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Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states
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Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous
nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that
quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume,
thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice
models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated.
The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary
simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying
discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium

systems.
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I. INTRODUCTION

A nonequilibrium phase transition (NEQPT) into absorbing
states (AS) is key in a wide range of phenomena, such as
[1-5] chemical reactions, interface growth, epidemics, and
population dynamics. Likewise, it is relevant for the emergence
of spatiotemporal chaos in different classes of problems,
as experimentally verified in liquid crystal electroconvection
[6], driven suspensions [7], and superconducting vortices [8].
So, much has been done on continuous NEQPT, especially
addressing universality [3,5,9,10]. However, comparatively
less attention has been paid to discontinuous transitions in
systems with AS [11,12], the case, e.g., in catastrophic shift
processes [13] (bearing important questions regarding the in-
fluence of diffusion and disorder in creating or destroying AS),
heterogeneous catalysis [14,15], ecological [16,17], granular
[18], and replicator dynamics [19], cooperative coinfection
[20], language formation [21], and social patterns [22].

Discontinuous transitions to AS conceivably require mech-
anisms to suppress the formation of absorbing minority islands
induced by fluctuations [23,24]. Also, there is strong evidence
that they cannot occur in one dimension (1D) if the interactions
are short ranged: The absence of boundary fields would
prevent the stabilization of compact clusters [25]. In spite
of these presumably universal facts, a general description
of discontinuous NEQPT, including the ability to identify a
possible scaling behavior, is still lacking.

Equilibrium first-order transitions are characterized by
discontinuities in the order parameter ¢ and by thermodynamic
“densities”, whose susceptibilities display deltalike shapes. In
finite systems, such quantities become continuous functions of
the control parameter . However, the infinite limit still can be
estimated from a finite size scaling theory (FSS) [26-33], when
second derivatives scale linearly with the volume V = L¢ (for
d the spatial dimension and L the lattice size). Also, |Ay — Ag|
goes with 1/V, with Ay (X¢) the coexistence point for a finite
V (in the thermodynamic limit).

For NEQPT to AS, precise methods such as spreading
simulations—available for continuous transitions—as well as
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a FSS framework (as the above) are absent in the discontinuous
case. Actually, a difficulty in its analysis is that the AS
often prevent simulations to properly converge, precluding
any scaling inference. Even for large systems, eventually the
dynamics will end up in an AS via a statistical fluctuation
of small, but nonzero, probability. Also, metastable states can
make it hard to locate or even classify transition points due to
doubts if the observed order parameter jump is genuine.

In the present article we address such a class of problems,
presenting solid arguments for a common finite size scaling
behavior. Based on previous suggestions [11,34-36]—and in
the fact that equilibrium and nonequilibrium phase transitions
share important similarities when the latter display stationary
(steady) states [37] (see below)—we develop a FSS for
transitions into single and infinitely many AS by means of the
quasistationary (QS) concept. We show that, in full analogy
with equilibrium, standard quantities follow the same 1/V
scaling. Five models are used to illustrate our results.

II. THEORY AND METHOD

The quasistationary probability distribution (QSPD) idea,
powerful for continuous NEQPTs [38], is likewise valuable
here. In very general terms, the main purpose of such a
method is to evade just the absorption process. Formally,
assume at time ¢ the microstate (o) probability distribution
P(o,t) and the survival probability Ps(t), i.e., the probability
that the system is still active. Then, the QSPD, Pgs(o) =
lim;_, o P(o,t)/ Ps(t), describes the asymptotic properties of
a finite system conditioned to survival [39,40]. In practice,
Pqs is calculated by effectively redistributing the flux from
the absorbing state to the system’s nonabsorbing subspace
when the dynamics is sufficiently close to the absorbing
condition. In this case, although the detailed balance is not
satisfied, if the redistribution is made compatible with the QS
distribution itself (through a self-consistent procedure—see
Ref. [38]), then the global balance [41] is verified in the
nonabsorbing subspace of the original problem. Furthermore,
the QS distribution becomes the stationary solution of the
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modified process [39]. Thus, typical quantities in a QS
ensemble usually converge to the corresponding stationary
ones when L — oo [39].

For no spatial structure problems, analytic QSPDs have
been obtained from the master equation. Indeed, for some
discontinuous transitions, including Schlogl (second) [42]
and Ziff-Gulari-Barshad (ZGB) [14] models, a mean field
calculation [39,43] resulted in bimodal QSPDs. Nevertheless,
to portray QSPDs for systems with spatial structures, one
must rely on numerical protocols. An efficient scheme is
that given in Ref. [38], which stores and gradually updates
a set of configurations (compatible with the QS ensemble)
visited during the time evolution. Whenever a transition to
AS is imminent, the system is “relocated” to one of the
saved configurations. This accurately reproduces the results
from the much longer procedure of performing averages only
on samples that have not visited the AS at the end of their
respective runs.

To construct a FSS for discontinuous NEQPTs to AS, we
now observe the following. First, the role of inverse flux is
to turn off the system’s natural sink, thus with the absorbing
becoming a “usual” phase [but with most of its dynamics
still properly taken into account through P(o,f)—see the
expression for Pgs above]. Second, certainly the resulting
effective problem does not become reversible, but it has a
weaker nonequilibrium character, presenting steady states (the
global balance, restored by the inverse flux, guarantees this
latter fact [44]). Third, we can always associate a stable
probability density to a nonequilibrium steady state [45]. Very
importantly, such a stationarity allows an extended version of
the central limit theorem to hold true. So, the corresponding
distribution can be described by Gaussians [46].

As already mentioned, in the thermodynamic limit [39]
we can expect this recipe to effectively and fairly reproduce
the macroscopic transition behavior of the original system.
Moreover, it represents a discontinuous transition between two
“normal” phases +, bearing two scales, the order parameter
¢ = ¢ at the transition point. Hence, in general, for a finite
but nonetheless reasonably large V, the bimodal probability
distribution is reasonably well described by a sum of two
Gaussians (see Refs. [27-30]) Py(¢) = 3, _. P\ (¢), with
(A =x—Axp)

VV explg(V)ig — g(V)(¢ — $0)*/2xw)]

(o) _
e = V2 [F_(%; V) + Fo(i; V)]

(D

Ao is the control parameter value at the phase transition in
the thermodynamic limit, the F’s give the normalization, and
g(V) is an increasing function of V. Py (¢) has the expected
behavior: For V — oo and A = Ay, we get the superposition
of two & functions centered at ¢ = ¢.. For the extensive case
gV)y=1V,

Fo(sV) = JXzexp [Vi(m + %I\)] )

Now, the pseudotransition point Ay can be estimated,
e.g., from (i) the coexisting phase equal probability
condition, i.e., equal areas of P‘(,_) and P‘(,J’), or yet
from the maximum of (ii) variance x = V((¢?) — (¢)?),
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and (iii) the moment ratio (reduced cumulant) U, =
(#*)/(¢p)>. In first order in A [47], both (i) and (ii)
lead to Ay = Ao — V 'In[xy/x_1/[2(¢4+ + ¢_)]. For (iii),
we get Ay = o — V'(nlx—/x+] + 2Inl¢p_ /¢, 1)/[2(p- —
¢)]. Note that |Ly — Ag| is the same if it is estimated via
equal areas or the maximum of yx, and does not differ too
much if derived by the U, maximum. Thus, distinct measures
show that [Ay — Ag| ~ 1/V, the usual equilibrium scaling.
This description is illustrated by periodic square lattice
models simulated from the QS approach. For the equal
area criterion, whenever P‘(,i)(qﬁ) have a relevant overlap, we

consider each P‘(,w)(qﬁ) occupying half of the corresponding ¢
interval.

III. EXAMPLES

Consider the Ziff-Gulari-Barshad (ZGB) model [14], which
reproduces the relevant features of carbon monoxide oxidation
on a catalytic surface (a lattice whose sites can be either empty
or occupied by an oxygen atom O or a carbon monoxide
molecule CO). CO (O,) reach the surface with probability
Y (1 —Y). Whenever a CO encounters a vacant site, the
site becomes occupied. If an O, molecule encounters two
nearest-neighbor empty sites, it dissociates, filling the two
sites. If two O atoms and one C atom reach an elementary
2 x 2 lattice cell, they immediately form CO, and desorb.
The model exhibits two transitions— regulated by the CO
(O2) molecule fraction pco (po,)—each between an active
steady state and an absorbing (poisoned) state. For large
(extreme low) Y, the surface becomes saturated by CO (O).
The former (latter) transition is discontinuous (continuous,
belonging to the directed percolation, DP, universality class).
The discontinuous transition is shown in Fig. 1. The Y region
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FIG. 1. The ZGB model. (a) The order parameter pco (inset) and
its variance x vs the creation probability Y. (b) The moment ratio
U, vs Y. (c) The (non-normalized) order parameter QS probability
distribution at the equal area condition. Inset: Data collapse analysis
from the relations x* = x/L? and y* = (Y — Yy)L?. (d) Scaling of
Y, as a function of 1/L2.
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FIG. 2. The 2SCP model. (a) The order parameter p (inset) and
its variance x vs the creation rate A. (b) The moment ratio U, vs A.
(c) The (non-normalized) order parameter QS probability distribution
at the equal area condition. Inset: Data collapse analysis from the
relations x* = x/L? and y* = (A — A¢)L%. (d) Scaling of A, as a
function of 1/L>2.

of rapid increase of pco [inset of Fig. 1(a)] corresponds to
the maxima of x and U, [which increase with L2, Figs. 1(a)
and 1(b)] and their location scale with 1/ L? [Fig. 1(d)]. So, we
estimate Yy = 0.5253(3) (maximum of x ) and Yy = 0.5254(3)
(maximum of U;). The Y, for which the two peaks of
P,., [Fig. 1(c)] have the same area also scales with 1/L2.
From this we estimate Y, = 0.5253(3). These values are in
excellent agreement among them and with Yy = 0.5250(6),
recently obtained by other means [36]. Defining x* = y/L>
and y* = (Y — Yy)L?, the collapsed data are shown in the inset
to Fig. 1(c), confirming a L? scaling.

For a two-species symbiotic contact process (2SCP) [16],
any site is either empty or occupied by an element A, by
an element B, or by one of each. Each element reproduces
(autocatalytic), creating a new individual at one of its first-
neighbor sites at a rate A4, = Agp = A. In a single occupied
site, A or B dies at a unitary rate. Sole individuals follow the
usual CP dynamics [16]. However, in doubly occupied sites,
due to symbiosis, both A and B die at areduced u = const < 1
rate. Besides the usual CP active (A and B populations fixed)
and absorbing phases, there are two extra symmetric active
phases, in which just one species exists.

If A and B diffuse with rate D, for u — O the transition
changes from continuous to discontinuous. The order param-
eter is the density of occupied sites p. Figure 2 exemplifies
this 2SCP for 4 = 0.01 and D = 0.1, with a discontinuous
transition between absorbing and active symmetric phases for
A~ 0.449 [16]. As ZGB, in the transition region there are
peaks for x and U, [Figs. 2(a) and 2(b)] whose maximum
positions A, increase with 1/L? [Fig. 2(d)]. A L — oo extrap-
olation yields Ay = 0.4489(1) and 0.4490(1), respectively. The
equal area condition for P, [Fig. 2(c)] shows a 1/L? scaling,
leading to A9 = 0.4488(1). The estimates display excellent
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FIG. 3. The competitive CP ab-as transition. (a) The order param-
eter ¢ (inset) and its variance x vs the creation rate A,. (a) The order
parameter variance x vs the creation rate X,. (b) The moment ratio
U, vs A;. (c) The (non-normalized) order parameter QS probability
distribution at the equal area condition. Inset: Data collapse analysis
from the relations x* = x/L” and y* = (Ay — Ay9)L>. (d) Scaling of
A2 as a function of 1/L2.

agreement among them and with Ref. [16]. Finally, a fair data
collapse is shown in the inset to Fig. 2(c).

We discuss a model of competitive interactions in bipartite
(k= A and B) sublattices [48], assuming the version in
Ref. [49], so instead of critical lines [48], the phase diagram
has three coexistence lines. Also, besides an absorbing transi-
tion, we also have a spontaneous breaking symmetry transition.
Given a site in the sublattice k, the number of particles in its
first (j = 1) and second (j = 2) nearest neighborhood is 7 j.

For nﬂ), the number of adjacent particles in j, the dynamics
is as follows [49]. With probability [1 + u(nlk)z]/[kl + X+
1 4+ w(n)?l, we attempt to annihilate a randomly selected
particle P.If P survives, we choose at will j = 1,2. Then, with
probability p; we try to create a new particle in a free site in the
Jj neighborhood of P, with p; = A;/[A; + X2 + 1+ w(ni)?]
for nﬂ) > j and zero otherwise (in Ref. [48], u = X, = 0).

The absorbing (ab)-active symmetric (as) phase line is
discontinuous for lower A;. The proper order parameters
are p = (pa+pp)/2 and ¢ = [ps — pp|, with py the X-
sublattice density. In the ab phase we have p = ¢ = 0, whereas
for the as phase p # 0 and ¢ = 0. So, for the as phase, the
sublattices are equally populated. From Fig. 3 we see that
the ab-as transition follows our FSS, yielding A,y = 6.571(5)
(maximum of y), 6.58(1) (maximum of U,) and 6.576(4)
(equal areas).

Finally, we address two versions of the second Schlogl
model [42]: SL.1 [50,51], corresponding to a lattice version
of the stochastic differential equation considered in Ref. [13],
and SL2 [11], a modification of a pair contact process [52].
In SLn, a particle (n = 1) [a pair of two adjacent particles
(n = 2)] is randomly selected and can be annihilated with
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FIG. 4. The second Schlogl model: versions SL1 in (a) and (b),
SL2 in (¢) and (d), and SL1 with time disorder in (e) and (f).
Left panels: The order parameter variance x vs « (insets: their
collapsed plots). Right panels: The (non-normalized) order parameter
QS probability distributions (insets: oz as a function of 1/L?).

probability py = «/(1 + «). If it is not, then (1) for SL1, a
nearest-neighbor site i is chosen. If i is empty, the particle
diffuses to it. Otherwise, with probability p = 0.5 [50,51], a
new particle is created and placed at will in a neighboring
empty site. (2) If for SL2 there are at least nn, > 1 other
pairs in the original pair neighborhood, a new particle can
be created with rate nn,/4 in an available site in this same
neighborhood.

SL1 (SL2) presents single (infinite) AS, with the order
parameter being the particle density p (pair density ¢). The
transitions occur close to o = 0.0747 (SL1) [51] and a =
0.0480 (SL2) [11]. Results are summarized in Fig. 4. For both
models our «;’s scale with 1/L%. For SL1, we obtain g =
0.0742(1) (maximum of x), 0.0743(1) (maximum of U,), and
0.0742(1) (equal areas). All estimates agree very well and are
close to 0.0747 in Ref. [51] (calculated from the threshold
separating the ongoing active state and an exponential decay
of p, considering a fully occupied initial configuration). For
SL2, ap = 0.0473(1) (maximum of x), 0.0472(1) (maximum
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of U,), and 0.0472(1) (equal areas), all close to 0.0480 in
Ref. [11] (derived from the onset for the decay of ¢ towards
the absorbing regime).

Lastly, we incorporate temporal disorder into the SL.1 model
by assuming that at each instance, the creation probability
1 — po is min{l/(1 + )+ 8,1}, with § randomly chosen
within [—o,0]. Results for ¢ = 0.15 are shown in Figs. 4(e)
and 4(f). Here, also a;’s scales with 1 /LZ, from which we
obtain oy = 0.0680(1) (maximum of y ), 0.0683(2) (maximum
of U,), and 0.0680(1) (equal areas). Similar conclusions are
obtained for o = 0.25 (not shown), from which oy =
0.0265(1) (maximum of x and equal areas). So, in contrast
to spatial disorder [13], the present is an indication that
temporal disorder does not hinder discontinuous absorbing
phase transitions (but obviously further studies should be in
order—see, e.g., Ref. [53]).

IV. CONCLUSION

In summary, we propose a general FSS theory for discon-
tinuous NEQPTs to AS. From QS ideas, we obtain an effective
system—which reproduces the thermodynamic properties of
the original problem—undergoing “normal” (i.e., not to AS)
discontinuous phase transitions. Moreover, it is described by a
bimodal distribution for the order parameter, therefore allow-
ing inference to the V scaling behavior. The only eventual diffi-
culty in implementing such a universal scheme would be if the
particular system hinders a QSPD. However, the known exam-
ples displaying such features are very specific [54]. Our study
is particularly useful given that this class of NEQPTSs have no
equilibrium counterparts and universal treatments are lacking
for discontinuous absorbing phase transitions for d > 2.
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