procedure for determination of the critical concentration dc

for blocking of the cluster growth is to use finite scaling
analysis for a fixed value of Rb (e.g., at Rb = 0.5). However,
for the RSC model the probability Rb(d) curve is not steplike
even for infinite systems in the thermodynamic limit L → ∞.
For the RSC model at L → ∞, the probability Rb(d) curve
smoothly descends as the value of d increases, reflecting the
finite probability of the blocking of cluster growth from the
initial seed k-mers surrounded by lattice defects. Examples of
finite-size analysis at different values of Rb (k = 2, s = 0) are
presented in Fig. 5(a). Good linear dependences of data were

FIG. 4. (Color online) Probability curves Rb(d) for the RSC
model with (a) k = 2 and (b) k = 32. The data are presented for
disordered systems s = 0. The statistical errors are smaller than the
marker size. The lines are provided simply as a guide for the eye.

always observed in the d versus L−1/ν coordinates, where
ν = 4/3 is the critical exponent of the correlation length for
the 2D random percolation problem [12]. To be definitive,
we always estimate the critical value of the concentration of
defects dc in the limit L → ∞ at the fixed value Rb = 0.5 [see
Fig. 5(a)]. At this value of dc, the growth of the infinite cluster
is suppressed with a probability of 50%. Examples of the
d(L1/ν) dependences for the RSC model (k = 2) at different
values of the order parameter s (Rb = 0.5) are presented in
Fig. 5(b). The data show that the slope of the scaling can be
greatly dependent on the value of s.

The mean degree of the cluster anisotropy δ has been
calculated as

δ = (ry − rx)/r, (2)

where ry and rx are the radii of gyration of the cluster in the y

and x directions, respectively, and r is the mean radius of gyra-
tion. The density of the cluster of k-mers ps was calculated in-
side a rectangle of size 2ry and 2rx with its center located at the
geometrical center of the cluster. A finite scaling analysis was
also carried out for the estimation of ps in the limit L → ∞.
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FIG. 5. (Color online) Concentration of defects dc versus the
scaled size of the system L1/ν for the RSC model (k = 2) (a) at
different values of probability Rb (s = 0) and (b) at different values
of the order parameter s (Rb = 0.5). Here ν = 4/3 is the critical
exponent of the correlation length [12].

III. RESULTS

A. The RRSA model

Figure 6 shows the typical dependences of jamming
concentration pj versus the defect concentration d for different
values of k and a fixed value of the order parameter s = 0.5.
For any given k, the value of pj decreases as the value of
d increases. The effect is more pronounced for the longer
k-mers and the jamming concentration decreases drastically
with the growth of the k-mer length for any anisotropy. Similar
dependences were obtained for other values of the order
parameter s.

Figure 7 shows the typical dependences of the relative jam-
ming concentration pj/pj (s = 0) versus the order parameter
s for different defect concentrations d for k = 8. For large con-
centrations of defects (d � 0.25), the jamming concentration
decreases monotonically as the extent of anisotropy increases,
whereas for small concentrations of defects (d < 0.25),
the jamming concentration has a minimum. The minimum
depends on d and its position runs from approximately 0.4
(d → 0) to 1.0 (d → d∗), where d∗ is between 0.2 and 0.25.

FIG. 6. (Color online) Jamming concentration pj versus the de-
fect concentration d for different values of k and a fixed order
parameter s = 0.5. The solid lines are guides for the eye. The
statistical error is smaller than the marker size.

In the RRSA model, there exists a critical concentration
of defects dc above which the percolation, i.e., formation of
an infinite cluster, is impossible even in the jammed state.
An example of the dependences of the percolation threshold
pc and jamming concentration pj as functions of the defect
concentration d for the given order parameter s = 0.5 and
k = 2 is presented in Fig. 8.

For the short k-mers (k � 8), the percolation threshold pc

is almost insensitive to the defect concentration d for any
anisotropy s [49] (see, e.g., Fig. 8 for k = 2). The inset in
Fig. 8 demonstrates that variation of the percolation threshold
does not exceed a few thousandths. For long k-mers (k > 8),
pc(d) has a maximum between d = 0 and d = dc [16].

Figure 9 presents percolation phase diagram using as
coordinates the critical percolation concentration pc versus the

FIG. 7. (Color online) Relative jamming concentration
pj/pj (s = 0) versus the order parameter s at different concentrations
of defects d . The length of the k-mers equals 8. The solid lines are
guides for the eye. The statistical error is smaller than the marker
size.

062142-6



PERCOLATION AND JAMMING OF LINEAR k-MERS ON . . . PHYSICAL REVIEW E 92, 062142 (2015)

FIG. 8. (Color online) Percolation threshold pc and jamming
concentration pj as a function of the defect concentration d for the
anisotropy s = 0.5 and k = 2. The hatched region corresponds to
the concentrations of the objects and the defects when percolation is
possible. Here dc is a critical concentration of defects that suppresses
the formation of an infinite (percolation) cluster. The solid lines
are simply guides for the eye. The statistical error is smaller than
the marker size when not shown explicitly. The inset shows the
percolation threshold pc as a function of the defect concentration
d . The scale of the vertical axis is strongly increased to demonstrate
changes in the value of the percolation threshold in the range of a few
thousandths.

critical concentration of defects dc at different values of the
order parameter s and lengths of the k-mers. The increase of the
order parameter s is always accompanied by an increase of pc.
However, the dc versus s behavior is different for short and long
k-mers. Moreover, it is interesting that for partially oriented
systems (s < 1) the pc(dc) dependences at fixed values of s

go through a minimum at the values of k lying in the interval

FIG. 9. (Color online) Percolation concentration pc versus the
critical concentration of defects dc for different values of the order
parameter s and lengths of the k-mers. The lines are simply guides
for the eye. The statistical error is smaller than the marker size.

FIG. 10. (Color online) Examples of the degree of the cluster
anisotropy δ versus the order parameter s for different values of k

for zero-defect lattices (d = 0). The inset shows examples of the
clusters for k = 8.

between 9 and 16. The value of k corresponding the minimum
value of dc increases as the anisotropy increases.

B. The RSC model

Preliminary investigations were performed for zero-defect
systems (d = 0). Figure 10 presents examples of the degree
of the cluster anisotropy δ versus the order parameter s for
different values of k for such zero-defect systems (d = 0).
The value of δ increases as s increases and the effects become
more pronounced for the longer k-mers. At large values of s,
the shape of the clusters becomes ellipselike (see the inset in
Fig. 10).

FIG. 11. (Color online) Density of cluster ps versus the value of
k for the RSC model and the jamming concentration pj versus the
value of k for the RRSA model [24]. The data are presented for
disordered s = 0 and completely ordered s = 1 zero-defect systems
(d = 0). The inset shows ps − p∞

s and pj − p∞
j versus k. Here p∞

s

and p∞
j are the limiting values at k → ∞.
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TABLE I. Estimated parameters p∞
s , p∞

j , A, and α in the
power-law function (3). The data are presented for the RSC and the
RRSA [24] models at s = 0 and s = 1 and for the one-dimensional
(1D) model [24]. In all cases the coefficient of determination ρ was
greater than 0.999.

pj (k = ∞) A α

s RSC RRSA RSC RRSA RSC RRSA

0 0.67(6) 0.652(8) 0.41(8) 0.417(5) 0.77(7) 0.713(7)
1 0.745(0) 0.747(2) 0.27(3) 0.235(3) 0.93(1) 1.016(6)
1D 0.74759792 0.227(7) 1.011(1)

Figure 11 compares both the density of the cluster ps versus
k for the RSC model and the jamming concentration pj [24]
versus k for the RRSA model. It is worth noting that the values
of ps and pj decrease as an inverse power of the linear segment
length k (see the inset in Fig. 11) and approach their limiting
values p∞

s and p∞
j with increasing k:

ps,j (k) = p∞
s,j + A/kα. (3)

The parameters p∞
s , p∞

j , A, and α are presented in Table I.
The exponent α is not universal and depends upon the order
parameter s. It had been suggested that such a power behavior
indicates the presence of a fractal structure of the cluster
networks in both the RSC and RRSA models with the fractal
dimension df = 2 − α [24]. For completely ordered systems
(s = 1), the value of df is close to 1 as expected for the 1D
problem. For disordered systems at s = 0, the values of α are
noticeably smaller than 1 for both the RSC and the RRSA
models and so the fractal dimension df in this case is higher
than 1.

Figure 12 compares the density of the cluster ps versus
the concentration of defects d for the RSC model at different
values of the linear segment length k for disordered s = 0
(solid lines) and completely ordered s = 1 (dashed lines)
systems. The values of ps decrease as the value of d increases
and there exists some limiting concentration of defects dc that

FIG. 12. (Color online) Density of cluster ps versus the concen-
tration of defects d for the RSC model at different values of the linear
segment length k for disordered s = 0 (solid lines) and completely
ordered s = 1 (dashed lines) systems.

FIG. 13. (Color online) Critical concentration of defects dc ver-
sus the value of k for the RSC model at different values of the order
parameter s. The inset shows 1/dc versus k − 1 dependences.

suppresses the growth of an infinite cluster. At any given value
of d, the impact of ordering on the value of ps depends upon
the values of both k and d (Fig. 12).

The critical concentration of defects dc decreases as the
values of k and s increase and approaches zero in the limit
of very long k-mers k → ∞ (Fig. 13). It is interesting that a
rather good linear relation between 1/dc and k was observed
at different values of s:

d−1
c = d−1

c (k = 1) + a(k − 1), (4)

where d−1
c (k = 1) = 2.488 ± 0.002, a = 0.282 ± 0.004 (s =

0.0), a = 0.371 ± 0.004 (s = 0.5), and a = 0.794 ± 0.001
(s = 1.0). Note that the value 1 − dc(k = 1) = 0.598 ± 0.003
is close to the value of the threshold concentration 	0.5927
for ordinary monomer percolation [12].

FIG. 14. (Color online) Density of clusters ps versus the critical
concentration of defects dc for the RSC model at different values of
the order parameter s and of k. Arrows show the values of ps in the
limit of very long k-mers k → ∞.
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The density of the clusters ps at the critical concentration
of defects dc for the RSC model depends in a complex manner
on s and k (Fig. 14). For disordered systems (s = 0), the value
of ps tends to zero in the limits of the very long k-mers
k → ∞ and very small critical concentrations dc → 0. The
formation of such empty or loose clusters can be explained
by analyzing the cluster patterns presented in Fig. 3. In zero-
defect systems (d = 0), compact clusters form with significant
stacks of identically oriented k-mers (horizontal and vertical).
These stacks are responsible for the high values of ps . The
introduction of defects strongly prevents the formation of
stacks [see, e.g., Fig. 3(a)] and loose networks with near zero
density are formed. On the other hand, denser clusters are
formed for ordered systems with ps ≈ 0.065 at s = 0.5 and
ps ≈ 0.38 at s = 1.0.

IV. CONCLUSION

For the problem of k-mer deposition, the RRSA and RSC
models have huge differences in their deposition rules and
structure of the clusters they generate. In the RRSA model,
random deposition of k-mers is performed, with multiple
clusters being formed that can be consolidated in the course of
their growth. Intensive studies with the RRSA have shown
that the jamming concentration continuously decreases as
the lengths of the k-mers increase [24]. The percolation
threshold initially decreases and then increases with increasing
value of k [25]. For a completely disordered system, i.e., at
s = 0, a conjecture has been offered that the formation of an
infinite cluster is impossible when k exceeds approximately
1.2 × 104 [25]. On the other hand, in the RSC model the single
cluster grows at its perimeter by an Eden growth process [47]
and the formation of an infinite cluster is not restricted for
any values of k. This model assumes strong attractions of the
newcomer to the previously deposited particles at their lateral
boundaries. The Eden-like clusters display noticeable shape
anisotropy at high values of the order parameter s.

It is amazing that, in spite of these differences between
the RRSA and RSC models, they display some general
similarities. In the absence of defects on the substrate (for
zero-defect systems d = 0) the jamming concentration pj

for the RRSA model and density of the cluster ps for the
RSC model display similar dependences on the linear segment
length k and on the order parameters (see Fig. 12). The impacts
of defects on the percolation and jamming characteristics are
also fairly similar. For both models the suppression of the
growth of an infinite (percolation) cluster at some critical
concentration of defects dc can be observed. Phase diagrams in
the form of the pc(dc) (RRSA model) and ps(dc) dependences
for different values of s and k were determined.

For the RRSA model, the value of pc ranges in the interval
≈0.465–0.58 (k = 2–32) and the value of dc decreases for
short k-mers (k < 16) but increases for long k-mers (k > 16)
as the value of s increases. For the RRSA model, the value
of dc decreases for short k-mers (k < 16) as the value of s

increases. For k � 16, the value of dc is almost independent
of s. Moreover, for short k-mers, the percolation threshold is
almost insensitive to the defect concentration for any values
of s. For the RSC model the value of ps at the critical
concentration of defects dc depends in a complex manner on
the values of s and k. For disordered systems (s = 0), the value
of ps tends to zero in the limits of very long k-mers k → ∞.
This reflects a suppression of k-mer stacking by the defects
that results in the formation of loose clusters with very low
density.
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