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We derive a local-time path-integral representation for a generic one-dimensional time-independent system.
In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over
x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path
integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes
arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful
alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To
illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch
density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory
and the Rayleigh-Ritz variational principle, are also discussed.
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I. INTRODUCTION

The path integral (PI) has been used in quantum physics
since the revolutionary work of Feynman [1], although the
basic observation goes back to Dirac [2,3] who appreciated
the role of the Lagrangian in short-time evolution of the
wave function, and even suggested the time-slicing procedure
for finite, i.e., noninfinitesimal, time lags. Since then, the PI
approach has yielded invaluable insights into the structure of
quantum theory [4] and has provided a viable alternative to the
traditional operator-formalism-based canonical quantization.
During the second half of the 20th century, the PI became a
standard tool in quantum field theory [5] and statistical physics
[6], often providing the easiest route to the derivation of
perturbative expansions and serving as an excellent framework
for (both numerical and analytical) nonperturbative analysis
[7].

Feynman PI has its counterpart in pure mathematics,
namely, in the theory of continuous-time stochastic processes
[8]. There the concept of integration over a space of continuous
functions (so-called fluctuating paths or sample paths) had
already been introduced by Wiener [9] in the 1920s in order
to represent and quantify the Brownian motion. Interestingly
enough, this so-called Wiener integral (or integral with respect
to Wiener measure) was formulated two years before the
discovery of the Schrödinger equation and 25 years before
Feynman’s PI formulation.

The local time for a Brownian particle (in some literature
also called sojourn time) has been of interest to physicists and
mathematicians since the seminal work of Lévy in the 1930s
[10]. In its essence, the local time characterizes the time that
a sample trajectory x(t) of a given stochastic process spends
in the vicinity of an arbitrary point X. This in turn defines a
sample trajectory LX of a new stochastic process. A rich theory
has been developed for local-time processes that stem from
diffusion processes (see, e.g., Ref. [11] and citations therein).
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For later convenience, we should particularly highlight the
Ray-Knight theorem, which states that the local time of the
Wiener process can be expressed in terms of the squared Bessel
process [12–14]. In contrast to mathematics, the concept of
the local time is not uniquely settled in the physics literature.
Various authors define essentially the same quantity under
different names (local time, occupation time, traversal time,
etc.), and with different applications in mind. For example, in
Ref. [15], the traversal time is used to study quantum scattering
and tunneling processes; in Ref. [16], the small-temperature
behavior of the equilibrium density matrix is analyzed with a
help of the occupation time; while in Ref. [17], the large-time
behavior of path integrals that contain functionals of the local
time is discussed.

The aim of this paper is to derive a local-time PI
representation of the Bloch density matrix, i.e., the matrix
elements 〈xb|e−βĤ |xa〉 of the Gibbs operator. This can serve
not only as a viable alternative to the commonly used
Feynman-Kac representation, but also as a powerful tool
for extracting both large- and small-temperature behavior.
Apart from the general theoretical outline, our primary
focus here will be on the low-temperature behavior, which
is technically more challenging than the large-temperature
regime. In fact, the large-temperature expansion was already
treated in some detail in our previous paper [18]. Last, but not
least, we also wish to promote the concept of the local time,
which is not yet sufficiently well known among path-integral
practitioners.

The structure of the paper is as follows. To set the stage,
we recall in the next section some fundamentals from the
Feynman PI which will be needed in later sections. In Sec. III,
we provide motivation for the introduction of a local time and
construct a heuristic version of the local-time representation of
PIs. The key technical part of the article is contained in Sec. IV,
where we derive by means of the replica trick the local-time
representation of the Bloch density matrix. Relation to the
Sturm-Liouville theory is also highlighted in this context. A
local-time analog of the Feynman-Matthews-Salam formula
[19,20] is presented in Sec. V and its usage is illustrated
with a computation of the one-point distribution of the local
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time. Since a natural arena for local-time PIs is in thermally
extremal regimes, we confine our attention in Sec. VI to
large- and small-β asymptotic behavior of the Bloch density
matrix. There we also derive an explicit leading-order behavior
in large-β (i.e., low-temperature) expansion. The analysis is
substantially streamlined by using the Laplace asymptotic
formula and the Rayleigh-Ritz variational principle. Finally,
Sec. VII summarizes our results and discusses possible ex-
tensions, applications, and future developments of the present
work. For the reader’s convenience, the paper is supplemented
with two appendices which clarify some finer technical
details.

II. PATH-INTEGRAL REPRESENTATION OF THE BLOCH
DENSITY MATRIX

Consider a nonrelativistic one-dimensional quantum-
mechanical system described by a time-independent Hamilto-
nian Ĥ = p̂2

2M
+ V (x̂), where p̂|x〉 = −i�∂x |x〉. Throughout

this paper, we will study the matrix elements

ρ(xa,xb,β) ≡ 〈xb|e−βĤ |xa〉 (1)

of the Gibbs operator e−βĤ , where β = 1/(kBT ) is the inverse
temperature and kB is the Boltzmann constant. The matrix
ρ(xa,xb,β), known also as the Bloch density matrix, is a
fundamental object in quantum statistical physics, as the
expectation value of an operator Ô at the temperature T can
be written in the form

〈Ô〉 = 1

Z

∫
R

∫
R

dxadxbρ(xa,xb,β)〈xb|Ô|xa〉, (2)

where Z = ∫
R dx ρ(x,x,β) is the partition function of the

system. If needed, ensuing quantum-mechanical transition
amplitudes can be obtained from (1) via a Wick rotation which
formally amounts to the substitution β → it/�, converting
thus the Gibbs operator e−βĤ to the quantum evolution
operator e−itĤ /�.

The matrix elements in Eq. (1) can be represented via the
path integral as [4,7]

ρ(xa,xb,β) =
∫ x(β�)=xb

x(0)=xa

Dx(τ )

× exp

{
−1

�

∫ β�

0
dτ

[
M

2
ẋ2 + V (x)

]}
. (3)

This represents a “sum” over all continuous trajectories x(τ ),
τ ∈ [0,β�], connecting the initial point x(0) = xa with the
final point x(β�) = xb. It should be noted that the integral∫ β�

0 dτ [M
2 ẋ2 + V (x)] is the classical Euclidean action integral

along the path x(τ ) with 0 < τ � β�. In the following, we
will denote the Euclidean action as A. The integrand in A,
i.e., (M/2)ẋ2(τ ) + V [x(τ )], can be identified with the classical
Hamiltonian function, in which the momentum p is substituted
for Mẋ. One can also regard (3) as an expectation value of
the functional exp{− ∫ β�

0 dτV [x(τ )]/�} over the (driftless)
Brownian motion with the diffusion coefficient M/2�, and

duration β�, that starts at point xa and terminates at xb.
The latter stochastic process is also known as the Brownian
bridge.

III. LOCAL-TIME REPRESENTATION OF PATH
INTEGRALS: HEURISTIC APPROACH

The purpose of this section is twofold. First, we would like
to motivate a need for the reformulation of PIs in the language
of the local-time stochastic process. In particular, we point
out when such a reformulation can be more pertinent than
the conventional “sum over histories” prescription. Second,
we wish to outline a heuristic construction of the local-time
representation of PIs. More rigorous and explicit (but less
intuitive) formulation of PIs over an ensemble of local times
will be presented in the subsequent section.

To provide a physically sound motivation for the local-
time representation of PIs, we follow the exposition of Paulin
et al. in Ref. [16]. To this end, we first consider the diagonal
elements of the Bloch density matrix, i.e., ρ(xa,xa,β) (often
referred to as the Boltzmann density). Upon shifting x →
x + xa , and setting x = λξ , τ = sβ� (λ ≡

√
β�2/M is the

thermal de Broglie wavelength), the PI (3) can be reformulated
in terms of dimensionless quantities s and ξ (s) as

ρ(xa,xa,β) = 1

λ

∫ x(1)=0

x(0)=0
Dξ (s)

× exp

{
−

∫ 1

0
ds

[
1

2
ξ̇ 2 + βV (xa + λξ )

]}
.

(4)

Note, in particular, that in contrast toDx(τ ), the measureDξ (s)
does not explicitly depend on β, and thus β-dependent parts in
the PI are under better control. Such a rescaled representation
is particularly useful when discussing large- and/or small-β
behavior of the path integral in question. Path fluctuations
in the potential are controlled by λ ∝ √

β, and the factor β

quantifies the significance of the potential V with respect to
the kinetic term.

For small β (i.e., high temperature), typical paths x(sβ�) =
xa + λξ (s) stay in the vicinity of the point xa , as depicted in
Fig. 1, and therefore a systematic Wigner-Kirkwood expansion
can be readily developed by Taylor expanding the potential part
of the action [18].

When β is large (i.e., low temperature), the trajectories
x(sβ�) fluctuate heavily around the value xa , and the potential
term V dominates over the kinetic one. From the statistical
physics point of view, the most important contribution to the
low-temperature behavior of the path integral (4) should come
from those paths that spend a sizable amount of time near the
global minimum of the potential V (x). For this reason, it is
important to be able to keep track of the time which a given
path spends in an infinitesimal neighborhood of an arbitrary
point x.

Let us define, for each Wiener trajectory x(τ ) present in the
Feynman path integral (3), the ensuing local time as

LX(τ ) =
∫ τ

0
dτ ′δ[X − x(τ ′)]. (5)
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FIG. 1. (Color online) In the middle, two typical paths x(sβ�) =
xa + λξ (s) are plotted as functions of the dimensionless time s.
The solid green path, representing a typical trajectory with a high
value of β, exhibits large fluctuations, whereas the dashed red path,
corresponding to small β, stays in the vicinity of the initial and final
point xa . On the right, two local-time profiles L(x) are shown. The
broad one (solid green) arises from the violently fluctuating path
x(sβ�), whereas the narrow one (dashed red) corresponds to the path
with small fluctuations. On the left, we depict a generic potential
V (x).

Since the local time LX(τ ) is a functional of the random
trajectory x(τ ′) for 0 < τ ′ < τ , it represents a random variable.
From definition (5), we can immediately see that LX � 0
for all X ∈ R,

∫
R dXLX(τ ) = τ and that LX has a compact

support. In addition, it can be proved [8,11] that local-time
trajectories LX are, with probability one, continuous curves
which (similarly to trajectories in the underlying Wiener
process) are nowhere differentiable. In Fig. 1, we depict
two examples of representative local-time trajectories. An
extensive mathematical discussion of properties of the local
time can be found, e.g., in Refs. [11,12].

With definition (5), the potential part of the Euclidean action
can be recast into the form

∫
R dXLX(β�)V (X). A local-time

representation of the Bloch density matrix ρ(xa,xb,β) is then
given by

ρ(xa,xb,β) =
∫

DLxW[L; β,xa,xb]δ

(∫
R

dXLX − β�

)
× exp

[
−1

�

∫
R

dXLXV (X)

]
, (6)

where the PI “sum” is taken over all local-time trajectories Lx ,
with x being the independent variable [not to be mistaken
as the Wiener trajectory x(τ )]. The δ function enforces
the normalization constraint mentioned above. Basically,
transition to the local-time description represents a change
(or a functional substitution) of stochastic variables x(τ ) →
Lx(β�). The weight factor W appearing in Eq. (6) can be
formally written in the form

W[L; β,xa,xb] = exp

[
−1

�

∫ β�

0
dτ

M

2
ẋ2

]
det

[
δLx(β�)

δx(τ )

]−1

.

(7)

It is a function of xa , xb [which are implicitly present in
Lx(β�)] and β, and a functional of the local time Lx . Of
course, these cavalier manipulations do not have more than a

heuristic nature, and it is, indeed, a nontrivial task to determine
W directly from (7). For this reason, we will in the following
section tackle this problem indirectly.

IV. LOCAL-TIME REPRESENTATION OF PATH
INTEGRALS: DERIVATION

In this section, we present a derivation of the local-time
representation of the Bloch density matrix (1). Initially, we
limit ourselves to considering the case of the diagonal part,
xb = xa , and arrive at the key result (16), which expresses the
matrix elements in the ensuing Laplace picture with respect to
β. This intermediate outcome is shown to agree with the Sturm-
Liouville theory. In the next step, we generalize the latter result
to the off-diagonal elements (xb 
= xa). The inverse Laplace
transform will then yield the sought local-time representation
of PI [cf. Eq. (28)].

A. Field-theoretic representation

It follows from definition (1) that the function ρ(xa,xb,β)
satisfies the heat equation[

∂

∂β
− �

2

2M

∂2

∂x2
b

+ V (xb)

]
ρ(xa,xb,β) = 0, (8)

with the initial condition ρ(xa,xb,0+) = δ(xa − xb). This is
merely a Wick-rotated (t → −i�β) analog of the Schrödinger
equation. The Feynman-Kac formula [1,21,22] then ensures
that the PI (3) can be calculated by solving the corresponding
parabolic differential equation (8).

In the Laplace picture, Eq. (8) takes the form[
E − �

2

2M

∂2

∂x2
b

+ V (xb)

]
ρ̃(xa,xb,E) = δ(xa − xb), (9)

with ρ̃(xa,xb,E) = ∫ ∞
0 dβe−βEρ(xa,xb,β). Equation (9) im-

plies that ρ̃ is nothing but the Green function of the operator
E + Ĥ . With the benefit of hindsight, we represent the Green
function ρ̃ as a path integral over fluctuating fields—the so-
called functional integral [5]. This is rather standard strategy
in quantum field theory [6,20], and in our case it yields

ρ̃(xa,xb,E) =
∫ ψ(X+)=0
ψ(X−)=0 Dψ(x)ψ(xa)ψ(xb)e− 1

2 AE [ψ]∫ ψ(X+)=0
ψ(X−)=0 Dψ(x)e− 1

2 AE [ψ]
, (10)

where

AE[ψ] ≡
∫ X+

X−
dxψ(x)

[
− �

2

2M

d2

dx2
+ V (x) + E

]
ψ(x)

=
∫ X+

X−
dx

{
�

2

2M
ψ ′(x)2 + [V (x) + E]ψ(x)2

}
(11)

is the Euclidean action functional of the field-theoretic
path integral. The superindex E in A indicates the shift
in the potential V (x) by the amount E. Here, we have
confined our quantum-mechanical system within a finite box
[X−,X+], with X− � min{xa,xb} and X+ 
 max{xa,xb}. A
real scalar field ψ(x) satisfies Dirichlet boundary conditions
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ψ(X−) = ψ(X+) = 0 so as to ensure the validity of the
operations being performed.

B. Replica trick

Since we will ultimately want to invert the Laplace
transform to regain from ρ̃(xa,xb,E) the original Bloch density
matrix ρ(xa,xb,β), we cannot treat the denominator in Eq. (10)
as an irrelevant normalization constant (which is the usual
practice in quantum field theory), but instead we have to take
care of its E dependence. To this end, we take advantage of
the formula

a

b
= lim

D→0
abD−1, (12)

which is a simple version of the replica trick. [The usual
replica-trick formula (cf. e.g., Ref. [23]) can be obtained
from (12) by integrating both sides with respect to b and
subsequently dividing by a.] With the help of (12), we can
rewrite (10) as a multidimensional functional integral,

ρ̃(xa,xb,E) = lim
D→0

2

D

∫ ψ(X+)=0

ψ(X−)=0
Dψ(x)ψ(xa)

·ψ(xb)e− ∑D
σ=1 AE [ψσ ], (13)

where the multiplet ψ = (ψ1, . . . ,ψD) is a D-component
“replica” field in 1 + 0 dimensions, ψ(xa) · ψ(xb) denotes the
scalar product

∑D
σ=1 ψσ (xa)ψσ (xb), and we have rescaled the

fields by a factor of
√

2 in passing. The factor 1/D results
from a PI generalization of the well-know mean-value identity
〈xiyi〉 = 〈x · y〉/D valid for any two vectors in D-dimensional
statistically isotropic environments.

As a side remark, note that we may now invert the Laplace
transform, using the trivial identity∫ ∞

0
dβe−βEδ(β − c) = e−cE for c > 0, (14)

to obtain the representation

ρ(xa,xb,β) = lim
D→0

2

D

∫ ψ(X+)=0

ψ(X−)=0
Dψψ(xa)

·ψ(xb)δ

[∫ X+

X−
ψ(x)2dx − β

]
e− ∑D

σ=1 AE=0[ψσ ].

(15)

Upon scaling, ψ → √
βψ , which agrees with the formula (2.9)

in Ref. [17]. Though the result (15) generalizes to an arbitrary
number of dimensions of the x space, i.e., x ∈ Rd , our further
development will be illustrated (for simplicity’s sake) only on
the one-dimensional case.

Let us remark that as an alternative to the replica trick,
one can use the fermionic path-integral representation of
the denominator in Eq. (10) to cast ρ̃ in the form of a
supersymmetric path integral [24]. However, the ensuing
expression containing Grassmann variables does not have a
direct “visual” interpretation in terms of local times. On the
other hand, as we shall see below, the replica approach allows

one to relate local time directly to a radial part of the replica
field ψ .

C. Connection with radial harmonic oscillator

In order to derive the weight factor W [cf. Eq. (7)], we have
arrived at the representation (15) with D replica fields. This
form is still not very transparent and a further simplification
step is needed to get rid of an explicit dependence of the
measure on D. To this end, we note that

∑D
σ=1 AE[ψ] is, in

fact, the action of a D-dimensional harmonic oscillator with the
“time” variable x, “position” variable ψ , mass �

2/M , and time-
dependent “frequency” V (x) + E. Considering for a moment
only diagonal matrix elements, xb = xa , spherical symmetry
in the replica field space allows one to reduce the path
integral (13) to its radial part. Due to the boundary conditions,
ψ(X−) = ψ(X+) = 0, only the zero-angular-momentum (s-
wave) contribution is nonvanishing (generally a weighted sum
over radial PIs with different angular momenta would be
required). This will be rigorously justified at the end of this
section. The corresponding radial PI representation for (13)
reads [6,7,25]

ρ̃(xa,xa,E) = lim
D→0

2

D�(D)
lim

η±→0
(η−η+)

1−D
2

×
∫ η(X+)=η+

η(X−)=η−
Dη(x)η2(xa)e−AE

D [η]. (16)

Here, the radial part η ≡
√

ψ2 of the D-dimensional replica
field ψ is always non-negative, i.e., η(x) � 0; the area of a
unit sphere in D dimensions, �(D) = 2πD/2/�(D/2), may
be replaced by its small-D asymptotic form �(D) ∼ D; and
η± have been introduced to regularize the origin of the ψ

space. The new action functional

AE
D[η] ≡ AE[η] +

∫ X+

X−
dx

M

�2

(D − 1)(D − 3)

8η2(x)
(17)

is the Euclidean action functional of the radial harmonic
oscillator [7,25,26]. It contains an additional centrifugal
potential term (Edwards-Gulyaev or Langer term [7,27,28]),
which emerges from Bessel function ID/2−1 present in the
finite sliced form of the radial PI (16). At this point, we should
stress that in contrast to the quantum-mechanical radial PI,
one can safely use the asymptotic expansion for the Bessel
function ID/2−1 (see, e.g. Ref. [29]):

Iμ(yj ) ∼ 1√
2πyj

eyj −(μ2−1/4)/2yj (|yj | 
 1, Re[yj ] > 0),

yj = (M/ε�)rj rj−1, (18)

in the Euclidean PI sliced form. Here the infinitesimal “time”
slice ε is related to the number of slices N via the relation
ε = �β/N . In quantum mechanics, this is a problematic
step because (18) requires Re[yj ] > 0, while there Re[yj ] =
Re[(M/iε�)rj rj−1] = 0.
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Fortunately, the PI for the radial harmonic oscillator is exactly solvable even in the case of x-dependent oscillator frequency.
The solution reads [25]

(η2x2|η1x1)D ≡
∫ η(x2)=η2

η(x1)=η1

Dη(x) exp

(
−

∫ x2

x1

dx

{
�

2

2M
η′2 + [V (x) + E]η2 + M

�2

(D − 1)(D − 3)

8η2

})
= �

2

M

√
η1η2

G(x1)
ID/2−1

[
�

2

M

η1η2

G(x1)

]
exp

{
− �

2

2M

[
F ′(x2)

F (x2)
η2

2 − G′(x1)

G(x1)
η2

1

]}
. (19)

The functions F (x) and G(x) are two independent solutions
of the differential equation

[Ĥ + E]y(x) =
[
− �

2

2M

d2

dx2
+ V (x) + E

]
y(x) = 0, (20)

with the initial conditions F (x1) = 0 and F ′(x1) = 1, and
G(x2) = 0 and G′(x2) = −1. In addition, the Wronskian
W (F,G) ≡ F (x)G′(x) − F ′(x)G(x) is independent of x, as
can be proved by differentiation and by using the fact that
F and G both satisfy Eq. (20). By equating the values of
W (F,G) at points x1 and x2, and taking into account the
initial conditions for F and G, we find a useful identity
F (x2) = G(x1).

Now, the PI in Eq. (16) can be sliced at point xa , and
expressed as

ρ̃(xa,xa,E) =
∫ ∞

0
dηa(η+X+|ηaxa)Dη2

a(ηaxa|η−X−)D.

(21)

The limits in Eq. (16) are readily carried out with the help of
the asymptotic formulas ID/2−1(z) ∼ (z/2)D/2−1/�(D/2) and
�(z) ∼ 1/z, valid for z → 0+. Subsequent integration over ηa

brings (16) to the form

ρ̃(xa,xa,E) = −2M

�2

F1(xa)G2(xa)

F1(xa)G′
2(xa) − F ′

1(xa)G2(xa)
, (22)

where F1(x) solves Eq. (20) with initial conditions F1(X−) = 0
and F ′

1(X−) = 1, and G2(x) solves the same equation with
G2(X+) = 0 and G′

2(X+) = −1. The denominator in Eq. (22)
is the Wronskian W (F1,G2). The full derivation is given in
Appendix A.

Although rather explicit, Eq. (22) is not well suited for the
Laplace transform inversion, since functions F (x) and G(x)
contain E in a nontrivial way, which, in addition, significantly
hinges on the actual form of V (x). For formal manipulations,
it is still better the employ the PI representation (16). For
instance, using Eq. (14), we can easily invert the Laplace
transform to return from E back to the β variable, namely,

ρ(xa,xa,β) = lim
D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

∫ η(X+)=η+

η(X−)=η−
Dη(x)

× η2(xa)δ

(∫ X+

X−
η2dx − β

)
e−AE=0

D [η]. (23)

Note that we have utilized the asymptotic form �(D) ∼ D

which holds for D � 1. We shall see shortly that (23) can be
straightforwardly related to the local-time PI representation of
the Boltzmann density matrix.

Let us finally comment on the higher-angular-momentum
terms which, as claimed, should not contribute to expres-

sion (16). For arbitrary angular momentum � � 0, we em-
ploy formula (19) with a slight modification, D → D +
2�. Now, for example, in the limit η− → 0, this becomes
(ηaxa|η−X−)D+2� ∝ η

�+D/2−1/2
− , which, multiplied by the

prefactor η
1/2−D/2
− , implies the behavior ∼ η�

−. That is, only
the (� = 0) term can give a nonvanishing contribution.

D. Connection with the Sturm-Liouville problem

Consider again Eq. (9) and a finite interval x ∈ [X−,X+].
The corresponding Green function of the operator Ĥ + E can
be easily constructed (at least formally) with the help of the
Sturm-Liouville theory [30,31]. An immediate consequence
of the latter is that for xa < xb, the Green function has the
form

ρ̃(xa,xb,E) = −2M

�2

F (xa)G(xb)

W (F,G)
, (24)

where the functions F (x) and G(x) satisfy Eq. (20) with the
initial conditions F (X−) = 0 and F ′(X−) = 1, and G(X+) =
0 and G′(X+) = −1, respectively. In addition, the above Green
function should be symmetric due to the Hermitian nature
of Ĥ .

The Sturm-Liouville theory ensures that the solution to
the second-order differential equation (20) is unique, when
specifying the values of y(x0) and y ′(x0) at some point x0.
Therefore, the functions F and G must coincide with F1 and
G2 of Eq. (22), and the diagonal part of (24), i.e., ρ̃(xa,xa,E),
reduces to expression (22). This is an important consistency
check of our representation (16).

E. Extension to off-diagonal matrix elements

Let us now generalize the PI representation (16) to the
full Bloch density matrix, i.e., we wish to also include the off-
diagonal matrix elements, xb 
= xa . If we go back to the replica
representation (13), we realize that the requirement xb 
= xa

spoils rotational symmetry in the replica field space, and thus
precludes straightforward reduction to a radial path integral.
Instead of refining the reduction procedure, we simply make
a guess, which, as we prove in Appendix A, coincides with
the well-established Sturm-Liouville formula (24). Our guess
is based on mathematical results presented in Eq. [12]. In
particular, we claim that the extension of the representation
(16) to off-diagonal matrix elements should read

ρ̃(xa,xb,E) = lim
D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

×
∫ η(X+)=η+

η(X−)=η−
Dη(x)η(xa)η(xb)e−AE

�[η], (25)
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with the action functional

AE
�[η] ≡ AE[η] +

∫ X+

X−
dx

M

�2

�(x)

8η2(x)
, (26)

where AE[η] is defined in Eq. (11), and �(x) is a piecewise
constant function,

�(x) =
{−1 for x ∈ [xa,xb]

(D − 1)(D − 3) otherwise. (27)

At this point, we can invert the Laplace transform with the
help of Eq. (14). As a result, we obtain the sought local-time
PI representation of the Bloch density matrix (1), namely,

ρ(xa,xb,β) = lim
D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

×
∫ η(X+)=η+

η(X−)=η−
Dηη(xa)η(xb)

× δ

(∫ X+

X−
η2dx − β

)
e−AE=0

� [η]. (28)

Here, integrations over η(x) run from 0 to +∞, i.e., the
paths η(x) are non-negative. Comparing this result with
the anticipated heuristic form (6), we can identify η2(x) =
LX(β�)/�. Representation (28) allows us to identify the weight
factor (7) with

WD[η; β,xa,xb] = 2

D2
(η−η+)

1−D
2 η(xa)η(xb)

× exp

{
−

∫ X+

X−
dx

[
�

2

2M
η′2 + M

�2

�(x)

8η2

]}
.

(29)

Contrary to expectation, the right-hand side of this expression
does not depend on β. Subindex D in WD indicates that the
weight factor must be regularized when we pull it out of the PI
(28). By analogy with quantum mechanics, one can represent
(28) in the discretized time-sliced form. In such a case, the
weight WD would be a product of terms involving the Bessel
functions ID/2−1, if �(x) = (D − 1)(D − 3), or I0, if �(x) =
−1 (see Ref. [25]).

Last, but not least, expressions (28) and (29) indicate that
the square root of LX is (at least from a physicist’s point
of view) a more convenient variable to describe local-time
trajectories than LX alone. From a mathematical standpoint,
the local-time representation of the density matrix (28) can
be regarded as a PI variant of the Ray-Knight theorem
[12–14], which plays a prominent role in the theory of
stochastic processes.

V. FUNCTIONALS OF THE LOCAL TIME

Formula (28) provides a way of rewriting the PI (3) in terms
of the local time. In this section, we consider a more general
scenario in which the initial path integral is of the form

F̄ (xa,xb,β) ≡
∫ x(β�)=xb

x(0)=xa

Dx(τ )F [L]

× exp

{
−1

�

∫ β�

0
dτ

[
M

2
ẋ2 + V (x)

]}
, (30)

where F is an arbitrary functional of the local time LX(β�),
which itself is (as seen in Sec. III) a functional of the paths x(τ ).
Relation (30) represents a local-time analog of the Feynman-
Matthews-Salam formula [19,20].

To bring it into more manageable form, we may observe
that for any X, the action of LX in the PI (30) can be
taken over by the functional derivative −�δ/δV (X), acting
on the exponential. This becomes transparent after rewriting
the potential part as

∫ β�

0 dτV [x(τ )] = ∫
R dXV (X)L(X). The

entire functional F [L] can therefore be pulled out of the path
integral, which then allows one to write

F̄ (xa,xb,β) = F

[
−�

δ

δV

]
ρ(xa,xb,β). (31)

When we employ the local-time representation of PI
for ρ(xa,xb,β) [cf. Eq. (28)], each functional derivative
−�δ/δV (x) will produce the term �η2(x). In such a way, F̄

can be written as

F̄ (xa,xb,β)

= lim
D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

∫ η(X+)=η+

η(X−)=η−
Dηη(xa)η(xb)

× δ

(∫ X+

X−
η2dx − β

)
F [�η2]e−AE=0

� [η], (32)

where, strictly speaking, the functional F [· · · ] is regularized
in such a way that it depends on LX only for X ∈ [X−,X+],
and X± are sent to ±∞ only at the end of the calculation.

First, let us make the simple observation that formula
(32) reduces to (28) for the choice F [L] = 1. One of the
most important mean values of a local-time functional, as
evaluated with Eq. (32), is the mean of exp[− ∫

R dXLXj (X)],
which gives the moment-generating functional. The local-
time moment structure is particularly pertinent in various
perturbative expansions, including low- and high-temperature
expansions (see Sec. VI). Another important example, namely
the case of a one-point distribution function, will be discussed
in the following section.

In passing, we should note that should we have started
from (15) and repeated the above procedure, an analog of
Eq. (32) for higher-dimensional spaces, x ∈ Rd , could be
easily obtained. This would include the D-dimensional replica
field ψ in the d-dimensional Euclidean configuration space.

Example: One-point distribution function at the origin

A simple, though quite important, consequence of Eq. (32)
is that it readily provides the N -point distribution functions
of the local time. This is achieved when we set F [L] =∏N

n=1 δ(LXn − Ln). In order to see what is involved, let us
now illustrate the calculation for N = 1 (with L1 ≡ L). Our
discussion will be greatly simplified by considering only a
free particle [i.e., V (x) = 0] that starts and ends at the origin,
i.e., xa = xb = 0. This corresponds to a stochastic process
known as Brownian bridge. Our goal is to derive the one-point
distribution function, denoted p(L; β), of the local time at
X = 0. We define p(L; β) by Eq. (30) with F [L] = δ(L0 − L),
and calculate it from the representation (32) as follows.
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In the Laplace picture, p̃(L; E) = ∫ ∞
0 dβe−βEp(L; β), the

path integral (32) can be sliced at xa = xb = 0 so that

p̃(L; E) = lim
D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

∫ ∞

0
dη0η

2
0

× δ
(
�η2

0 − L
)
(η+X+|η00)D(η00|η−X−)D.

(33)

The η0 integration can be done easily by realizing that δ(�η2
0 −

L) = δ(η0 − √
L/�)/2

√
�L. Furthermore, the limits in η± and

D can be carried out with the help of formulas (A2) and (A3)
from Appendix A. Consequently, we obtain

p̃(L; E) = exp

{
−L�

2

2M

[
F ′

1(0)

F1(0)
− G′

3(0)

G3(0)

]}
, (34)

where, for the free-particle case, F1(x) =
sinh[

√
2ME/�2(x − X−)]/

√
2ME/�2, and G3(x) =

sinh[
√

2ME/�2(X+ − x)]/
√

2ME/�2, as one can
straightforwardly verify. In the limit X± → ±∞, Eq. (34)
reduces to

p̃(L; E) = e−
√

2�2E/ML, (35)

and its inverse-Laplace transform yields

p(L; β) =
L exp

(−L2
�

2

2βM

)√
2πMβ3/�2

. (36)

We stress that p(L; β) thus obtained is, in fact, the
(unnormalized) joint probability density for stochastic events
x(0) = 0 � x(β�) = 0 and L0 = L. By Bayes’ theorem of
the probability calculus, the desired conditional probability
density p[L0 =L|x(0)=0�x(β�)=0] is obtained from (36)
by dividing p(L; β) by the Brownian-bridge probability den-
sity p[x(0)=0�x(β�)=0], which is (omitting again normal-
ization) (2πβ�

2/M)−1/2 (see, e.g., Ref. [4]). Normalization
factors mutually cancel in the fraction and we arrive at

p[L0 = L|x(0) = 0 � x(β�) = 0] =
�

2L exp
(−L2

�
2

2βM

)
βM

,

(37)

which is clearly normalized to 1. One can proceed along
the same lines also in more complicated higher-dimensional
(N > 1) cases. Our result agrees with the one found through
other means in Ref. [12].

VI. ASYMPTOTIC BEHAVIOR OF THE BLOCH
DENSITY MATRIX

A compelling feature of the local-time representation (28)
is that it naturally captures both small- and large-β asymptotic
regimes. This should be compared with the Feynman-Kac
PI representation (3), which is typically suitable only for
the small-β (i.e., large-temperature) analysis. The latter is
epitomized either by the WKB approximation [6,7] or Wigner-
Kirkwood expansion [18]. In the large-β (small-temperature)
limit, the spectral representation of the Gibbs operator, e−βĤ =∑

n e−βEn |φn〉〈φn|, reduces the Bloch density matrix to the
ground-state contribution,

ρ(xa,xb,β)
β→∞∼ e−βE0ψ∗

gs(xa)ψgs(xb), (38)

which is not evident from the Feynman-Kac PI representation
[32]. In connection with Eq. (38), it is useful to remember that
in d = 1, the discrete bound states can all be chosen to be real
[33], so that the Bloch density matrix is real and symmetric
and can be written in the form

ρ(xa,xb,β) =
∑
n=0

e−βEnψn(xa)ψn(xb)

β→∞∼ e−βE0ψgs(xa)ψgs(xb). (39)

Let us first comment on the small-β regime of the local-
time representation, assuming xb = xa for simplicity. This case
was discussed in detail in our previous article [18]. There,
one should first Taylor expand the potential V (x) around the
point xa , and then expand the exponential part containing the
structure

∫
η2(x)O(x − xa)dx, where

O(x − xa) = β
∑
m
=0

V (m)(xa)

m!
[λ(x − xa)]m. (40)

After the term e−βV (xa )/λ is factored out of the integral, the
individual summands of the ensuing series are of the form
(32) with the potential V (x) = 0, and functional F [L] ∝∏

n Lxn/�. The latter can be related to the power expansion in β

presented in Ref. [18] through the equality of representations
(30) and (32). The whole Bloch density matrix (containing
also off-diagonal elements) can be treated similarly in a full
analogy with Ref. [18].

Let us now turn to the second and more interesting situation,
namely, the large-β regime. In doing so, we will also highlight
some pertinent technical issues related to the radial PI involved.
The large-β expansion of Eq. (28) can be conveniently studied
after rescaling η → √

βη, in which case we can write

ρ(xa,xb,β) = lim
D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

∫ η(X+)=η+

η(X−)=η−
Dη(x)η(xa)η(xb)

× δ

(∫ X+

X−
η2dx − 1

)
exp

{
−

∫ X+

X−
dx

[
β�

2

2M
η′2 + βV (x)η2 + M

β�2

�(x)

8η2

]}
= lim

D→0

2

D2
lim

η±→0
(η−η+)

1−D
2

βδ2

δJ (xa)δJ (xb)

∫ c+i∞

c−i∞

dκ

2πi

∫ η(X+)=η+

η(X−)=η−
Dη(x)

× exp

(
−β

{∫ X+

X−
dx

[
�

2

2M
η′2 + V (x)η2 − κη2

]
+ κ

})
exp

{
−

∫ X+

X−
dx

[
M

β�2

�(x)

8η2
+ Jη

]}∣∣∣∣
J=0

, (41)
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where c is an arbitrary real number. With the method of images [7,25,34], we can rewrite the radial PI involved as a superposition
of two genuine one-dimensional PIs [26],∫ η(X+)=η+

η(X−)=η−
DRη(x) exp{−β[〈η|Ĥ |η〉 − κ(〈η|η〉 − 1] − 〈J |η〉} exp

[
−

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
R

=
∫ η(X+)=η+

η(X−)=η−
Dη(x) exp{−β[〈η|Ĥ |η〉 − κ(〈η|η〉 − 1)] − 〈J ||η|〉} exp

[
−

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
+ sin(πD/2)

∫ η(X+)=η+

η(X−)=−η−
Dη(x) exp{−β[〈η|Ĥ |η〉 − κ(〈η|η〉 − 1)] − 〈J ||η|〉} exp

[
−

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
, (42)

where Dirac’s notation was employed [35]. A few comments are in order about the right-hand side of the above relation. First,
the presence of the parity-even terms 〈J ||η|〉 in PIs should be noticed. Second, PIs differ by their respective Dirichlet boundary
conditions. Third, the superscript R was used to stress the restricted nature of the fluctuations in the radial PI measure, while the
measure without R represents a usual one-dimensional PI measure, i.e.,

DRη(x) =̇ lim
N→∞

(
β�

2

2πεM

)N/2 N−1∏
k=1

∫ ∞

0
dηk, Dη(x) =̇ lim

N→∞

(
β�

2

2πεM

)N/2 N−1∏
k=1

∫ ∞

−∞
dηk . (43)

Here, =̇ denotes De Witt’s “equivalence” symbol [36]. Finally, the correct time-sliced form of the exponential with the centrifugal
potential is (cf. e.g., Refs. [7,26])

exp

[
−

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
R

=̇ lim
N→∞

N∏
k=1

√
2π

β�2

M

ηkηk−1

ε
�̃k exp

(
−β�

2

M

ηkηk−1

ε
�̃k

)
ID−2

2

(
β�

2

M

ηkηk−1

ε
�̃k

)
,

exp

[
−

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
=̇ lim

N→∞

N∏
k=1

ψD−2
2

(
−β�

2

M

ηkηk−1

ε
�̃k

)
, (44)

with

�̃k ≡ �̃(xk) =
{−(D − 1)(D − 3) for xk ∈ [xa,xb]

1 otherwise, (45)

and (see, e.g., Refs. [26,37])

ψp(−x) = e−x

√
πx

2
[I−p(x) + Ip(x)],

(46)

ψp(x) = ex

sin(πp)

√
πx

2
[I−p(x) − Ip(x)] = ex

√
2x

π
Kp(x).

(Ip and Kp are the modified Bessel functions of the first and the second kind, respectively.) In cases when x 
 1, meaning
that |ηkηk−1| 
 ε (e.g., “typical situation” for very fine time slicings), the asymptotic form of ψp(±x) ∼ 1 ∓ (1 − 4p2)/8x +
O(1/x2) holds. With the help of the preceding asymptotic behavior, one obtains

N∏
k=1

ψD−2
2

(
−β�

2

M

ηkηk−1

ε
�̃k

)
∼

N∏
k=1

[
1 − M

β�2

(D − 3)(D − 1)

8ηkηk−1�̃k

ε + O(ε2)

]
∼

N∏
k=1

exp

[
− M

β�2

�k

8ηkηk−1
ε + O(ε2)

]

∼ exp

[
−

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
. (47)

Potential singularities of the integral at η = 0 can be regularized, e.g., by a principal value prescription. Unfortunately, the formula
(47) cannot be directly used in our case because the boundary values η− and η+ are arbitrarily close to zero, and hence the
assumed asymptotic behavior for ψp is not fulfilled. This situation can be rectified by factorizing out the problematic boundary
points as

N∏
k=1

ψD−2
2

(
−β�

2

M

ηkηk−1

ε
�̃k

)
∼ sin2(πD/2)

π

(
β�

2

2Mε

)D−1

[(η−η1)(η+η
N−1 )](D−1)/2

N−1∏
k=2

exp

[
− M

β�2

�k

8ηkηk−1
ε + O(ε2)

]
. (48)

Here we have utilized the asymptotic form ψp(−x) ∼ −(x/2)p+1/2 sin(πp)/[
√

π �(−p)] + O(xp+3/2) valid for 0 < x � 1 and
p < 0 (p /∈ Z−). For the second PI in Eq. (42), which has negative lower Dirichlet boundary condition (namely, η− �→ −η−),
we need to employ the asymptotic expansion ψp(x) ∼ (x/2)p+1/2 �(−p)/

√
π + O(xp+3/2) (again, 0 < x � 1) instead. This

implies that in the second PI, we get in contrast to (48) only sin(πD/2) rather than sin2(πD/2).
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The passage from the radial PI (41) to the ordinary (one-dimensional) PI brings about an important advantage, namely, one
can perform the WKB approximation. In particular, one can use Laplace’s formula of the asymptotic calculus [38,39],∫ ∞

−∞
dtf (t,β) exp[−βg(t)] =

√
2π

βg′′(t0)
f (t0,β) exp[−βg(t0)] + O

{
exp[−βg(t0)]

β3/2

}
, (49)

with t0 being a solution of g′(t) = 0 [provided g(t) has a smooth absolute minimum at the interior point t = t0( 
= ±∞)]. The
function f (t,β) is assumed to be bounded as β → ∞. If needed, the full asymptotic expansion can be systematically generated
via conventional Laplace’s method; see, e.g., Ref. [38]. In Appendix B, we show that√

2π

βg′′(t0)
�→

(
�

2

2πM

)(
det′

{
− d2

dx2
+ 2M

�2
[V (x) − E0]

})−1/2

. (50)

Here, E0 is the ground-state energy and the prime in det′{· · · } indicates that the zero mode is factored out from the determinant.
In fact, there is a quick way to compute det′ {· · · }, by using either the Wronski construction [40,41] or the contour integration
method [42]. In both of these approaches, one arrives at the result

det′
{
− d2

dx2
+ 2M

�2
[V (x) − E0]

}
= − 1

η̇0(X+)η̇0(X−)
= − ε2

[η+ − (η0)
N−1 ][(η0)1 − η−]

∼ ε2

(η0)
N−1 (η0)1

. (51)

Here, η0 is the (normalized) ground-state wave function of the
Hamiltonian Ĥ [or, equivalently, the zero-mode eigenvector
of (Ĥ − E0)] with the Dirichlet conditions η0(X−) = η− ∼ 0
and η0(X+) = η+ ∼ 0. A similar result would hold also in the
second PI in Eq. (42) where η− �→ −η−. The only difference
in this case would be the presence of a minus sign in front of
the last three expressions in Eq. (51).

To complete the WKB approximation, we substitute for
f (t0,β) in Eq. (49) the functional expression

β exp

[
−〈J ||η0|〉 −

∫ X+

X−
dx

M

β�2

�(x)

8η2
0

]
, (52)

in its explicit time-sliced form (48). Note that such f (t0,β)
is bounded for β → ∞ as required by Laplace’s formula. In
Eq. (52), we have denoted the WKB solution that minimizes
the functional 〈η|Ĥ |η〉 − κ(〈η|η〉 − 1) as η0, i.e., with the
same symbol as in Eq. (51). This is because according to
the Rayleigh-Ritz variation principle (see, e.g., Refs. [33,43]),
such a WKB function η(x) is the ground-state wave function
of the Hamiltonian Ĥ , i.e., η0(x) = ψgs(x) with κ0 = E0.
Notice also that the stationary point in κ is real, but the
integration contour in κ is parallel to the imaginary axis. Both
the reality and positivity of η(x) pose no restriction in the
Rayleigh-Ritz principle because the ground state can always
be chosen real and positive [44]. By substituting for g(t0) the
expression 〈η0|Ĥ |η0〉 − κ0(〈η0|η0〉 − 1) = E0 and using the
Laplace asymptotic formula (49), it is easy to see that for the
first PI in Eq. (42), we get (cf. also Appendix B)

sin2(πD/2)

π2
(η−η+)

D−1
2 exp (−〈J |η0〉 − βE0), (53)

while for the second PI, we have

sin(πD/2)

π2
(η−η+)

D−1
2 exp(−〈J |η0〉 − βE0). (54)

By plugging this into (41) and performing the η± → 0
and D → 0 limits, respectively, we get the leading large-β

behavior of the Bloch density matrix in the form

ρ(xa,xb,β) = e−βE0ψgs(xa)ψgs(xb), (55)

as expected from the spectral expansion; cf. also Eq. (39).
We conclude the discussion of the low-temperature expan-

sion by noting that the Rayleigh-Ritz variation principle states
that all eigenvalues and (normalized) eigenvectors of Ĥ come
from stationary solutions of 〈η|Ĥ |η〉 − κ(〈η|η〉 − 1), and
conversely [33]. In the spirit of the WKB approximation, one
should sum over all path integrals evaluated about all stationary
solutions. It is, however, only the ground-state configuration
{ψgs(x),E0} that acquires the global minimum and which
gives the largest contribution to the WKB approximation. This
fact was implicitly used in our preceding reasonings. Should
we have also included other stationary solutions, we would
recover higher-order terms in the spectral expansion of the
Bloch density matrix (39).

So what we have just demonstrated is that the WKB
expansion of the local-time PI (in contrast to the Feynman-Kac
PI) representation picks up the correct asymptotic behavior
known from spectral theory. As mentioned in Sec. III, this
should be expected because the most important contribution
to the low-temperature behavior of ρ(xa,xa,β) stems from
those paths that spend a sizable amount of time near the
global minimum, and the WKB expansion of local-time PIs is
organized precisely in terms of the local time of a stationary
configuration and ensuing fluctuations. Of course, the use-
fulness of the local-time PI approach lies in the situations
where neither energy spectrum nor associated eigenvalues
are explicitly known and various direct PI techniques can be
conveniently employed to probe the low-temperature regime.

VII. CONCLUSION AND OUTLOOK

In this paper, we have derived the local-time PI rep-
resentation of the Bloch density matrix. We have shown
that the result obtained, apart from being of interest in
pure mathematics (stochastic theory, Sturm-Liouville theory,
etc.), can serve as a useful alternative to the traditional
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PETR JIZBA AND VÁCLAV ZATLOUKAL PHYSICAL REVIEW E 92, 062137 (2015)

Feynman-Kac PI representation of Green functions of Fokker-
Planck equations. Furthermore, by analytically continuing the
result back to the real time via the inverse Wick rotation,
β → it/�, one obtains the local-time PI representation of
quantum-mechanical transition amplitudes, i.e., matrix ele-
ments of the evolution operator e−itĤ /�. From a physics point
of view, perhaps the most important application of local-time
PIs lies in statistical physics, and, namely, in the low- and
high-temperature treatments of the Bloch density matrix. This
is because in conventional PIs only a very tiny subset of
paths gives a relevant contribution in these asymptotic regimes.
In particular, the high-temperature regime of the Boltzmann
density function ρ(x,x,β) is dominated by paths that spend a
sizable amount of time in the vicinity of the point x. Similarly,
the low-temperature regime is controlled by paths with a
large local time near the global minimum of the potential.
Here we have exemplified the conceptual convenience of the
local-time formulation by providing a generic analysis of the
low-temperature behavior of the Bloch density matrix. Our
formulation proved to be particularly instrumental in obtaining
the correct asymptotic behavior (known from the spectral
theory), which is otherwise notoriously difficult to obtain
within the Feynman-Kac PI framework [4,16]. As a byproduct,
we have uncovered an interesting connection between a low-
temperature PI expansion, the Laplace asymptotic formula,
and the Rayleigh-Ritz variational principle.

In order to further reinforce our analysis, we formulated
a local-time analog of the Feynman-Matthews-Salam formula
which is [similarly to its quantum field theory counterpart]
expedient in a number of statistical-physics contexts. The
prescription obtained was substantiated by an explicit calcu-

lation of a one-point distribution function of the local time.
In addition, the obtained relationship between the local-time
representation of PI and the radial PI provides a practical
illustration of the Ray-Knight theorem of the stochastic
calculus.

It appears worthwhile to stress that our local-time rep-
resentation (with its built-in replica field trick) is in its
present form applicable only to one-dimensional quantum-
mechanical systems. With hindsight, we reflected this fact
already in our choice of the incipient PI (3) where we
assumed τ ∈ R and x ∈ R. Though one may easily proceed
up to Eq. (15) without any restriction on the value of d [in
fact, Eq. (15) is valid for any x ∈ Rd with d � 1], further
progress in this direction is hindered by the fact that the
replica fields depend on a d-dimensional argument x, and
thus the PI in Eq. (15) can no longer be regarded as a
quantum-mechanical PI (i.e., PI over fluctuating paths). In
effect, we cannot use existing mathematical techniques of the
PI calculus (e.g., transformation of PIs to polar coordinates)
that we have employed to get the radial PI (16). The issue of
the extension of our local-time PI representation to higher-
dimensional configuration space is currently under active
investigation.
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APPENDIX A: OFF-DIAGONAL MATRIX ELEMENTS

In this Appendix, we show that the representation (25) reduces to the well-established result (24) of the Sturm-Liouville
theory. Since ρ̃(xa,xb,E) is symmetric in xa and xb, we will assume, without loss of generality, that xa < xb.

The path integral in Eq. (25) can be expressed via Eq. (19) as∫ ∞

0
dηadηb(η+X+|ηbxb)Dηb(ηbxb|ηaxa)2ηa(ηaxa|η−X−)D. (A1)

The limits in Eq. (25) can be carried with the help of the asymptotic formulas ID/2−1(z) ≈ (z/2)D/2−1/�(D/2), and �(z) ≈ 1/z,
valid for z → 0. We obtain

1

D
η

1−D
2− (ηaxa|η−X−)D

η−→0−−−→
[

�
2ηa

2MF1(xa)

]D/2 exp
[− �

2

2M

F ′
1(xa )

F1(xa )η
2
a

]
D
2 �

(
D
2

)√
ηa

D→0−−−→ 1√
ηa

exp

[
− �

2

2M

F ′
1(xa)

F1(xa)
η2

a

]
, (A2)

where F1(x) satisfies Eq. (20) with initial conditions F1(X−) = 0 and F ′
1(X−) = 1, and similarly, we find

1

D
η

1−D
2+ (η+X+|ηbxb)D

η+→0,D→0−−−−−−→ 1√
ηb

exp

[
�

2

2M

G′
3(xb)

G3(xb)
η2

b

]
, (A3)

where G3(x) satisfies Eq. (20) with initial conditions G3(X+) = 0 and G′
3(X+) = −1. Formula (25) then reduces to

ρ̃(xa,xb,E) = 2�
2

M

∫ ∞

0
dηadηb

ηaηb

G2(xa)
I0

[
�

2

M

ηaηb

G2(xa)

]
exp

{
− �

2

2M

[
W (G2,F1)η2

a

F1(xa)G2(xa)
+ W (G3,F2)η2

b

F2(xb)G3(xb)

]}
, (A4)

where F2(x) and G2(x) satisfy Eq. (20) with initial conditions F2(xa) = 0 and F ′
2(xa) = 1, and G2(xb) = 0 and G′

2(xb) =
−1, respectively. The Wronskian W (F,G) ≡ F (x)G′(x) − F ′(x)G(x) is independent of x, as discussed in Sec. IV C, and
antisymmetric, i.e., W (F,G) = −W (G,F ).

Wronskians W (G2,F1) and W (G3,F2) assume a particularly simple form when evaluated at points xb and xa , respectively,
due to the initial conditions satisfied by G2 and F2. We find W (G2,F1) = F1(xb) and W (G3,F2) = G3(xa). Rescaling
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ηa →
√

G2(xa)M/�2ηa , ηb →
√

F2(xb)M/�2ηb, and using the relation F2(xb) = G2(xa), we obtain

ρ̃(xa,xb,E) = 2M

�2
G2(xa)

∫ ∞

0
dηadηbηaηbI0(ηaηb) exp

[
− F1(xb)

2F1(xa)
η2

a − G3(xa)

2G3(xb)
η2

b

]
. (A5)

The integrations are readily performed using the formula [29]∫ ∞

0
dzI0(bz) exp

(
−a

2
z2

)
= 1

a
exp

(
b2

2a

)
, (A6)

yielding

ρ̃(xa,xb,E) = 2M

�2

F1(xa)G3(xb)G2(xa)

F1(xb)G3(xa) − F1(xa)G3(xb)
. (A7)

To prove equality with (24), we only have to show that

F1(xa)G3(xb) − F1(xb)G3(xa) = G2(xa)W (F1,G3). (A8)

This is done by realizing that G2(x), being a solution of the second-order linear differential equation (20), can be uniquely
composed as a linear combination of two other solutions F1(x) and G3(x),

G2(x) = F1(x)G3(xb) − F1(xb)G3(x)

W (F1,G3)
. (A9)

Indeed, thus defined, G2 satisfies the initial conditions G2(xb) = 0 and G′
2(xb) = −1.

We conclude that

ρ̃(xa,xb,E) = −2M

�2

F1(xa)G3(xb)

W (F1,G3)
, (A10)

which coincides with the Sturm-Liouville result (24).

APPENDIX B: PROOF OF IDENTITY (50)

In this Appendix, we derive the identity (B6). According to Laplace’s formula (49), we may assume that the dominant
contribution to the PI (42) comes from the extremization of

g(t) �→ 〈η|Ĥ |η〉 − κ(〈η|η〉 − 1) ≡ s[η,κ], (B1)

while the role of f (t,β) is played by the functional expression

exp

[
−〈J ||η|〉 −

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
. (B2)

Let η0 and k0 be corresponding extremizers of s[η,κ] and let δη and δκ describe fluctuations around η0 and k0. Then the expansion
of s[η,κ] reads

s[η,κ] = s[η0,κ0] + 〈δη|Ĥ − κ0|δη〉 − δκ(〈δη|η0〉 + 〈η0|δη〉) + · · · , (B3)

(recall that the linear terms are absent due to the extremalization condition δs = 0). Notice that according to the Rayleigh-Ritz
variation principle (see, e.g., Refs. [33,43]), η0 and κ0 must correspond to the (normalized) ground-state wave function of the
Hamiltonian Ĥ and to the ground-state energy E0, respectively. For the case at hand, the leading WKB approximation [i.e., if
we include only quadratic terms in the expansion (B3)] becomes [cf. Laplace’s formula (49)]∫ η(X+)

η(X−)
Dη exp{−βs[η,κ]} exp

[
−〈J ||η|〉 −

∫ X+

X−
dx

M

β�2

�(x)

8η2

]
= exp[−βE0] exp

[
−〈J ||η0|〉 −

∫ X+

X−
dx

M

β�2

�(x)

8η2
0

]
× 1

2π

∫ ∞

−∞
dδκ

∫ δη(X+)=0

δη(X−)=0
Dδη exp

[
−β(〈δη|,δκ)

∥∥∥∥Ĥ − E0, i|η0〉
i〈η0|, 0

∥∥∥∥(|δη〉
δκ

)]

= exp[−βE0] exp

[
−〈J ||η0|〉 −

∫ X+

X−
dx

M

β�2

�(x)

8η2
0

]{
det Ĥ−1

0 det

∥∥∥∥Ĥ − E0, iη0

iη
ᵀ
0 , 0

∥∥∥∥}−1/2

. (B4)

Here we have used that s[η0,κ0] = E0. We have also set c = E0 in the κ integration and subsequently rotated the integration
contour so that the δκ integration would run along the real axis. The (formal) expression inside of curly parentheses is a customary
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shorthand notation for the correct time-sliced form

{· · · } = (2π )2 det

∥∥∥∥−ε2∇∇ + ε22M[V (x) − E0]/�
2, i2Mη0ε

2/�
2

i2Mη
ᵀ
0 ε2/�

2, 0

∥∥∥∥, (B5)

where the difference operators (lattice derivatives) ∇ and ∇ are defined as [7]

∇η(x) = 1

ε
[η(x + ε) − η(x)], ∇η(x) = 1

ε
[η(x) − η(x − ε)], (B6)

with ∇∇ = ∇∇ being the Hermitian operator on the space of “time-sliced” functions with vanishing end points, i.e., η(xN ) =
η(x0) = 0. Equation (B5) can be further simplified by using the Schur complement technique for the calculation of determinants
of partitioned matrices [45]. In particular, we have

{· · · } =
(

2πMε2

�2

)2

det

{
−ε2∇∇ + ε2 2M

�2
[V (x) − E0]

}
η

ᵀ
0

∥∥∥∥−ε2∇∇ + ε2 2M

�2
[V (x) − E0]

∥∥∥∥−1

η0. (B7)

In order to find a finite expression for the indeterminate form 0/0 (caused by the presence of the zero mode), we must properly
regularize the numerator and denominator in Eq. (B7). This can be done by introducing a small parameter k2 which moves the
zero mode away from zero. In this way, we can write

{· · · } = lim
k→0

ε

(
2πM

�2

)2 det
{−ε2∇∇ + ε2 2M

�2 [V (x) − E0] + ε2k2
}

k2

= lim
k→0

ε

(
2πM

�2

)2 det
{−ε2∇∇ + ε2 2M

�2 [V (x) − E0] + ε2k2
}

k2det
[−ε2∇∇] det[−ε2∇∇]

= ε

(
2πM

�2

)2 det′
{−d2/dx2 + 2M

�2 [V (x) − E0]
}

det
[−d2/dx2

] det[−ε2∇∇]

=
(

2πM

�2

)2

det′
{
− d2

dx2
+ 2M

�2
[V (x) − E0]

}
. (B8)

The prime in det′{· · · } indicates that the zero mode is divided out from the determinant. On the first line of (B8), we have used
the fact that in the continuum limit,

η
ᵀ
0

∥∥∥∥−ε2∇∇ + ε2 2M

�2
[V (x) − E0] + ε2k2

∥∥∥∥−1

η0 ∼ 1

ε3

∫
R2

dxdyη0(x)Gk(x,y)η0(y) = 1

ε3k2
, (B9)

where Gk(x,y) is the Green’s function satisfying the equation{
− d2

dx2
+ 2M

�2
[V (x) − E0] + k2

}
Gk(x,y) = δ(x − y). (B10)

On the last line of (B8), we have employed the well-known formulas [7,41]

det[−ε2∇∇] = N = (X+ − X−)/ε, det[−d2/dx2] = X+ − X−. (B11)

Comparison of (B4) and (B8) with (49) yields the result (50).
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