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Inflexibility and independence: Phase transitions in the majority-rule model
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In this work we study opinion formation in a population participating in a public debate with two
distinct choices. We consider three distinct mechanisms of social interactions and individuals’ behavior:
conformity, nonconformity, and inflexibility. The conformity is ruled by the majority-rule dynamics, whereas
the nonconformity is introduced in the population as an independent behavior, implying the failure of attempted
group influence. Finally, the inflexible agents are introduced in the population with a given density. These
individuals present a singular behavior, in a way that their stubbornness makes them reluctant to change their
opinions. We consider these effects separately and all together, with the aim to analyze the critical behavior of
the system. We perform numerical simulations in some lattice structures and for distinct population sizes.
Our results suggest that the different formulations of the model undergo order-disorder phase transitions
in the same universality class as the Ising model. Some of our results are complemented by analytical
calculations.
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I. INTRODUCTION

Models of opinion formation have been studied by physi-
cists since the 1980s and are now part of the new branch
of physics called sociophysics. This recent research area
uses tools and concepts of statistical physics to describe
some aspects of social and political behavior [1–3]. From
the theoretical point of view, opinion models are interesting
to physicists because they present order-disorder transitions,
scaling, and universality, among other typical features of
physical systems, which have attracted the attention of many
groups throughout the world [4–15].

The basic ingredient of models of opinion dynamics is
conformity, an important behavior of individuals that emerges
as a result of their interactions with other individuals in the
population [1,2]. As examples, (i) an individual may copy the
state (opinion) of one of his or her neighbors (the voter model
[16–19]), (ii) he or she can consider the majority or the mi-
nority opinion inside a small group (the majority-rule models
[20–23]), or (iii) a given pair of individuals interact through
kinetic exchanges like an ideal gas [7,24,25]. Among these
models, we highlight Galam’s majority-rule model [20,21].
Indeed, the influence of majority opinions against minorities
has been studied by social scientists since the 1950s [26,27].

However, recently the impact of nonconformity in opinion
dynamics has attracted the attention of physicists [28–31].
There are two kinds of nonconformity, namely, anticonformity
and independence [32,33], and it is important to distinguish
between them. The anticonformists are similar to conformists,
since both are cognizant of the group norm. Thus, conformists
agree with the norm, anticonformists disagree. As discussed
in [32,33], an anticonformist actively rebels against influence.
This is the case, for example, of Galam’s contrarians [21],
individuals that know the opinion of the individuals in a group
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of discussion and adopt the choice opposite to the prevailing
choice of the others, whatever this choice is. On the other hand,
we have an independent behavior. In this case, the agent also
is cognizant of the group norm, but he or she decides to take
one of the possible opinions independently of the majority or
the minority opinion in the group [26,27]. Willis states the
following in [32]: “The completely independent person may
happen to behave in ways which are prescribed or proscribed
by the norms of his group, but this is incidental. It should
also be noted that pure anticonformity behavior, like pure
conformity behavior, is pure dependent behavior.”

In terms of the statistical physics of opinion dynamics,
independence acts on an opinion model as a kind of stochastic
driving that can make the model to undergo a phase transition
[29,30]. In fact, independence plays the role of a random
noise similar to social temperature [4,29–31]. Finally, another
interesting and realistic kind of social behavior is usually called
inflexibility. Individuals with such characteristic are averse
to changing their opinions and the presence of those agents
in the population affects considerably the opinion dynamics
[8,34–39]. From the theoretical point of view, the introduction
of inflexible agents works in the model as the introduction of a
quenched disorder, due to the frozen character of the opinions
of such agents.

In this work we study the effects of conformity and
nonconformity in opinion dynamics. For this purpose we
consider groups of three or five agents that can interact
through the majority rule, but with the inclusion of disorder
(inflexibility) and/or noise (independence). We analyze these
effects separately in the standard majority-rule model and all
together in order to study the critical behavior of the system
induced by the mentioned effects.

This work is organized as follows. In Sec. II we present
separately in three subsections the microscopic rules that
define the distinct formulations of the model, as well as the
numerical results. These numerical results are connected to
the analytical considerations presented in the Appendix. A
summary is presented in Sec. III.
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II. MODEL AND RESULTS

Our model is based on Galam’s majority-rule model
[20–22]. We consider a fully connected population of N =
nA + nB agents with opinions A or B concerning a given
subject. In this sense, we are considering a mean-field-like
limit, since each agent can interact with all others. In this
case, the microscopic dynamics disregards correlations, which
will be taken into account after, when we will consider the
model on regular lattices. The opinions are represented by
Ising-like variables oi = ±1 (i = 1,2, . . . ,N ) and the initial
concentration of each opinion is 0.5 (disordered state). We
will consider three distinct mechanisms in the formulation of
our model, namely, majority-rule dynamics, inflexibility, and
independence. Our objective is to analyze the critical behavior
of the system and in this case we will consider separately in
the following subsections three distinct cases: (A) the majority-
rule model with independent behavior, (B) the majority-rule
model with inflexible agents, and (C) the majority-rule model
with inflexible and independent individuals.

A. Majority rule with independence

In this case, we consider that some individuals in the
population can show a nonconformist behavior called inde-
pendence [28–31]. The following microscopic rules govern
the dynamics.

(i) A group of three agents, say, (i,j,k), is randomly chosen.
(ii) With probability q all three agents in the group will

act independently of the opinions of the group’s individuals,
i.e., independent of the majority or minority opinion inside the
group. In this case, with probability f , all three agents flip
their opinions and with probability 1 − f nothing occurs.

(iii) On the other hand, with probability 1 − q the group
follows the standard majority rule. In this case, all agents in
the group follow the local majority opinion (if the opinion
of one agent is different from the other two, the former flips
alone).

In the case where the three agents do not act independently,
which occurs with probability 1 − q, the change of the
states of the agents inside the group will occur according to
Galam’s majority-rule model [20–22]. The parameter f can be
related to the agents’ flexibility [28]. As discussed in [29–31],
independence is a kind of nonconformity and it acts on an
opinion model as a kind of stochastic driving that can make
the model undergo a phase transition. In fact, independence
plays the role of a random noise similar to social temperature
[4].

We analyze the critical behavior of the system, in analogy
to magnetic spin systems, by computing the order parameter

O =
〈

1

N

∣∣∣∣∣
N∑

i=1

oi

∣∣∣∣∣
〉
, (1)

where 〈· · · 〉 stands for time averages taken in the steady state.
In addition to the time average, we have also considered
configurational averages, i.e., averages over different realiza-
tions. The order parameter O is sensitive to the unbalance
between the two distinct opinions and it plays the role of the
magnetization per spin in magnetic systems. In addition, we
also consider the fluctuations χ of the order parameter (or

susceptibility)

χ = N (〈O2〉 − 〈O〉2) (2)

and the Binder cumulant U , defined as [40]

U = 1 − 〈O4〉
3〈O2〉2

. (3)

As we are considering a mean-field formulation of the
model, one can follow Refs. [24,31] to derive analytically
the behavior of the stationary order parameter. The behavior
of O is given by (see the Appendix, Sec. 1)

O =
(

1 − 4qf

1 − q

)1/2

(4)

or in the usual form O ∼ (q − qc)β , where

qc = qc(f ) = 1

1 + 4f
, (5)

and we found a typical mean-field exponent β = 1/2, as
expected due to the mean-field character of the model. The
comparison of Eq. (4) with the numerical simulations of the
model is given in Fig. 1 for typical values of the flexibility
f . One can see excellent agreement between the two results.
Equation (5) also predicts that there is an order-disorder
transition for all values of f > 0, which was confirmed
numerically [see Fig. 2(a)].

We also estimated the critical exponents for many values
of f . As a typical example, we exhibit in Fig. 2 the finite-size
scaling (FSS) analysis for f = 0.7 [see Figs. 2(b)–2(d)]. The
critical values qc were identified by the crossing of the Binder
cumulant curves, as can be seen in the inset of Fig. 2(b),
and the critical exponents β, γ , and ν were found by the best
collapse of data. For all values of f we found β ≈ 1/2, γ ≈ 1,
and ν ≈ 2, which suggests a universality of the order-disorder
phase transition. In particular, the numerical estimates of the
exponent β agree with Eq. (4), which predicts β = 1/2 for all
values of f . Notice that the exponents β and γ are typical Ising
mean-field exponents, which is not the case for ν. This same
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FIG. 1. (Color online) Order parameter O versus the indepen-
dence probability q for typical values of the flexibility f for the
mean-field formulation of the model (no lattice). The symbols
correspond to numerical simulations for population size N = 10 000
(averaged over 100 simulations) and the solid lines represent the
analytical prediction (4).
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FIG. 2. (Color online) Numerical results for the mean-field formulation of the model with independence. (a) Order parameter O versus
q for typical values of f and population size N = 10 000. (b)–(d) Also exhibited is the finite-size scaling analysis for f = 0.7. We obtained
qc ≈ 0.264, β ≈ 1/2, γ ≈ 1, and ν ≈ 2. Data are averaged over 100 simulations.

discrepancy was observed in other discrete opinion models
[24,31,39] and was associated with a superior critical dimen-
sion Dc = 4, which leads to an effective exponent ν ′ = 1/2,
obtained from ν = Dcν

′ = 2. In this case, one can say that our
model is in the same universality class as the kinetic exchange
opinion models with two-agent interactions [24,25,31,39] as
well as in the mean-field Ising universality class.

To test the universality of the model under the presence
of a topology, we simulated the dynamics on two distinct
lattices, namely, a two-dimensional (2D) triangular lattice and
a three-dimensional body-centered-cubic (bcc) lattice. In this
case, the presence of a topology would introduce correlations
in the system and we expected that the mean-field results
were not valid anymore. The lattices were built as follows.
The triangular lattice was built from a finite L × L square
lattice with extra bonds along one diagonal direction. In this
case, each group of three agents was chosen as follows. First,
we choose an agent at random, say, i. Then we choose at
random two nearest neighbors of i (say, j and k), in a way
that each one of the three agents (i, j , and k) is a neighbor
of the other two agents, forming a triangle. On the other
hand, the bcc lattice was built from a cubic structure with
linear size 2L and each group contained five agents that were
chosen as follows. First, we choose a random plaquette of four

second neighbor sites, forming a square. The fifth site was
randomly chosen between the two possible sites in order to
form a pyramid. A typical behavior of the order parameter as
a function of q is shown in Fig. 3(a) for both cases (2D and
3D, considering f = 0.5), where one can observe a typical
behavior of an order-disorder transition. Considering distinct
values of f , we performed a FSS analysis in order to estimate
the critical exponents (not shown). Thus, for the 2D lattice we
obtained the same critical exponents of the 2D Ising model for
all values of f , i.e., β ≈ 0.125, ν ≈ 1.0, and γ ≈ 1.75, and for
the 3D lattice we obtained the same critical exponents of the
3D Ising model for all values of f , i.e., β ≈ 0.32, ν ≈ 0.63,
and γ ≈ 1.24 [41]. These results suggest that considering a
two-dimensional (three-dimensional) system, the model is in
the universality class of the 2D (3D) Ising model. Finally, we
simulated the model on a one-dimensional ring, where each
three-agent group was formed by a randomly chosen site and its
two nearest neighbors. Typical results for the order parameter
as a function of q are exhibited in Fig. 3(b). In this case, the
results suggest that there is no order-disorder transition, as in
the 1D Ising model. In this case, considering the results for 1D,
2D, and 3D lattices and also for the mean-field case, one can
say that the majority-rule model with independent behavior is
in the Ising model universality class.
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FIG. 3. (Color online) (a) Order parameter O versus the independence probability q for the 2D (triangular lattice, L = 100) and 3D (bcc
lattice, L = 20) cases, considering f = 0.5. One can see the typical behavior of a phase transition. (b) Also shown is O versus q for the model
defined on a 1D ring with N = 10 000 sites. In this case, the results for distinct values of f suggest the absence of a phase transition. All data
are averaged over 100 simulations.

The comparative phase diagram [(mean field) × (two
dimensions) × (three dimensions)] is exhibited in Fig. 4,
where we plot for the fully connected case the analytical
solution for qc [Eq. (5)]. The behavior is qualitatively similar
in all cases, suggesting a frontier of the form

qc = 1

1 + af
, (6)

where a = 4 for the mean-field case, a ≈ 33 for the triangular
lattice, and a ≈ 6.5 for the bcc lattice (these last two values
were obtained by a fit of the data exhibited in Fig. 4).

Notice that the mean-field analytical calculation (5) over-
estimates the critical points qc, as it is common in mean-
field approximations. However, our calculations predict the
occurrence of order-disorder phase transitions and correctly
predicts the form qc = 1/(1 + af ) between qc and f .
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FIG. 4. (Color online) Comparative phase diagram of the
majority-rule model with independent behavior of the agents for the
mean-field, triangular lattice, and bcc lattice cases, separating the
ordered and the disordered phases. The symbols are the numerical
estimates of the critical points, obtained from the crossing of the
Binder cumulant curves for different population sizes. The lines
are given by the analytical form (6), with a = 4 for the mean-field
case [solid line, according to Eq. (5)], a ≈ 33 (dashed line) for the
triangular lattice, and a ≈ 6.5 (dotted line) for the bcc lattice, the last
two values obtained from data fits.

From the phase diagram of this formulation of the model
we can see that the increase of the flexibility parameter f

leads to the decrease of qc, as also indicated in Eq. (5).
This can be understood as follows. The increase of f leads
the agents to perform more independent opinion changes or
spin flips (which represents a nonconservative society). This
action tends to disorder the system even for a small value of
the independence probability q, which decreases the critical
point qc.

Notice that we obtained here for the mean-field case the
same result for qc obtained in Ref. [28], where the independent
behavior was considered in the Sznajd model. Indeed, in the
mean-field formulation of the Sznajd model, the dynamics
is very similar to the mean-field majority-rule dynamics for
groups of size 3, which explains the identical result. However,
in the mentioned reference, the model was not mapped in any
universality class.

B. Majority rule with inflexibility

As a second formulation of our model, we consider the
majority-rule dynamics with the presence of some agents with
the inflexibility characteristic, individuals whose stubbornness
makes them reluctant to change their opinions [6,8,34–39]. As
in [39], we consider a fraction d of agents that are averse
to changing their opinions. The following microscopic rules
govern the dynamics.

(i) A group of three agents, say, (i,j,k), is randomly chosen.
(ii) We verify if there is a majority of two (say i and j ) in

favor of a given opinion A or B and in this case the other (say,
k) is a supporter of the minority opinion.

(iii) If agent k is a flexible individual, he or she will follow
the local majority and flip his or her state ok → −ok; otherwise
nothing occurs.

In this case, the frozen states of the inflexible agents work
in the model as the introduction of quenched disorder. As
in magnetic systems [42], one can expect that disorder can
induce or suppress a phase transition, as was also observed
in the kinetic exchange opinion model with the presence of
inflexibles [39].
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FIG. 5. (Color online) Order parameter O versus the fraction d

of inflexible individuals for the mean-field formulation of the model.
The squares are the numerical results for population size N = 10 000
and the solid line is the analytical prediction (7). The inset shows the
Binder cumulant curves for different sizes, showing the crossing of
the curves for dc ≈ 0.5, in agreement with Eqs. (7) and (8). Data are
averaged over 100 simulations.

As in the previous case (Sec. II A), one can derive
analytically the behavior of the order parameter in this mean-
field formulation of the model. The dependence of the order
parameter on the fraction d of inflexibles is given by (see the
Appendix, Sec. 2)

O = (1 − 2d)1/2 (7)

or in the usual form O ∼ (d − dc)β , where

dc = 1
2 (8)

and again we found a typical mean-field exponent β = 1/2,
as expected due to the mean-field character of the model. The
comparison of Eq. (7) with the numerical simulations of the
model is given in Fig. 5. In addition, we also show in the inset
of Fig. 5 the Binder cumulant curves for different population
sizes, where one can observe the crossing of the curves at
dc ≈ 0.5, in agreement with Eqs. (7) and (8). Furthermore,
a complete FSS analysis (not shown) gives us β ≈ 1/2, γ ≈
1, and ν ≈ 2, i.e., the same values obtained for the model
presented in Sec. II A. Thus, the presence of intransigents in the
population leads the system to an order-disorder transition at a
critical density dc = 1/2 and this transition is in the mean-field
Ising model universality class.

As a final observation of this subsection, we also simulated
(as in the previous section) the majority-rule model with
inflexible agents on a two-dimensional triangular lattice in
order to test the universality of the model in comparison with
the Ising model. The results are exhibited in Fig. 6. One can
see that the order parameter O (at least for the larger sizes)
does not present the typical behavior of a phase transition, i.e.,
the usual change of concavity of the curves. In addition, in the
inset of Fig. 6 one can see that the Binder cumulant curves
do not cross. A similar behavior was also reported in [39] for
another opinion model with inflexibility. In this case, those
results suggest that the inclusion of inflexibility as we done
here works in the model as a quenched disorder and it destroys
the phase transition in small dimensions such as D = 2. In
order to verify this hypothesis, we simulated the model on
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FIG. 6. (Color online) Order parameter O versus the fraction d

of inflexible individuals for the model with no independence defined
on triangular lattices of distinct sizes L (main plot). The inset shows
the Binder cumulant curves for different sizes, showing no crossing
of the curves. Data are averaged over 100 simulations.

square lattices. In such a case, we randomly choose a lattice
site and the group is formed by this random individual and
his or her four nearest neighbors, forming a group of size 5
as in [43]. The behaviors of O and U are very similar to the
ones observed for the triangular lattice (not shown), suggesting
that there is no order-disorder transition for D = 2. In some
magnetic models such a type of destruction due to quenched
disorder was also observed [42,44,45].

C. Majority rule with independence and inflexibility

As a third formulation of our model, we consider the
majority-rule dynamics where agents can exhibit the indepen-
dent behavior, as well as inflexibility. In this case, the model
carries the rules of the two previous models (Secs. II A and
II B).

(i) A group of three agents, say, (i,j,k), is randomly chosen.
(ii) With probability q each one of the three agents in the

group will act independently of the opinions of the group’s
individuals, provided he or she is not an inflexible individual.
Thus, with probability f all flexible agents flip their opinions
and with probability 1 − f nothing occurs.

(iii) On the other hand, with probability 1 − q the group
follows the standard majority rule. In this case, each flexible
agent follows the local majority opinion.

Notice that, even if the agents decide to act independently of
the group’s opinions, we will not see necessarily three changes
of opinions, as in the model of Sec. II B. Indeed, the three
agents can change their opinions, but we can have two, one,
or even zero spin flips due to the frozen states of the inflexible
agents.

As in the previous cases, one can derive analytically the
behavior of the order parameter as a function of the fraction
d of inflexibles and the independence probability q in the
mean-field formulation of the model. The calculations give us
(see the Appendix, Sec. 3)

O = [(1 − d)2(1 − θ )]1/2, (9)
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FIG. 7. (Color online) Order parameter O versus the indepen-
dence probability q for d = 0.2 and typical values of the flexibility f

for the mean-field formulation of the model. The symbols correspond
to numerical simulations for population size N = 10 000 (averaged
over 100 simulations) and the solid lines represent the analytical
prediction (9).

where θ = θ (q,d,f ) is given by

θ = 4

(1 − q)(1 − d)2

{
f q + (1 − q)

d2

4

}
. (10)

Writing the order parameter in the the usual form O ∼ (q −
qc)β , one obtains

qc = qc(f,d) = 1 − 2d

1 + 4f − 2d
(11)

and again we find a typical mean-field exponent β = 1/2, as
expected due to the mean-field character of the model. Notice
that we recover the results of Eqs. (5) and (8) for d = 0 (no
inflexibility) and qc = 0 (no independence), respectively. The
comparison of Eq. (9) with the numerical simulations of the
model for d = 0.2 and typical values of f is given in Fig. 7.
In addition, a complete FSS analysis (not shown) for many
values of f gives us β ≈ 1/2, γ ≈ 1, and ν ≈ 2, i.e., the
same values obtained for the model presented in the previous
subsections. Thus, this formulation of the model also makes
the system undergo phase transitions in the same universality
class as the mean-field Ising model. We also obtained from
the FSS analysis the critical points qc for typical values of d

and f . The comparison among the numerical estimates and the
analytical prediction of Eq. (11) is shown in the phase diagram
of Fig. 8.

From the phase diagram of this formulation of the model
we can see that the decrease of the flexibility parameter f ,
related to the independent behavior, makes the ordered phase
greater for a given value of d < dc = 1/2. As in the case with
no inflexibility, the increase of f leads the agents to perform
more independent spin flips and this action tends to disorder the
system even for a small value of the independence probability
q, which decreases the critical point qc. The presence of
intransigent agents reinforces this behavior, leading to the
decrease of the ordered phase for increasing values of d.
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FIG. 8. (Color online) Phase diagram of the mean-field model
with independence and inflexibility, in the plane q versus d for typical
values of f . The symbols are the numerical estimates of the critical
points, obtained from the crossing of the Binder cumulant curves
for different population sizes. The solid lines are the analytical form
given by Eq. (11).

III. CONCLUSION

In this work we have studied a discrete-state opinion model
where each agent carries one of two possible opinions ±1.
For this purpose, we considered three distinct mechanisms
to model the social behavior of the agents: majority-rule
dynamics, inflexibility, and independence. Our target was to
study the critical behavior of the opinion model under the
presence of the mentioned mechanisms. Thus, we performed
computer simulations of the model and some analytical cal-
culations complemented the numerical analysis. Let us recall
that the original majority-rule model presents only absorbing
consensus states with all opinions +1 or −1 [20–22].

First we considered the majority-rule model with indepen-
dence in a fully connected population. In this case, there is a
probability q that the three agents forming a group behave as
independent individuals, changing opinion with probability f

and keeping opinion with probability 1 − f . This mechanism
acts in the system as a social temperature. In this case, we
showed that independence induces an order-disorder transition
for all values of f > 0, with the critical points qc being a
function of f . In addition, the model is in the same universality
class as the mean-field Ising model and the kinetic exchange
opinion models. In the ordered phase there is a coexistence
of both opinions ±1, but one of them is a majority in the
population. We observed that the larger the flexibility f

(nonconservative societies), the smaller the value of q needed
to disorder the system. In other words, for a population
debating a subject with two distinct choices, it is easier to
reach a final decision for a small flexibility concerning the
independent behavior, as observed in conservative societies.
Consensus states were obtained only for q = 0 or f = 0. As
a test of the universality of the model, we simulated it on
triangular and on bcc lattices and we found the same critical
exponents as in the 2D and the 3D Ising models, respectively.
In addition, simulations on 1D lattices suggest the absence of a
phase transition. All those results suggest that the majority-rule
model with independence is in the Ising model universality
class.
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After that, we considered the majority-rule model in a fully
connected population with a fraction d of agents with the
inflexibility characteristic. In this case, these agents present
frozen states and cannot be persuaded to change opinion. In
the language of magnetic systems, those special agents behave
as the introduction of quenched disorder in the system. We
showed that there is a critical fraction dc = 1/2 above which
there is no order in the system, i.e., there is no decision or
majority opinion. This order-disorder phase transition is also
in the universality class of the mean-field Ising model. We
observed consensus in the population only in the absence of
inflexible agents, i.e., for d = 0. In other words, the presence of
intransigents in the population makes the model more realistic,
since there is a clear decision in the public debate for 0 < d <

1/2. Again, as a test for the universality of the model, we
simulated it on triangular and square lattices. In this case, we
did not observe a phase transition for both lattices, suggesting
that the model with quenched disorder does not undergo a
phase transition in small dimensions such as D = 2.

Finally, we considered both effects, independence and
inflexibility, in the majority-rule model. In this case we also
observed a phase transition at the mean-field level and the
critical points qc depend on f and d. Consensus states were
only obtained for q = d = 0 and the critical exponents are the
same as observed before, i.e., we found again the universality
class of the mean-field Ising model. From the phase diagram of
this formulation of the model we observed that the increase of
the flexibility parameter f , related to the independent behavior,
makes the ordered phase smaller.

It was recently discussed that the majority-rule model with
limited persuasion can lead to the victory of the initial minority,
provided it is sufficiently small [46]. Thus, as a future extension
of the present work, it may be interesting to analyze how
different initial concentrations of the opinions affect the
dynamics as well as mechanisms of limited persuasion in the
majority-rule dynamics.
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APPENDIX: ANALYTICAL CALCULATIONS

1. Model with independence

Let us consider the model with independent behavior
in the mean-field formulation. Following the approach of
Refs. [24,31], we computed the stationary order parameter
as well as the critical values qc(f ). Let us first define f1 and
f−1 as the stationary probabilities of each possible state (+1
or −1, respectively). We have to calculate the probability that
a given agent suffers the change +1 → −1 or −1 → +1.
We are considering groups of three agents, so one can have
distinct variations of the magnetization, depending on the
states of the three agents. For example, the probability to
choose at random three agents with opinions o = +1, i.e.,
a configuration (+, + ,+), is f 3

1 . With probability 1 − q the
configuration remains (+, + ,+), which does not affect the
magnetization of the system. With probability q(1 − f )
the configuration also remains (+, + ,+) and with probability

qf the configuration changes to (−, − ,−), which cause a
variation of −6 in the magnetization. In other words, the
magnetization decreases six units with probability qff 3

1 . One
can denote this probability by r(−6), i.e., the probability
that the magnetization variation is equal to −6. Generalizing,
one can define r(k), with −6 � k � +6 in this case, as the
probability that the magnetization variation is k after the
application of the models’ rules. As the order parameter
(magnetization) stabilizes in the steady states, we have that its
average variation must vanish in those steady states, namely,

6[r(+6) − r(−6)] + 2[r(+2) − r(−2)] = 0. (A1)

In this case, we have

r(+6) = f qf 3
−1, r(−6) = f qf 3

1 ,

r(+2) = 3(1 − q)f 2
1 f−1 + 3f qf1f

2
−1,

r(−2) = 3(1 − q)f1f
2
−1 + 3f qf 2

1 f−1.

Thus, the null average variation conditions (A1) give us

(f1−f−1)
[
f q

(
f 2

1 +f1f−1+f 2
−1

) − (1−q)f1f−1+f qf1f−1
]

= 0, (A2)

which gives us the solution f1 = f−1 (disordered state) or

(1 − q)f 2
1 − (1 − q)f1 + f q = 0, (A3)

where we used the normalization condition f1 + f−1 = 1.
Equation (A3) give us two solutions for f1 and the order
parameter can be obtained from O = |f1 − f−1|, which gives
us

O =
(

1 − 4qf

1 − q

)1/2

. (A4)

The critical points qc can be obtained by taking O = 0,

qc = 1

1 + 4f
, (A5)

which is Eq. (5).

2. Model with inflexibility

Now we consider the model with inflexibility. Let us now
denote the fraction of agents who have opinion +1 and are
noninflexibles by f1 and similarly for f−1. Notice that the
total fraction of inflexibles is d, the fraction of inflexibles with
opinion o = +1 is d/2, and the fraction of inflexibles with
opinion o = −1 is also d/2. In this case the normalization
condition becomes [47]

f1 + f−1 = 1 − d, (A6)

since the complementary fraction d represents the agents that
have frozen states +1 or −1. Following the same approach
as in the previous section, the null average variation condition
becomes

2[r(+2) − r(−2)] = 0, (A7)

where the probabilities r(k) are given by

r(+2) = 3(f1 + d/2)2f−1,

r(−2) = 3(f−1 + d/2)2f1.
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Thus, the null average variation condition (A7) gives us

(f1 − f−1)(f1f−1 − d2/4) = 0, (A8)

which gives us the solution f1 = f−1 (disordered state) or

f 2
1 + (d − 1)f1 + d2/4 = 0, (A9)

where we used the normalization condition (A6). Equation
(A9) give us two solutions for f1 and the order parameter can
be obtained from O = |f1 − f−1|, which gives us

O = (1 − 2d)1/2. (A10)

The critical point dc can be obtained by taking O = 0, which
results in Eq. (8).

3. Model with independence and inflexibility

Now we consider the model with inflexibility and inde-
pendence. As in the previous section, let us now denote the
fraction of agents who have opinion +1 and are noninflexibles
by f1 and similarly for f−1. Notice that the total fraction of
inflexibles is d, the fraction of inflexibles with opinion o = +1
is d/2, and the fraction of inflexibles with opinion o = −1 is
also d/2. The normalization condition is given by Eq. (A6).

Following the same approach as in the previous sections,
the null average variation condition becomes

6[r(+6)−r(−6)]+4[r(+4)−r(−4)]+2[r(+2)−r(−2)] = 0,

(A11)
where the probabilities r(k) are given by

r(+6) = f qf 3
−1, r(−6) = f qf 3

1 ,

r(+4) = 3f q(d/2)f 2
−1 + 3f q(d/2)f 2

−1,

r(−4) = 3f q(d/2)f 2
1 + 3f q(d/2)f 2

1 ,

r(+2) = 3f q(d/2)2f−1 + 3(1 − q)(f1 + d/2)2f−1

+ 9f q(d/2)2f−1 + 3f qf 2
−1f1,

r(−2) = 3f q(d/2)2f1 + 3(1 − q)(f−1 + d/2)2f1

+ 9f q(d/2)2f1 + 3f qf 2
1 f−1.

Thus, the null average variation condition (A11) gives us

(f1 − f−1)
[
f q

(
f 2

1 + f1f−1 + f 2
−1

) + 2f qd(f1 + f−1)

+f qd2 + f qf1f−1 − (1 − q)(f1f−1 − d2/4)
] = 0,

(A12)

which gives us the solution f1 = f−1 (disordered state) or

(1 − q)f 2
1 + (1 − q)(d − 1)f1 + [f q + (1 − q)(d2/4)] = 0,

(A13)
where we used the normalization condition (A6). Equation
(A13) gives us two solutions for f1 and the order parameter
can be obtained from O = |f1 − f−1|, which gives us

O = [(1 − d)2(1 − θ )]1/2, (A14)

where θ = θ (q,d,f ) is given by

θ = 4

(1 − q)(1 − d)2

{
f q + (1 − q)

d2

4

}
. (A15)

The critical points qc can be obtained by taking O = 0,

qc = 1 − 2d

1 + 4f − 2d
, (A16)

which is Eq. (11). Notice that we recover the results (A5) and
(8) for d = 0 (no inflexibility) and qc = 0 (no independence),
respectively.
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