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Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte
solutions: An analog of the Ising antiferromagnet in a magnetic field
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We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here
regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this
medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-
Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For
a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the
voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable
sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the
occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these
longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit
an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of
this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth,
the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy
transition occurs above a curve of thermodynamic critical points in the (pH-pK,W ) plane, the curve representing
a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an
applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a
combination of pH-pK and W , and 1/W is the analog of the temperature in the antiferromagnet problem. We
use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out
to the 37th nearest-neighbor category (a distance of

√
74 lattice constants), first validating simulations through

comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to
map the charge-patterning phase boundary in the (pH-pK,W ) plane. The physical parameters that determine
W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase
transitions.
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I. INTRODUCTION

Charge regulation on proteins [1–12] involves the interac-
tion of groups of titratable acidic and basic amino acid residues,
in patterns that reflect the protein’s local structure. In seeking
to understand the properties of these groups, it is natural to ask
how a large, repeating pattern of sites would behave, just as one
can gain insight into a molecule’s attractions and repulsions
by studying its phase boundary locations. In this spirit we
investigate one of the simplest possible arrangements, that of
a square lattice of acidic or basic protonation sites, near the
surface of a low-dielectric medium that faces a salt solution.
With use of analytic solutions to the relevant charge-screening
electrostatic problem, we devise an accurate functional form
for the distance dependence of the electrostatic interaction
between a chosen pair of sites. We use Monte Carlo simulations
to show that such a lattice can exhibit a charge-patterning phase
transition that is a close analog of antiferromagnetic ordering
of spins, and we map the corresponding phase boundary in
terms of the pH, the intrinsic pK values of the sites, and
the overall scale of the interaction. The interaction scale, in
turn, can be expressed in terms of the dielectric properties of
the medium and the solvent, the ionic strength, and geometric
factors. As discussed further in Sec. IV, we propose that such
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phase transitions may occur on selected facets of certain types
of crystals, such as amino acid and other organic crystals that
contain titratable sites, as well as on certain supramolecular
structures observed in solutions of small peptides.

To accomplish this program, we first discuss the screening
that occurs for the potential of a charge embedded in a dielec-
tric, near a planar boundary with an electrolyte, as illustrated in
Fig. 1. We treat this potential within the Debye-Hückel theory,
which leads to the linearized Poisson-Boltzmann equation
[13]. Next, we discuss the correspondence between the param-
eters that enter the charge-regulation problem considered here
and the coupling strengths and magnetic field in the analogous
antiferromagnetic Ising model. While the nearest-neighbor
antiferromagnetic Ising model suggests the possibility of an
order-disorder transition in the charge-regulation problem,
here we consider more realistic models that incorporate the
further neighbor interactions implied by the longer-range
effects consistent with our analytic solution. We show that the
antiferromagnetic-analog charge-regulation phase transition
persists when these longer-range interactions are included, as
shown by the “checkerboard” pattern in Fig. 2(b), and we
investigate how the phase diagram is modified.

In recent work, Tamashiro et al. [14,15] have considered
a model in some ways similar to the one we consider here,
which also showed a charge-regulation patterning transition.
Their model, for phase transitions in ionic-lipid membranes,
is more complicated because of the possibility of having
gel and fluid states in addition to charged (“associated”)
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FIG. 1. (Color) (a) Schematic illustration of a charge-regulated
lattice in a dielectric medium adjacent to an electrolyte solution
that contains protons as well as other cations and anions. Red sites
are occupied by a charge (proton) and blue sites are unoccupied;
the specific configuration shown here is from a simulation snapshot
of the lattice in the ordered phase [see Fig. 2(b)], showing (almost
perfect) “checkerboard” order. (b) Setup for analytical computation
of the screened potential due to a single titratable charge in the
dielectric medium: εE , εC , solvent electrolyte (E) and medium (C)
static dielectric coefficients; λD, Debye screening length in the solvent
(with inverse Debye screening length κ = 1/λD); a, two-dimensional
square lattice spacing; c, depth of titratable sites within dielectric
medium.

and uncharged (“dissociated”) states for the lipid. On the
other hand, because of these complications, they also simplify
their model by considering just nearest-neighbor interactions
for the charges, with the justification that this might be
a reasonable approximation for the case of high screening
and also by citing work suggesting that further-neighbor
interactions might not change the basic behavior. In contrast, in

our model, we consider in detail the longer-range nature of the
screened electrostatic interactions and the resulting, interesting
dependence of the interactions on distance, with a crossover
between 1/r and 1/r3 behavior as the interaction distance r

varies. Both the nature of the ordered phases [16,17] and the
universality class of the phase transitions [18,19] for systems
with longer-range interactions of the form 1/rp are a topic of
current interest.

Charge regulation, sometimes including surface charge het-
erogeneity and effects of discrete surface charge, has recently
been considered in various contexts including that of their
influences on the forces between planar surfaces [20–28]. This
work focuses on a related, but distinct topic of an equilibrium
phase transition that itself determines the patterning of the
charge on a lattice of discrete, titratable sites on a single
surface. The titratable sites can, and do, spontaneously adopt
surface heterogeneities in the relevant staggered-occupancy
order parameter, but this is to be distinguished from surface
charge heterogeneity of counterion condensation. Clearly, it
would be interesting to see how the present surface titratable
charge patterning affects the forces between two such surfaces.

The paper is organized as follows: In Sec. II, we develop
the theoretical framework for the problem. We first consider
the electrostatic interaction potential of an isolated charge in a
dielectric near a planar interface with an electrolyte. We then
discuss a planar lattice of such sites that can either be occupied
or unoccupied by a charge and the relationship of this to the
Ising model. In Sec. III, we discuss the results of simulations
of the Ising model that allow us to study the phase diagram and
configurations. Finally, in Sec. IV, we summarize the results
and discuss interesting questions for further research.

II. THEORY

A. Interaction potential for the screened electrostatic model

We model the response of the electrostatic potential φ(r)
to a specified distribution of fixed charge per unit volume

FIG. 2. A charge-regulation phase transition occurs in our model of the square lattice of titratable sites, as a function of pH, ionic strength,
and other electrostatic screening parameters. Shown are equilibrium configurations of a 100 × 100 system at an interaction strength of W = 4
and three different values of pH, with white indicating the presence of a positively charged titratable group and black indicating its absence.
(a) pH-pK = −11, a disordered arrangement with greater than 50% occupancy. (b) pH-pK = −7, an ordered “checkerboard” arrangement
with (almost exactly) 50% occupancy. (c) pH-pK = −3, a disordered arrangement with less than 50% occupancy.
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ρ(r) through use of the linearized Poisson-Boltzmann equation
[13], written here for a medium with spatially varying
dielectric coefficient ε(r) and Debye screening parameter κ̃(r):

∇ · [ε(r)∇φ(r)] = κ̃2(r)φ(r) − ρ(r). (1)

More sophisticated models of electrolyte solutions are needed
in order to accurately model ionic solutions that are not dilute
and/or contain divalent ions and explicit solvent [13,29–32],
to incorporate important physical effects such as finite ion size
and other ion-specific interactions [33–35], to include dipolar
and polarizability-related interactions [36,37], and to take
account of nonlinear dielectric response [38,39]. Nevertheless,
Eq. (1) is a useful starting point for investigating patterned,
charge-regulation-mediated electrostatic interactions, for a
number of reasons. First, the linearity of Eq. (1) provides the
advantages of allowing the use of superposition in considering
the effects of many charges, and the work of charging a
given configuration of titratable sites may be expressed as
a symmetric quadratic form in the vectors of site charges [40].
Second, the simplicity of Eq. (1) is a benefit for helping to
identify basic principles in the face of complexity.

The setup for calculating the potential due to a single
charge is shown in Fig. 1(b). A given charge is placed in a
low-dielectric medium a distance c from the interface with
an electrolyte that has a different (higher) dielectric constant.
We take the charge to be at the origin, so that ρ(r) = q δ(r)
where δ(r) is the Dirac δ function. In the half-space defined by
z > c, the medium is an electrolyte with a dielectric constant
(i.e., relative permittivity) εE and an inverse Debye screening
length κ . Note that in terms of the Debye screening parameter
in Eq. (1), κ = κ̃/

√
εE . In the half-space defined by z < c,

the medium is a dielectric with a dielectric constant εC (and
κ = 0).

This problem was discussed in [21], and is also a specific
case of the general solution to the Debye-Hückel theory
for planar interfacial geometries that has been derived in
Ref. [41] in the case of arbitrary dielectric constants and
Debye screening lengths in each of the two half-spaces and
even the possibility of Debye screening length associated
with the interface itself (a so-called “salty interface”). Our
result following can be obtained directly from the appropriate
substitution into Eqs. (10), (14), and (15) in Ref. [41], and in
the following we also indicate the relation of certain results to
those of Ref. [21]. However, for completeness, we also present
a more detailed derivation in Appendix A. The final result for
the potential of a single charge in the low-dielectric medium
is

φ(r) = q

4πε0εC

[
1

r
+

∫ ∞

0

σ (k) − 1

σ (k) + 1
J0(kr ′)ek(z−2c)dk

]
(2)

for z < c, and

φ(r) = q

2πε0εC

∫ ∞

0

σ (k)

σ (k) + 1
J0(kr ′)e

√
k2+κ2(c−z)−ckdk (3)

for z > c, where J0(z) is the zeroth-order Bessel function of
the first kind [42] and

σ (k) ≡ εC

εE

k√
k2 + κ2

. (4)

The solution of interest for the mutual charge regulation of
the sites, each at z = 0, is the one for z < c. It is complicated
but can readily be computed and graphed numerically. Fur-
thermore, this result simplifies greatly in various limits. For
example, in the limit r → 0, the integral in Eq. (2) goes to a
constant and we get the expected solution for a single point
charge:

φnear(r) = q

4πε0εC

1

r
. (5)

In the limit r → ∞, the form of the solution depends
on the direction from the charge as well as the distance.
Two directions of interest for understanding the form of
the potential within the dielectric, which governs charge
regulation, are along the −z axis and in the z = 0 plane
(which, without loss of generality, we can consider to be along
the positive x axis). To perform the integral in Eq. (2), it is
necessary to expand the expression involving σ (k) in powers
of k. We then get integrals that have a closed-form solution
(see Sec. 6.621 in Ref. [43])∫ ∞

0
knJ0(βk)e−αkdk = n! Pn(α/

√
α2 + β2)

(
√

α2 + β2)n+1
, (6)

where Pn is the Legendre polynomial of order n. In our case,
α = 2c − z and β = r ′, so

√
α2 + β2 ∼ 1/r as r → ∞. This

means that the term involving kn goes like 1/rn+1 at large r .
Hence, if we expand the result for the integration in powers of
1/x or 1/z, then to get φ(r) to lowest order in 1/r , we only
need to keep a few of the lowest orders in k. In particular,
along the −z axis, we need to keep terms out to k1 and along
the x axis, we need to keep terms out to k2. The potential in
these two cases is found to simplify to

φfar(x = 0,y = 0,z → −∞) = q

2πε0εC

(
c + λD

εC

εE

)
z2

(7)

along the −z axis and

φfar(x =→ ∞,y = 0,z = 0) = q

2πε0εC

(
c + λD

εC

εE

)2

x3
(8)

along the x axis. Here, we have written the results in terms of
the Debye screening length λD = 1/κ and the solutions will
be valid for a distance r that is large compared to both length
scales c and λD

εC

εE
.

First, consider the case λD = 0, which corresponds to a
high-salt electrolyte. Then, Eqs. (7) and (8) are exactly those
expected for the potential due to a dipole with a dipole moment
of magnitude 2qc and direction perpendicular to the interface
that is centered on the interface, i.e., about the point (0,0,c).
Hence, we find the known result that a charge near the interface
with a conductor acts as if there is an image charge of equal
magnitude but opposite sign an equal distance away on the
other side of the interface. For nonzero λD, the behavior is
similar but the center of the approximate, effective dipole
is now located within the solvent, rather than right at the
interface, and the resulting dipole moment is larger.

The dependence of the potential on 1/x3 for the case along
the x axis may seem surprising; this potential is nonzero
because the x axis does not go through the center of the dipole
but is offset from it by the distance c + λD

εC

εE
. The resulting
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distance dependence can be understood by considering the
angle θ between the axis of the dipole, which is normal to
the planar interface, and the line connecting the center of the
dipole to the point where the potential is measured. Because
θ gets closer and closer to π/2 as x gets large, the factor
of cos(θ ) in the expression for the potential for the electric
dipole along the x axis, φdipole(x,θ ) = p cos(θ )/{4πε0[x2 +
(c + λD

εC

εE
)2]}, contributes a factor that becomes proportional

to 1/x, which multiplies the factor that becomes close to 1/x2,
resulting in the 1/x3 dropoff with distance from the charge. It
is worth noting that the same dependence on one over distance
cubed was found in Ref. [21], as well as in Sec. III D of
Ref. [41] for the somewhat different case of the interaction
between two charges that are both located at a salty planar
interface within an otherwise uniform dielectric.

It may be useful to have an empirical fitting form to
interpolate between the small- and large-distance limits. A
simple empirical form that we have found to work reasonably
well is

φemp(r) = 1
1

φnear(r) + 1
φfar(r)

. (9)

For the case of most interest along the x axis, Fig. 3 shows
a comparison between the exact result and the empirical fit
for one particular set of parameters. As can be seen, the
agreement at small and large x is excellent, as expected. There
are significant systematic deviations in the crossover region,
although the shape of the crossover is roughly reproduced.
We note that a more sophisticated analytic treatment of the
crossover region is given in Ref. [21]. By varying parameters,

FIG. 3. (Color online) Comparison of the exact analytic and
empirical fitting forms for the distance dependence of the interaction
potential (in units of kBT /e). (a) The exact solution (solid red line),
the asymptotic forms in the small r and large r limits (dashed green
line and dotted blue line, respectively), and the empirical fitting form
that interpolates between these two limits (dashed-dotted cyan line).
(b) The ratio of the exact solution to the empirical fitting form (red
line), showing the excellent agreement in the small- and large-distance
limits but with some significant deviations in the crossover region.
The parameters used are T = 300 K, εC = 8, εE = 80, c = 1 Å, and
λD = 6 Å.

it is found that the shape of the crossover is fit better as the
ratio (

εC

εE

)(
λD

c

)
(10)

becomes smaller. Furthermore, for a fixed value of this ratio,
the fit is better when λD/c is smaller (and, hence, εC/εE is
larger) than when it is larger (and, hence, εC/εE is smaller).
The fit also is generally somewhat better for the potential along
the −z axis than along the x axis. For all these reasons, the
disagreement shown in Fig. 3 is biased toward the high side of
what would likely be seen for realistic values of the parameters.

In the setup of this problem, we have assumed that there is a
single planar boundary between a dielectric with one dielectric
constant εC and an electrolyte with a different dielectric
constant εE . A slightly more complicated picture is the case of
a so-called “salt-exclusion zone,” i.e., the possibility that the
salt molecules cannot get too close to the interface with the
protein and are thus required to be a certain distance d away.
What this means is that we now have three regions: (Region 1)
a half-space which is a dielectric with dielectric constant εC ,
(Region 2) a half-space with an electrolyte with a dielectric
constant εE , and (Region 3) a planar space in-between of
thickness d which has a dielectric constant εE but is a dielectric
rather than an electrolyte. This is a special case of a problem of
Debye-Hückel theory applied to slab geometries with arbitrary
dielectric constants and Debye screening lengths in each layer
and a Debye screening length associated with each of the two
interfaces for which the general solution is presented in the
Appendix of Ref. [44]. Again, for completeness, we give the
details of the calculation for our specific case in Appendix B.
As for the case with no salt-exclusion zone, in the limit that
r → 0, Eq. (B8) reduces to that for a point charge. In the limit
r → ∞, the potential is found to simplify to

φfar(r) = q

2πε0εC

(
c + [λD + d] εC

εE

)
z2

(11)

along the −z axis and

φfar(r) = q

2πε0εC

(
c + [λD + d] εC

εE

)2

x3
(12)

along the x axis.
Comparing these results to Eqs. (7) and (8), it can be seen

that the potential at large distances is again that of a dipole but
with a slightly more complicated expression for the location of
the center of the dipole that now involves the thickness of the
salt-exclusion zone in addition to c and λD. These results imply
that the potential for the case of a solvent with a salt-exclusion
zone of width d and a Debye length λD is the same at small
r and large r as the potential for the case of a solvent with
no salt-exclusion zone and a Debye length of λD + d. The
potentials for these two cases can and do differ somewhat
in the crossover region between small and large r , but the
differences generally seem to be quite small, as one might
expect from the constraint that they have to agree at both ends
of the crossover region.

In summary, this section discusses the general form of the
interaction energy between charged sites in the z = 0 plane,
qφ(r) in Eq. (2), which transitions from ∼ 1/r at short distance
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to ∼ 1/r3 at large distances. If we then consider a regular
lattice in this plane where each site can be either charged
or uncharged, this relatively long-range interaction can have
important consequences for the equilibrium pattern of charged
and uncharged sites on this lattice. It is to this issue that we
now turn our attention.

B. Interaction energy between sites and relation
to Ising antiferromagnet

Let us consider a regular two-dimensional lattice of N sites
a distance c away from the planar interface with the electrolyte
where the possibility exists for each site to be either occupied or
unoccupied by a single positive charge +e, modeling a proton
that can either be in the electrolyte solution, at a particular
pH, or on the site. One can imagine the regular lattice to be
a square lattice, a triangular lattice, or some other lattice; for
now, we will concentrate on the square lattice case and discuss
the differences for a triangular lattice later. The total energy
for a particular configuration can be written as follows:

E({σi}) =
N∑

i=1

σi

⎡⎣ N∑
j=i+1

Kijσj + μ

⎤⎦, (13)

where σ (i) = 1 if the ith site is occupied and σ (i) = 0 if it is
empty. The first term in Eq. (13) represents a potential energy
of interaction between charges on the two sites. Applying
Eq. (2) with z = 0 and the distance between sites rij = r = r ′,
Kij is given by

Kij = e2

4πε0εC

[
1

rij

+
∫ ∞

0

σ (k) − 1

σ (k) + 1
J0(krij )e−2ckdk

]
(14)

if the two sites are occupied, with Kij = 0 if either one or both
sites is empty. Equation (14) corresponds to Eqs. (20) and (21)
of Ref. [21]. The second term in Eq. (13) is a chemical potential
term that reflects the energy difference between an individual
site being occupied or empty in terms of the chemical potential
difference between the charge being on the site versus in
solution:

μ = ln(10)kBT (pH-pK). (15)

Although, in principle, pK and hence, the chemical potential,
could be different for different sites i, we focus on the case
where it is the same for all sites.

A model of this form is called an Ising lattice-gas model.
Perhaps even more common is a different form of this model,
an Ising spin model given by the expression

E({si}) =
N∑

i=1

si

⎡⎣ N∑
j=i+1

Jij sj + h

⎤⎦, (16)

where the spin on a site si takes on the value +1 and −1. h is
an applied magnetic field that it is energetically favorable for
the spin to align opposite to. These two models are related by
the following transformations involving the spin, occupation,
and interaction energy variables:

si = 2σi − 1, (17)
Jij = Kij/4, (18)

h = 1

2

⎛⎝μ +
∑
j>i

Kij

⎞⎠. (19)

Note that depending on the sign of the interaction term Jij ,
this term favors either the alignment or antialignment of the
spins on sites i and j . In such spin language, the case Jij < 0 is
referred to as a ferromagnetic interaction and the case Jij > 0
as an antiferromagnetic interaction. The Ising model is one of
the most celebrated models in statistical physics. The case that
has been studied in most detail is where the interaction terms
are equal and nonzero only for nearest neighbors:

Jij =
{
J, for i and j nearest neighbors
0, otherwise. (20)

For a square lattice, the lattice is bipartite, i.e., there are
two interpenetrating sublattices forming the black and white
squares on a checkerboard, with the nearest neighbors of
a site on one sublattice being on the opposite sublattice.
Because of this, the nearest-neighbor Ising ferromagnet and
antiferromagnet in the absence of a uniform field are equivalent
if one makes the transformation J → −J and reverses the
signs of all of the spins si on one of the sublattices. Note
that this is no longer true in a nonzero uniform field or if
interactions between spins extend beyond nearest neighbors.

We first describe what is known for the nearest-neighbor
Ising model. The Onsager solution [45] gives an exact solution
for the nearest-neighbor Ising model on a square lattice in
zero field, while the behavior in a nonzero field (for either the
ferromagnetic or antiferromagnetic case) is still not exactly
solved [46,47]. If one represents temperature and field h in
units of the coupling J , then the phase diagram in T − h

space has a line of first-order transitions extending from
the origin along the T axis terminating at a second-order
transition at a critical temperature T = TC . Hence, for zero
field, there is a phase transition between an ordered state at
low temperatures and disordered state at high temperatures.
There are two equivalent states at low temperatures, which for
the ferromagnetic case correspond to all spins up or all spins
down. For the antiferromagnetic case, the two ground states
are the two possible checkerboard states, either of which is
referred to as the Néel state. The transition between the ordered
and disordered states is a second-order phase transition.

If one imagines varying the temperature at a nonzero field
for the ferromagnetic model, then there will no longer be a
sharp transition between states, although for small fields there
will still be relatively rapid variation of the magnetization
with temperature when the temperature is close to TC . The
loss of the transition is related to the fact that the magnetic
field breaks the symmetry between the two degenerate ground
states, favoring one over the other. By contrast, for the
antiferromagnetic model, a uniform field no longer favors
one of the ground states over the other and hence one
might imagine that the second-order phase transition as a
function of temperature persists, at least if the field is not too
strong. Indeed, various approximate theories have been used
to obtain the second-order phase boundary as a function of
the temperature and applied uniform field, with two examples
shown in Fig. 4 [48,49]. Note that the TC is known exactly
for h = 0 and the critical value of the field hC = 4J at zero
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Muller−Hartmann & Zittartz
Wang & Kim

FIG. 4. (Color online) Phase diagram in applied magnetic field
and temperature for the Ising antiferromagnet on a square lattice.
The solid line shows the approximate phase boundary for the nearest-
neighbor antiferromagnetic Ising model as determined by Müller-
Hartmann and Zittartz [48], while the dashed line shows the boundary
as determined by Wang and Kim (1997) [49].

temperature is known exactly. (For fields |h| > hC , the Néel
state is no longer the ground state configuration, but rather
the ground state is the fully magnetized state with all spins
pointed either up or down, depending on the sign of h.) So, all
the approximate theories for the phase boundary must agree
at these two limits, and generally agreement is fairly close for
the entire phase boundary.

In Sec. II A, we found that the interaction between charged
groups for our model system is quite long ranged, falling off
with distance as 1/r3 at large distances. Less is known about
the antiferromagnetic Ising model on a square lattice when fur-
ther neighbor interactions are included. Various issues regard-
ing the nature of the phase transitions are still being discussed
when next-nearest-neighbor interactions are included in either
the presence of [50,51] or the absence of [52,53] an applied
magnetic field. For interactions out to third-nearest neighbors,
only the most basic features of the phase diagram are known
even in the absence of an applied magnetic field [54].
Sufficiently strong further neighbor interactions can even alter
the ground state configuration, although for further-neighbor
interactions that are not sufficiently strong, the Néel state
would remain the ground state, while the location of the phase
boundaries would be expected to change. For all these reasons,
it is useful to investigate the present model while including
interactions that go well beyond nearest-neighbor ones.

In what follows, it will be useful to define J to be the
strength of the nearest-neighbor interactions in the spin model
even in the situation when further-neighbor interactions are
nonzero. It will also be useful to define an analogous quantity
K for the lattice-gas model and a quantity W ≡ K/(kBT ) that
represents the nearest-neighbor interaction strength expressed
in units of kBT . Equations (15) and (19) show that a titration in
which pH is varied is equivalent to varying the magnetic field
h in the Ising spin model. These same equations show that
a variation in temperature while keeping the magnetic field

−14 −12 −10 −8 −6 −4 −2 0
2

2.5

3

3.5

4

4.5

5

5.5

6

pH − pK

W

Ordered

Disordered

FIG. 5. (Color online) Phase diagram in pH-pK and interaction
strength W , determined by the present simulations. The red points
indicate the location of a curve of critical points determined at various
values of W for an interaction energy (in units of kBT ) of W (a/r)3

out to a distance of r = √
74 a. Also shown by a dashed line is the

variation with pH at W = 4 for which the occupation probability,
the staggered-occupancy order parameter, and the specific heat are
shown in Fig. 6; the open squares on this line indicate the particular
values at which we have shown snapshots of configurations in Fig. 2.
The diagonal dotted line shows the path that would be followed by
varying the temperature T of the corresponding magnetic system
while keeping the magnetic field fixed at h = 0.

constant (e.g., following the line h = 0) maps to a variation in
both μ and W in the lattice-gas model. For example, the line
h = 0 corresponds to the relationship

W = − ln(10)∑
j>i Kij /K

(pH-pK). (21)

This is a diagonal line in the phase diagram of the spin
model in the (pH-pK,W ) plane as seen in Fig. 5. The
sum in the denominator is, for example, just equal to 2
for the nearest-neighbor Ising antiferromagnet on a square
lattice; it increases when further-neighbor antiferromagnetic
interactions are included, as is the case for the simulation
results presented in Fig. 5 and described below in Sec. III.

C. Grand-canonical partition function

Within our model, the grand-canonical partition function Q
can be written formally as a sum over the occupancy patterns α:

Q =
∑

α

e−Gα/kBT

=
∑

α

ζ kα e−( �μ0· �Oα )/kBT e−Wel,α/kBT (22)

in which Gα is the free energy of formation of pattern
α, ζ = 10−pH, kα is the total number of protons bound
to the surface sites in configuration α, and  �μ0 = (μ0

1,

μ0
2, . . . ,μ0

N ) is a vector of standard chemical potential
differences for the occupancy of each site, which in this paper
we take to be the same. It is also important to note that the
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pK of a given chemical group will in general be a function of
its local environment [55], including the extent to which it is
buried in the low-dielectric material [56]. Each μ0

i is related
to a corresponding pKi value of a titratable site by

exp

(
μ0

i

kBT

)
= 10−pKi (23)

and the chemical potential difference μ appearing in the
lattice-gas model of the previous section is related to μ0 by

μ = μ0 + kBT ln(10) pH. (24)

�Oα is the occupancy pattern in configuration α, e.g.,
{1,0,0,1,1,0,0, . . .}. Wel,α denotes the work of charging
contribution to the free energy. We model this in terms of the
screened electrostatic potential Wij produced at site i(j ) by a
unit charge at site j (i):

Wel,α = 1
2e2(q1,q2, . . . ,qn)α · W · (q1,q2, . . . ,qn)α

(25)
= 1

2e2( �Qb + �Oα) · W · ( �Qb + �Oα).

Here, W denotes the symmetric [40] matrix of the Wij ,
(q1,q2, . . . ,qn)α denotes the actual charges on the surface for
a specific pattern α, �Qb denotes the vector of signed, bare
charge numbers of the titratable groups, for example −1 or 0,
and e is the magnitude of the electronic charge. In this work,
we take all of the bare charge numbers to be 0. The probability
of occupancy pattern α, Pα(x), is given by

Pα = e−Gα/kBT

Q . (26)

The quantity Q ≡ ∑
α e−Gα/kBT is called the binding

polynomial [57] since it can be written as a polynomial in
powers of the proton activity ζ , as one can see from Eq. (22).

III. SIMULATION RESULTS AND DISCUSSION

We perform Monte Carlo simulations for the Ising model on
a square lattice using the Metropolis algorithm [58,59]. These
simulations incorporate many-nearest-neighbor interactions
in order to properly account for the screened electrostatic
interactions that we derived the form of in Sec. II A. The goal
of the simulations is to show the basic qualitative behavior
of the system, rather than detailed quantitative issues such as
extremely precise phase boundaries or values of the critical
exponents. The simulations are performed on lattice sizes
of 100 × 100 with periodic boundary conditions. Such sizes
may seem rather small by modern computational standards
of Ising models; however, because we consider interactions
out to many nearest neighbors, the computational costs of
the simulations are considerably larger than for interactions
involving just a few nearest neighbors. Furthermore, such sizes
are sufficient to explore the basic behavior of the system and
they allow us to run the system for long enough times to obtain
equilibrium behavior.

For the purpose of simulation, we assume that the lattice
constant a is sufficiently large in comparison to c + λD

εC

εE

that interactions between pairs of lattice sites are well
characterized by the asymptotic large-distance limiting form
Wij = W (a/rij )3, derived in Sec. II A and shown in Eq. (8),

with

W = e2
(
c + λD

εC

εE

)2

2πε0εCa3kBT
= 2

λB

a

(
c + λD

εC

εE

a

)2

(27)

in which the Bjerrum length λB = e2/(4πε0εCkBT ). Equation
(27) corresponds to Eq. (A.5) of Ref. [21]. The advantage of
using this asymptotic form is that it has just a single scale
factor for the interaction strength that makes the parameter
space easier to explore. In Sec. IV, we will discuss results of
some simulations that use the full form, Eq. (14), that we have
derived for the interaction.

For convenience, and using the fact that the Debye length

is given by λD =
√

εEε0kBT

2NAe2I (103 liters/m3)
where NA is Avogadro’s

number and I is the ionic strength in moles per liter (molar),
we rewrite Eq. (27) in terms of numerical values appropriate
at 298 K with water as the electrolyte solvent:

W = 2

(
298λ0

B

εCT a

)[
c

a
+

(
λ1M

D,w

a
√

I

)√
T

298

(
εC√
εwεE

)]2

(28)

in which the Bjerrum length in vacuum at 298 K is λ0
B =

560.7 Å and the Debye length in water for a 1-molar ionic
strength electrolyte at 298 K is λ1 M

D,w = 3.04 Å. Here, we have
taken εw = 78.46 at 298 K and atmospheric pressure [60].
Equation (28) suggests that for given values of c, a, and εC ,
the primary means of experimental variation of W is through
changing the ionic strength I .

To make the simulations more practical, we also introduced
a cutoff rmax such that Wij is set equal to zero for r > rmax.
In the results shown here, we have set rmax = √

74 a, which
corresponds to going out to 37th-nearest-neighbor interactions.
However, we have also performed some simulations with a
considerably larger cutoff of rmax = √

269 a, which corre-
sponds to going out to 120th-nearest-neighbor interactions,
and have confirmed that the phase diagrams and other results
shown here do not change very significantly. (When we
say 37th- or 120th-nearest-neighbor interactions, we count
accidental degeneracy in the distance as separate categories;
so, for example, a neighbor 5 units away on the x axis and 0
away on the y axis and a neighbor 3 units away on the x axis
and 4 units away on the y axis fall into two separate categories,
even though both are a distance of 5a away.)

Figure 2 shows snapshots of the configurations seen at three
different values of pH-pK at an interaction strength of W =
4. White indicates an occupied site and black indicates an
unoccupied site. Note that for pH-pK = −11, the occupation
probability is greater than 50% and the system is in a disordered
phase with indications of only quite short-range ordering; for
pH-pK = −3, the occupation probability is less than 50%
and the phase is again disordered. However, in-between, for
pH-pK = −7, the occupation probability is almost exactly
50% and long-range order is apparent.

To look at this behavior in more detail, we focus on how
three quantities evolve as the pH is changed: the specific
heat, the occupation probability, and a staggered-occupancy
order parameter that indicates the degree of long-range order
(whereby one of the two bipartite sublattices contains occupied
sites and the other contains unoccupied sites). The specific heat
of the system per site C can be calculated from the energy per
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FIG. 6. (Color online) (a) Occupation probability PO and
staggered-occupancy order parameter OP and (b) specific heat per
site in units of kB as a function of pH-pK for W = 4. Both are from
Monte Carlo simulations of a 100 × 100 system.

site E via the fluctuation relation [59]

C = N

kBT 2
(〈E2〉 − 〈E〉2), (29)

where 〈. . .〉 denote averages over configurations in equilib-
rium. The occupation probability is simply PO = 〈∑i σi/N〉.
It is also useful to define a staggered-occupancy order
parameter OP which takes on the value 1 when every site on
one sublattice is occupied and every site on the other sublattice
is empty and takes on the value of 0 if the two sublattices
have an equal probability of occupation. We thus define
OP = 2〈|∑i(−1)ni σi/N |〉 where ni = 1 or 2 depending on
which of the two sublattices the site is on.

Figure 6 shows the occupation probability, order parameter,
and specific heat as a function of pH-pK for a titration from a
pH-pK value of −14 up to 0, for a coupling strength of W = 4.
As can be seen, the occupation probability falls with increasing
pH, as one would expect, although there is a noticeable plateau
over a range of pH at a value of OP ≈ 0.5. The order parameter
remains near 0 until the pH reaches a critical value at which

it rises rapidly to close to 1. As the pH is further increased
past a second critical value, the order parameter returns to 0.
In the regime where the order parameter is close to 1, the
occupation probability is very close to its plateau value of 1

2 .
It is this regime that corresponds to the ordered state with
one sublattice occupied by charges and the other sublattice
unoccupied by charges.

Such a plateau in the titration curve has been observed
in an experimental system of rodlike polyelectrolytes [61]
and has been explained as occurring [21,62] using models
similar to those we discuss here, although the detailed nature of
the interaction is somewhat different and the one-dimensional
nature of the polyelectrolyte means that a true phase transition
is absent in the thermodynamic limit (i.e., an infinitely long
polyelectrolyte).

Referring again to Fig. 6, the location of the phase transition
boundaries, that is, the curve of critical points, can be
determined approximately from the location of the peaks in
the specific heat and the location of the points where the
order parameter is equal to 1

2 . Performing calculations for
several different values of the coupling strength W thus allows
us to map out the phase diagram as a function of coupling
strength W and pH-pK . Figure 5 shows the resulting phase
diagram, in which the red dots delineate the curve of critical
points. Also shown on the diagram by a dashed line is the
titration at W = 4, for which the occupation probability, the
staggered order parameter, and the specific heat are shown in
Fig. 6. The open squares on the dashed line in Fig. 5 indicate
the values at which we have shown sample configurations
in Fig. 2. Finally, the diagonal dotted line indicates the path
that would be followed by varying the temperature T of the
corresponding magnetic system while keeping the magnetic
field fixed at h = 0, as described by Eq. (21) above. Physically,
the negative slope of the zero-field line reflects the repulsion
between charges on titratable sites, that makes it more difficult
to create a given degree of occupancy as the interaction strength
increases.

We note that although the critical loci in Fig. 5 occur at low
values of pH-pK , less than about −6, such situations could
nevertheless occur near neutral pH values, for example, for
systems containing amino acid residues like arginine, that have
high pK values. A residue such as arginine also satisfies our
assumption that the unoccupied residue is uncharged, and the
residue occupied by a proton is positively charged. If instead
we had set the problem up for residues that are negatively
charged when unoccupied, at high pH, such as glutamate or
aspartate, the slope of the corresponding zero-field line would
instead be positive, and the critical loci for the checkerboard
patterning would have instead occurred at values of pH-pK

more than about +6.
The phase diagram resulting from the simulations indicates

that the critical value of W above which antiferromagneticlike
charge patterning can occur is close to Wc = 3.3. With use of
Eq. (28) we obtain, for the critical ionic strength Ic,

Ic =
{

a

λ1 M
D,w

√
298

T

√
εwεE

εC

[√
εCaWc

2λ0
B(298/T )

−
(

c

a

)]}−2

.

(30)
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FIG. 7. (Color online) Contours of electrolyte ionic strength in water, in moles/liter, for the charge-patterning phase transition critical point,
as a function of the square lattice spacing and the static dielectric coefficient of the underlying medium. For a given lattice spacing and medium
dielectric coefficient, values of the ionic strength below the stated contour values are predicted to produce “checkerboard” charge patterning,
consistent with Fig. 5. Parameters: (a) assumed titratable site depth c = 1 Å and (b) c = 2 Å; for both cases, T = 298 K and εE = εw = 78.46.
In each plot, the dashed blue curve shows the criticality contour for ionic strength 1 mole/liter (M). To the left of the red solid curve, all ionic
strengths will produce patterning in a formal sense; however, it should be noted that the present theory uses a limiting law for electrolyte
thermodynamics that is only valid for low ionic strengths and low total surface charge densities [13,23,29,30].

Contours of Ic as a function of εC and a, for two values
of c, are shown in Fig. 7. Figure 7 is meant to facilitate
identifying lattices and solution properties that may exhibit
antiferromagneticlike charge patterning.

How does the phase diagram we have found for interactions
that fall off like 1/r3

ij compare to what one finds in the case
of nearest-neighbor interactions? This question is explored in
Fig. 8. The solid line shows the approximate phase diagram
for the nearest-neighbor antiferromagnetic case as determined
by Müller-Hartmann and Zittartz [48]; other approximations,
such as that of Wang and Kim (1997) [49], yield nearly
identical results. Including further-neighbor interactions alters
this phase diagram for two reasons: (1) The formula (19),
describing the transformation between the field h in the Ising
spin model and the chemical potential μ (and hence pH-pK)
in the lattice-gas model, depends on these further-neighbor
interactions, so the phase diagram shown here would change
even if the phase diagram for the Ising spin system in the
(h, T ) plane did not change. (2) The phase diagram for the
Ising spin system in the (h, T ) plane will itself change when
further-neighbor interactions are included; in particular, for
the Ising antiferromagnet, these further-neighbor antiferro-
magnetic interactions produce frustration and hence make the
Néel ground state less energetically favorable. As a result, the
critical value of T for a given value of h will decrease (as will
the critical value of h for a given value of T ). In particular, we
find that TC ≈ 0.53T 0

C where TC is the critical temperature for
h = 0 and T 0

C = [2/ ln(1 + √
2)]J/kB ≈ 2.269J/kB is that

critical temperature for the nearest-neighboring Ising model
on a square lattice [45–47].

To separate the contribution of each of these two effects, the
dashed line in Fig. 8 shows how the phase diagram is altered
because of reason (1), but assuming the phase diagram in the
(h, T ) plane does not change. Finally, the symbols show the
resulting phase diagram determined from the simulations (as
also shown in Fig. 5), and hence incorporating both reasons
(1) and (2). As expected, the effect of the further-neighbor
interactions is to expand the region for the disordered phase at
the expense of the ordered phase.

IV. FURTHER DISCUSSION AND CONCLUSIONS

There are several ways in which the work discussed here
might be extended. The first is to consider what happens when
the full form of the interaction potential (2), rather than simply
the far-field form proportional to 1/r3, is used. We have
performed simulations using this full form and varying the
lattice constant a while keeping the other parameters fixed at
the values for which the potential is shown in Fig. 3. Making
a very large recovers the regime where the potential goes
like 1/r3; conversely, by making a very small, we investigate
the regime where the potential goes like 1/r (at least out
to our cutoff distance). For intermediate values of a, the
potential exhibits at least a portion of the crossover between
the slower 1/r and more rapid 1/r3 decay. In the language of
the Ising antiferromagnet, we carried out the simulations by
lowering the temperature T in zero applied field; in lattice-gas
language, this corresponds to the regime where the occupation
probability is 1

2 . Since the purpose of these simulations was to
investigate the effect of this crossover in the potential, which
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FIG. 8. (Color online) Phase diagram in pH-pK and interaction
strength W . The blue solid line shows the phase diagram in this
space that corresponds to the approximate phase diagram for the Ising
antiferromagnet with only nearest-nearest interactions as determined
by Müller-Hartmann and Zittartz [48] (see Fig. 4). The green dashed
line shows how this phase diagram is modified by considering
interactions of strength W (a/r)3 out to a distance of r = √

74 a,
but assuming that the phase diagram does not change in the h−T

parameter space for the analogous Ising spin model (i.e., it remains
as shown in Fig. 4); hence, this shows just the part of the change in
this phase diagram that is due to the change in the transformation
between spin and lattice-gas variables given by Eq. (19). The red
points show the phase diagram actually determined by simulations
on systems of size 100 × 100 (replotted from Fig. 5). The ordered
phase exists over a narrower range of parameters than predicted by the
dashed line because the phase diagram in Fig. 4 does change when the
further-neighbor interactions are included: these interactions produce
frustration and cause the antiferromagnetic ordered phase of the spin
model to become disordered at a lower critical temperature or critical
field than for only nearest-neighbor interactions.

in practice could occur due to variations in other parameters,
we did not worry about keeping a within reasonable physical
limits.

The results show that over the entire range of a, the ground
state still appears to be the Néel state. This is in agreement with
recent calculations [17] suggesting that this is the ground state
for interactions that decay with distance r like 1/rp over a wide
range of powers p. However, the ground state appears to be
quite sensitive to the cutoff distance on the interaction rmax for
values of a less than approximately 0.7 Å. In particular, in that
regime we found that it was necessary to use the larger cutoff
distance rmax = √

269 a in order to find the Néel ground state.
With our original cutoff distance of rmax = √

74 a, the system
found more complicated ground states (or perhaps metastable
states) upon cooling. These results suggest that in this regime
where the interaction initially falls off more like 1/r , there are
configurations different than the Néel state that are quite close
to it in energy.

The next extension is to consider what happens at lower
temperatures (i.e., larger values of W ) and when there is

(in spin language) an applied magnetic field so that the
magnetization per spin is not close to 0. At zero temperature,
the Ising model with nearest-neighbor antiferromagnetic inter-
actions transitions from having an antiferromagnetic ground
state to a ferromagnetic ground state as one increases the
applied magnetic field; for any nonzero temperature, this
ferromagnetic ground state is simply replaced by a paramag-
netic state. The Ising model with nearest- and next-nearest-
neighbor antiferromagnetic interactions does have another
possible ground state between these two extremes in an
intermediate regime of the applied magnetic field [50]. For
example, in a field that favors the spins pointing up, this
ground state consists of rows that alternate between all up
spins and alternating up and down spins [i.e., rows that
alternate between one-dimensional (1D) ferromagnetic order
and 1D antiferromagnetic order]; such a ground state has
a magnetization per spin of + 1

2 . In lattice-gas language,
this would correspond to alternating completely filled and
half-filled rows. With no interactions beyond next-nearest
neighbors, there is no preference in the relative alignment
of the spins in neighboring antiferromagnetic rows, resulting
in a large degeneracy for this ground state; however, once
further-neighbor interactions are introduced, it will prefer one
alignment over another. In particular, for antiferromagnetic
interactions that drop off with distance r as 1/r3, we calculate
that the antiferromagnetic rows will be aligned so that all
the up spins are in the same column. (Recent calculations by
Rademaker et al. [17] suggest there may be an even more
complicated array of different ground states at different filling
factors for the case of interactions that decay with distance
r like 1/rp.) At low enough temperatures, we should be
able to see these new ordered phases, which have occupation
probabilities of 1

4 and 3
4 , as we vary the pH. Indeed, in some

preliminary work at W = 20, we do detect narrow regions
of phases with alternating rows of two types. One row type
has every other site occupied, while its neighboring rows have
either every site occupied, in the case of overall occupation
probability 3

4 , or unoccupied, in the case of overall occupation
probability 1

4 .
Another extension of this work would be to other types of

lattices, such as a triangular, rather than a square, lattice. The
triangular lattice is particularly interesting because the nearest-
neighbor antiferromagnetic Ising spin model has a very large
degeneracy for its ground state, leading to a phase transition at
T = 0 [63–65]. This is because in any triangle of three nearest
neighbors, it is impossible to arrange the spins so that all three
antiferromagnetic bonds are satisfied; rather, the lowest energy
state is where exactly two of the three bonds are satisfied. It
turns out that over the entire lattice there is a high degeneracy
of spin configurations that fulfill this requirement, leading to
a nonzero entropy at zero temperature.

However, further-neighbor antiferromagnetic interactions
can stabilize an ordered ground state. For example, next-
nearest-neighbor antiferromagnetic interactions that are suf-
ficiently weak relative to the nearest-neighbor interactions
lead to a striped (or “columnar”) ground state, where rows
of up and down spins alternate [66]. Such a ground state is
sixfold degenerate because the stripes can go in one of three
directions and there is an additional factor of 2 associated with
the displacement of the stripes. Debate persists about the nature
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of the transition between the ordered and disordered states (i.e.,
whether it is a first-order or second-order transition) [67,68].
Even less seems to be known about the Ising antiferromagnet
on a triangular lattice with further-neighbor interactions in
combination with an applied magnetic field, as would be
relevant for an extension of this work. (For a discussion of
this case where the second-nearest-neighbor interactions are
ferromagnetic, see [69].)

To describe another extension, we return now to the connec-
tion between the present charge-patterning transition and the
Ising antiferromagnet, reviewed in Sec. II B. The analog of the
magnetic field for the Ising ferromagnet, in the case of the Ising
antiferromagnet on a square lattice, is a staggered magnetic
field that has equal and opposite directions in a checkerboard
pattern. For a real magnetic material, such a field may be
challenging to produce. However, in the charge-patterning
analog studied here, the analog of such a staggered magnetic
field can be produced by a checkerboard pattern of sites that
have two distinct pK values. This suggests the interesting
possibility that real, charge-patterning surfaces might exist
or be created that provide for the direct experimental study
of such a staggered field. In the presence of such a field,
the phase diagram would have a line of first-order transitions
terminating in a second-order critical point, just like that of the
Ising ferromagnet in an applied field.

This work could also clearly be extended to the interesting
case of the interaction of two neighboring planes of titratable
surface charges. In that context, we expect the correlations
between, and patterning of, the charges on a single surface to
have consequences for the distance and transverse displace-
ment dependence of the free energy of interaction between
such surfaces. In addition, the Néel-type phase transitions of
each surface would be linked at close range.

We now discuss possible experimental systems where one
might find a transition to a checkerboard occupation pattern.
Selected facets of organic crystals that have titratable sites
in two-dimensional lattices [70] are one class of candidates.
In particular, crystals of natural or modified amino acids can
have three-dimensional lattices of possibly titratable amino
and carboxyl groups, as well as side chains that can also
be titratable [71], and their surfaces can be studied with
use of atomic force microscopy (AFM) [72–75]. Clearly,
a search for a checkerboard-type protonation pattern would
then hinge in part on finding a suitable facet of such a
crystal, for which the corresponding two-dimensional lattice
may be approximated by a geometry similar to that modeled
here. Other candidate organic crystals that can have titratable
surface or near-surface groups include crystals of small
dicarboxylic acids that have been probed with AFM, such as
the calcium oxalate monohydrate and dihydrate crystals found
in kidney stones [76], and cocrystals containing glutarate [77].
Assemblies of small peptides, some of which spontaneously
form large cylindrical structures with exposed titratable side
chains [78,79], could be another context in which surface
protonation patterns like those simulated here may form under
appropriate solution conditions. Facets of oxide crystals in
water represent another possibility [80,81]. While many of the
low ionic strength titration curves of oxide crystals exhibit
pronounced plateau regions [80], there are a number of ways
this could happen aside from the checkerboard patterning

studied here, such as heterogeneity of titratable sites as to their
charge when protonated, simultaneous presence of a variety
of intrinsic pK values, and surface roughness. Thus, further
study would be needed to distinguish among such possibilities
in a particular case.

Referring to Fig. 5, one important issue in considering
any such experimental lattice is whether the dimensionless
interaction strength W , specified in Eqs. (27) and (28), can
be made large enough. Figure 7 illustrates some of the
resulting considerations. It shows that lower ionic strengths
(I ), decreased distance between titratable sites (a), and
(through comparing the right and left plots) increased depth of
sites (c) all can, in principle, serve to increase W .

In this context it is interesting to examine the simulations of
a planar interface of titratable sites, very similar to the present
setup, in Ref. [21]. In that work, checkerboard patterning,
for which a titration curve like that displayed in the present
Fig. 6(a) would have been found, was not observed in the
planar case that was considered (see Fig. 3 of [21]). With use of
the parameters given in the caption of their Fig. 3, we find that
W = 2.0, which is well below the necessary critical interaction
strength, as shown by the phase diagram in the present Fig. 5.
Thus, the observation that the planar case simulated in [21] did
not exhibit a plateau in the titration curve is quite consistent
with the present phase diagram of Fig. 5. Furthermore, the
midpoint of the titration curve found in [21], close to a pH of
6, is close to pH-pK = −4 for the pK = 10 considered there.
The value −4 is indeed very close to the intersection of the
diagonal dotted line in Fig. 5, that corresponds to an occupancy
probability of 0.5, with the horizontal line at W = 2.0. This
underscores the consistency between this work and that of [21].
However, in Ref. [21], it was concluded that the long-range
nature of the interaction potential eliminated the possibility of
a plateau in the titration curve, whereas we have found that
while the long-range interactions clearly suppress the ordered
state, as demonstrated in Fig. 8, the checkerboard phase tran-
sition persists at sufficiently higher interaction strengths. This
work provides guidance for experimentally observing such a
transition, and the corresponding plateau in the titration curve.

Another extension of this work would be to make a
closer connection to the original motivation of studying the
protonation equilibria of proteins in solution, by considering a
spherical, rather than a planar, interface [1,2]. In this context,
certain patterns of charge, especially those that are in some
sense near critical points for charge-pattern modification, such
as those near the charge-regulation analog of the Néel critical
point discussed in this work, would be expected to have
higher susceptibility for pattern change upon alteration of the
local environment. The study of intrinsic phase transitions
may therefore be of help in understanding the origins of
such susceptibility. Of course, in the case of proteins, the
lattice would be finite and hence there would not be a true
phase transition except in the limit where the sphere becomes
infinitely large, in which case we would expect to recover the
planar results studied here. Also, in this work we have assumed
that all the pK values of the titratable sites are the same.
Especially in the context of understanding protonation patterns
on biological molecules, or within biological membranes, the
study of various patterns of pK values on the lattice would be
relevant.
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Clearly, for a variety of applications, more sophisticated
models of electrolyte solutions and material properties will
also be needed, as noted in Sec. II A. However, as described
above, we have found that the occurrence of the antiferromag-
netic patterning is rather robust with respect to variations of
the distance dependence of the titratable group interactions.
Accordingly, we expect that this phase transition will also be
found in the context of such models.

In conclusion, we have analyzed a model consisting of
a square lattice of sites that can either be occupied or
unoccupied by a charge, here taken to be a proton. This lattice
exists in a dielectric medium some distance c from a planar
interface with an electrolyte. We have first determined the
expression for the electrostatic interaction between pairs of
such charges as a function of their distance apart r within the
approximation of the linearized Poisson-Boltzmann equation,
with the most important result being that the interaction falls
off as 1/r at short distances, as expected, but as 1/r3 at
large distances. Second, we have used this partially screened
electrostatic interaction, involving many nearest neighbors, in
demonstrating that an ordered “checkerboard” phase occurs
that is analogous to the Néel state in the Ising antiferromagnet.
We have mapped out the phase diagram as a function of
pH-pK and the overall interaction strength W and have
discussed the resulting relationship to the physical parameters
that set the value of W , notably the ionic strength.
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APPENDIX A: DETAILS OF THE CALCULATION
OF THE INTERACTION POTENTIAL

In this Appendix, we present the details of the derivation of
Eqs. (2) and (3). Denoting the nonsingular part of the potential
by η(r), the linearized Poisson-Boltzmann equations can be
written as

∇2η(r) = 0 (A1)

and

φ(r) = η(r) + q

4πε0εC

1

r
(A2)

for z < c, and

∇2η(r) = κ2η(r) (A3)

and

φ(r) = η(r) (A4)

for z > c. In Eq. (A2), ε0 is the permittivity of free space.
Performing a two-dimensional Fourier transform in the

x and y coordinates and noting the cylindrical symmetry,

Eqs. (A1) and (A3) become(
−k2 + ∂2

∂z2

)
η̃(k,z) = 0 (z < c),

(A5)(
−k2 + ∂2

∂z2

)
η̃(k,z) = κ2η̃(k,z) (z > c),

where η̃(k,z) is the two-dimensional Fourier transform of
η(r) and k is the magnitude of the two-dimensional wave
vector k = (kx,ky). The solutions to Eqs. (A5) can then be
written, choosing the form that satisfies the requirement that
the potential goes to zero when z → ±∞:

η̃(k,z) = ek(z−c)g(k) (A6)

for z < c, and

η̃(k,z) = e−√
k2+κ2(z−c)f (k) (A7)

for z > c, where the functions g(k) and f (k) will be deter-
mined by the boundary conditions at z = c.

We also need to compute the two-dimensional Fourier
transform h(k,z) of the second term on the right-hand side
in Eq. (A2):

h(k,z) = 1

(2π )2

q

4πε0εC

∫ ∞

−∞

∫ ∞

−∞

e−ik·r′

r
dx dy

= 1

(2π )2

q

4πε0εC

∫ 2π

0
dφ

∫ ∞

0

e−ikr ′ cos(φ)

√
r ′2 + z2

r ′ dr ′

= 1

2π

q

4πε0εC

∫ ∞

0

J0(kr ′)√
r ′2 + z2

r ′ dr ′

= 1

2π

q

4πε0εC

e−kz

k
. (A8)

In the above calculation, we first defined an angle φ between
k and r′ (the two-dimensional projection in the x-y plane
of r). We next made use of the integral representation of the
zeroth-order Bessel function of the first kind J0(z) for a general
complex argument w [42]:

J0(w) = 1

π

∫ π

0
cos(w cos φ)dφ. (A9)

For the last step of evaluating the resulting definite integral
over r ′, see Sec. 6.554 in Ref. [43].

We next apply the conditions that φ(r) and ε(r) ∂φ(r)/∂z

must be continuous at the boundary z = c. The first gives the
relationship

f (k) = g(k) + h(k,z = c) (A10)

and the second gives

−εE

√
k2 + κ2f (k) = εC k[g(k) − h(k,z = c)], (A11)

where we have used the fact that ∂h(k,z)/∂z = −k h(k,z).
Equations (A8), (A10), and (A11) can be solved for f (k) and
g(k), giving

f (k) = 1

2π

q

4πε0εC

e−kc

k

2σ (k)

σ (k) + 1
,

(A12)

g(k) = 1

2π

q

4πε0εC

e−kc

k

σ (k) − 1

σ (k) + 1
,
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where

σ (k) ≡ εC

εE

k√
k2 + κ2

. (A13)

.
The inverse Fourier transform can be written as

η(r) =
∫ 2π

0
dφ

∫ ∞

0
eikr ′ cos(φ) η̃(k,z) k dk

= 2π

∫ ∞

0
J0(kr ′) η̃(k,z) k dk, (A14)

where we have again made use of Eq. (A9). Substituting the
expressions for f (k) and g(k) from Eqs. (A12) into Eqs. (A2),
(A4), (A6), (A7), and (A14) gives us the final result for the
potentials (2) and (3) in the text.

APPENDIX B: INTERACTION POTENTIAL FOR
THE CASE WITH A SALT-EXCLUSION ZONE

In this appendix, we derive the interaction potential for
the more complicated geometry that includes a “salt-exclusion
zone,” i.e., the possibility that the salt molecules cannot get too
close to the interface with the protein and are thus required to be
a certain distance d away. We now have three regions: (Region
1) z < c: a dielectric with dielectric constant εC ; (Region 2)
z > c + d: an electrolyte with a dielectric constant εE and
inverse Debye screening length κ; and (Region 3) c < z <

c + d: a dielectric with a dielectric constant εE .
The calculation in this case proceeds analogously to the

simpler case discussed in Sec. II A. For Region 3, neither of
the two possible exponential solutions in z can be excluded
based on the condition that the potential vanish at z → ±∞
and hence both appear, so we have

η̃(k,z) = ek(z−c)g(k) (B1)

for z < c,

η̃(k,z) = e−√
k2+κ2(z−[c+d])f (k) (B2)

for z > c + d, and

η̃(k,z) = ek(z−c)m1(k) + e−k(z−[c+d])m2(k) (B3)

for c < z < c + d.
The boundary conditions for the continuity of φ(r) and

ε(r) ∂φ(r)/∂z at z = c give

m1(k) + m2(k)ekd = g(k) + h(k,z = c) (B4)

and

εE[m1(k) − m2(k)ekd ] = εC [g(k) − h(k,z = c)]. (B5)

Similarly, the boundary conditions at z = c + d give

m1(k)ekd + m2(k) = f (k) (B6)

and

k[m1(k)ekd − m2(k)] = −
√

k2 + κ2f (k). (B7)

Solving this set of linear equations to determine f (k), g(k),
m1(k), and m2(k) and substituting these into Eqs. (B1)–(B3)
then gives us the final result for the potential:

φ(r) = q

4πε0εC

{
1

r

+
∫ ∞

0

[1 + R][1 − Q(k)] − e2kd [1 − R][1 + Q(k)]

D(k)

× J0(kr ′)ek(z−2c)dk

}
(B8)

for z < c,

φ(r) = q

πε0εC

∫ ∞

0

R

D(k)
J0(kr ′)e

√
k2+κ2([c+d]−z)+k[d−c]dk

(B9)
for z > c + d, and

φ(r) = q

2πε0εC

∫ ∞

0

R

D(k)
{[1 − Q(k)] − e2kd [1 + Q(k)]}

× J0(kr ′)ek(z−2c)dk (B10)

for c < z < c + d. Here,

R ≡ εC

εE

, (B11)

Q(k) ≡
√

1 + (κ/k)2, (B12)

and

D(k) ≡ −[1 − R][1 − Q(k)] + [1 + R][1 + Q(k)]e2dk.

(B13)
It can be verified that these equations reduce to Eqs. (2) and (3)
in the limit d → 0. The limiting cases as r → 0 and r → ∞
of the general result (d = 0) are discussed in Sec. II A.
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Influence of long-range interactions on charge ordering phe-
nomena on a square lattice, Phys. Rev. E 88, 032121 (2013).
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