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Recently we showed that the critical nonequilibrium relaxation in the Swendsen-Wang algorithm is widely
described by the stretched-exponential relaxation of physical quantities in the Ising or Heisenberg models. Here
we make a similar analysis in the Berezinsky-Kosterlitz-Thouless phase transition in the two-dimensional (2D)
XY model and in the first-order phase transition in the 2D q = 5 Potts model and find that these phase transitions
are described by the simple exponential relaxation and power-law relaxation of physical quantities, respectively.
We compare the relaxation behaviors of these phase transitions with those of the second-order phase transition
in the three- and four-dimensional XY models and in the 2D q-state Potts models for 2 � q � 4 and show that
the species of phase transitions can be clearly characterized by the present analysis. We also compare the size
dependence of relaxation behaviors of the first-order phase transition in the 2D q = 5 and 6 Potts models and
propose a quantitative criterion on “weakness” of the first-order phase transition.
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I. INTRODUCTION

The cluster algorithms have been proposed to overcome the
critical slowing down. The dynamical critical exponent z(≈2)
in the local-update algorithms was reported to be reduced of
one order by the cluster algorithms [1,2]. In numerical calcu-
lations, this exponent was evaluated from size dependence of
the correlation time of equilibrium autocorrelation functions
of physical quantities at the critical temperature, τ (L) ∼ Lz. It
was gradually revealed that to distinguish power-law behavior
with such a small exponent from logarithmic behavior, τ (L) ∼
log L, is quite difficult [3,4].

Then larger-scale calculations based on nonequilibrium
relaxation (NER) [5] showed [6,7] that a critical relaxation
faster than power law (symbolically represented as z = 0)
might exist in the cluster algorithms. Quite recently the present
authors showed that the explicit form of such a nontrivial
critical relaxation is given by the stretched-exponential time
dependence, initially in the two-dimensional (2D) Ising model
in the Wolff algorithm from the perfectly ordered state [8], and
then in the three-dimensional (3D) Heisenberg model in the
Swendsen-Wang (SW) algorithm from the perfectly disordered
state [9].

In the standard NER based on the local-update algorithms,
a physical quantity of large enough size shows a power-law
critical relaxation 〈Q〉 ∼ t∓ψ/(zν), with the critical exponent ψ

of the quantity Q and ν of the correlation length for decaying
(−) or ordering (+) processes. The critical temperature can
be evaluated from the power-law behavior (or linearity of the
log - log plot), and the critical exponents can be obtained from
the mixed exponents of some quantities and scaling relations.

Once the functional form of the critical relaxation in the
cluster NER is established, analysis similar to that in the
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standard NER becomes possible, and the critical temperature
can be evaluated from the stretched-exponential behavior
[9]. However, the critical exponents are not included in the
stretched-exponential time dependence, and such information
can be obtained only from the nonequilibrium-to-equilibrium
scaling [8], a kind of finite-size scaling which couples the
short-time critical relaxation and equilibrium size dependence.
Although this procedure ensures the nontrivial stretched-
exponential behavior in the cluster NER, necessity of multiple
sizes is not so favorable as the standard NER, and necessity
of relaxation data until the vicinity of equilibrium is also
not favorable because numerical merit in comparison with
conventional equilibrium simulations becomes obscure.

In the present article we numerically show that the essential
merit of the cluster NER is exhibited in the Berezinsky-
Kosterlitz-Thouless (BKT) and weak first-order phase tran-
sitions. Critical relaxation behaviors in the cluster NER are
qualitatively different in the BKT or weak first-order phase
transitions and in the second-order phase transition, and
nontrivial physical results can be obtained only from initial
relaxation behaviors.

The outline of the present article is as follows. In Sec. II the
basic scaling form of magnetization in the critical relaxation
with respect to time and size is exhibited. In Sec. III, we
calculate this time dependence in the 2D, 3D, and four-
dimensional (4D) XY models and show that the peculiar
behavior in 2D characterizes the BKT phase transition. In
Sec. IV critical relaxation in the 2D q-sate Potts models are
compared with each other for 2 � q � 8, and the qualitative
difference between 2 � q � 4 (second-order phase transition)
and q � 5 (first-order phase transition) is displayed. The size
dependence of the ordering process in the first-order phase
transition is investigated for q = 5 and 6, and weak-first-order
nature for q = 5 is visualized. In Sec. V numerical results
in the present article are discussed. The meaning of the
universal stretched-exponential exponent observed in the 3D
and 4D XY models is considered, and a quantitative criterion
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on “weakness” of the first-order phase transition is proposed.
In Sec. VI the above descriptions are summarized.

II. FORMULATION

In the present article the 2D Potts models are analyzed with
the SW algorithm [1], and the XY models are treated with
the “embedded-Ising-spin” scheme proposed by Wolff [2],
although spin clusters are generated in the whole system after
the SW algorithm, not after Wolff’s single-cluster scheme (the
so-called Wolff algorithm) [2]. Since the purpose of the present
article is to exhibit nontrivial critical relaxation in the BKT and
weak first-order phase transitions, here we do not intend to
evaluate the critical temperature Tc precisely. Instead, we use
the exact value Tc = 1/ log(1 + √

q) [J/kB] in the 2D q-state
Potts model on a square lattice with coupling J . In the 3D
and 4D XY models, a rather rough evaluation of Tc is enough
for the estimation of the stretched-exponential exponent. In
the 2D XY model, the BKT phase transition results in a large
finite-size effect, and size dependence of Tc is crucial. In this
case a recent large-scale simulation by Komura and Okabe
[10] is referred to.

In the XY models, we concentrate on the nonequilibrium
ordering from the perfectly disordered state, because early-
time deviation from the stretched-exponential form is much
smaller than that of the decay from the perfectly ordered state in
vector spin models [9]. The absolute value of the magnetization
behaves as

〈|m(t,L)|〉 ∼ L−d/2 exp[+(t/τm)σ ] (0 < σ < 1), (1)

with the spatial dimension d, the “relaxation time” τQ

depending on a quantity Q and the exponent σ independent
of quantities. Here the size dependence originates from the
normalized random-walk growth of clusters. In order to
evaluate the exponent σ simply, we utilize the double-log plot,

log {log[〈|m(t,L)|〉/C(L)]} ∼ σ log(t/τm), (2)

which is directly derived from Eq. (1). Here C(L) stands for
the coefficient of rhs of Eq. (1) including size dependence. The
unknown coefficient C(L) can be determined by aligning the
early-time data on a straight line.

In the 2D Potts models, we calculate both decay from
the perfectly ordered state and ordering from the perfectly
disordered state, because the relaxation process becomes
slower and slower as the number of state q increases, and
whether the system is still trapped by the pure ordered
or disordered stable states or already arrives at equilibrium
(coexistence of the two stable states) in the first-order phase
transition can be distinguished only by comparing these
two relaxation processes. Weakness of the first-order phase
transition is mainly characterized by the ordering process from
the perfectly disordered state.

III. NUMERICAL RESULTS IN THE XY MODELS: BKT
VERSUS SECOND-ORDER PHASE TRANSITIONS

First, a double-log plot of the absolute value of magneti-
zation obtained from ordering from the perfectly disordered
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FIG. 1. (Color online) Double-log plot of time dependence of
absolute value of magnetization during ordering process from the
perfectly disordered state in the vicinity of Tc for the 3D XY model
for L = 400 and 4D XY model for L = 100 with the dashed lines
corresponding to σ = 1/2. The data for the 2D XY model for
L = 8000 at T = 0.90J/kB are also plotted by open circles with
the chain line corresponding to σ = 1.

state is displayed in Fig. 1 for the 3D XY model for L = 400
and for the 4D XY model for L = 100. In the 3D XY model, the
tangent of early-time behavior is almost unchanged for vary-
ing the temperature for 2.200J/kB � T � 2.203J/kB with
τm ≈ 2.00, C(L = 400) ≈ 9.5 × 10−5, and σ ≈ 0.5. Similar
behavior is observed for the 4D XY model for 3.312J/kB �
T � 3.316J/kB with τm ≈ 1.74, C(L = 100) ≈ 7.6 × 10−5

and σ ≈ 0.5. The exponent σ ≈ 0.5 is also observed in the 3D
Heisenberg model [9], and this exponent might be universal in
vector spin models.

Then the absolute value of magnetization in the 2D XY
model for L = 8000 (total number of spins is the same as
that in the 3D XY model for L = 400) is also plotted in the
same figure (open circles). Here the data at T = 0.90J/kB are
exhibited following TKT ≈ 0.8992J/kB for L = 8192 [10].
Aside from initial a few Monte Carlo steps (MCS), these data
are well on a straight (chain) line with τm ≈ 5.00, C(L =
8000) ≈ 2.05 × 10−4, and σ ≈ 1.0. Such time dependence is
clearly different from those in the 3D and 4D XY models
characterized by σ ≈ 0.5.

The case σ = 1 is nothing but the simple-exponential time
dependence. In such a case a naive semilog plot is more
convenient and reliable than the double-log plot, because
the unknown parameter C(L) does not appear. The data
for 0.88J/kB � T � 0.92J/kB are plotted in Fig. 2, and at
least the data for T = 0.89J/kB (squares), 0.90J/kB (circles)
and 0.91J/kB (triangles) seem consistent with the simple-
exponential time dependence (dashed lines). The nontrivial 2D
simple-exponential behavior suggested in Fig. 1 is confirmed,
and such a breakdown of the universal relaxation behavior in
XY models only in two dimensions would be the consequence
of the BKT phase transition, which occurs only in two
dimensions.
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FIG. 2. (Color online) Semilog plot of time dependence of ab-
solute value of magnetization during ordering process from the
perfectly disordered state in the 2D XY model for L = 8000 for
T = 0.88J/kB (crosses), 0.89J/kB (squares), 0.90J/kB (circles),
0.91J/kB (triangles), and 0.92J/kB (X marks), and the linearity of
the data is emphasized by dashed lines.

IV. NUMERICAL RESULTS IN THE 2D q-STATE POTTS
MODELS FOR VARIOUS q

A. Comparison between the second-order (2 � q � 4)
and first-order (q � 5) phase transitions

Decaying behavior from the perfectly ordered state and
ordering behavior from the perfectly disordered state in the 2D
q-state Potts models for 2 � q � 8 and L = 1000 are summa-
rized in Fig. 3(a), namely, the log-log plot of time dependence
of the absolute value of magnetization at the exact Tc. This
model exhibits the second-order phase transition for 2 � q �
4, which results in the stretched-exponential time dependence
in the critical cluster NER. As shown in Fig. 3(b), equilibration
becomes slower as the number of state q increases, and the
exponent σ decreases from σ = 1/3 (dashed line) at q = 2
(Ising case, triangles) [8]. At q = 3 (squares), this exponent
seems consistent with σ = 1/6 (chain line). At q = 4 (circles),
the exponent is much reduced and a preliminary estimate from
these data is σ ≈ 0.04. In this figure we draw a dotted guide
line with σ = 0.04. Note that a few initial-time data points
are not on straight lines, and the deviation is much larger than
the cases in the 3D and 4D XY models as displayed in Fig. 1.
Since Potts variables take discrete values, initial clusters are
generated discontinuously in this model, and deviation in the
initial relaxation process is inevitable. Further investigations
for q = 3 and 4 will be given elsewhere.

This model shows the first-order phase transition for q � 5,
and the trapping behavior to pure astable states, which is a
typical sign of the first-order phase transition, is observed for
q � 6, and the magnetization gap increases as q increases
(drawn by arrows) [11]. This behavior has already been
reported in NER based on the local-update algorithm at q = 20
[12] and also based on the SW algorithm at q = 10 [13].
In these cases initial relaxation processes are described by
the power-law relaxation and then saturate into pure stable
states. At q = 5 for L = 1000, such behavior is replaced by
convergence to equilibrium (coexistence of two stable states)
almost in a power law (drawn by the dashed line).
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FIG. 3. (Color online) (a) Log-log plot of time dependence of
absolute value of magnetization during the decaying process from the
perfectly ordered state and the ordering process from the perfectly
disordered state at the exact Tc in the 2D q-state Potts models for
2 � q � 8 and L = 1000. The stretched-exponential behavior is
observed in the second-order phase transition for 2 � q � 4, and
the exponent σ decreases from σ = 1/3 at q = 2 (Ising case) as q

increases. Almost power-law behavior (drawn by the dashed line)
is observed at q = 5 for this system size. Trapping behavior to pure
stable states indicates the typical first-order phase transition for q � 6,
where the magnetization gap increases as q increases as shown by
arrows. (b) Double-log plot of the above data for 2 � q � 4, i.e.,
the data for q = 2 (triangles) with the dashed line corresponding to
σ = 1/3, the data for q = 3 (squares) with the chain line representing
σ = 1/6, and the data for q = 4 (circles) with the dotted line assuming
σ = 0.04.

B. Comparison of the size dependence in the first-order
phase transition for q = 5 and q = 6

In order to understand the origin of such nontrivial behavior
in the first-order phase transition at q = 5, size dependence of
the data is investigated. The data corresponding to Fig. 3(a)
for various system sizes at q = 5 are plotted in Fig. 4(a) in an
inverse semilog plot (the x axis is drawn in a log scale), and
the data for 250 � L � 2000 converge to equilibrium up to
5 × 105 MCS. In this figure the data in the decaying process
are on a single curve until the system in each size approaches
the vicinity of equilibrium. The equilibrium value of magne-
tization decreases systematically as the system size increases.
Note that fluctuating behavior for L = 2000 is because of the
limited number of averaged random-number sequences. Since
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FIG. 4. (Color online) Time dependence of absolute value of
magnetization at the exact Tc for various system sizes (a) in the
2D q = 5 Potts model during decaying process from the perfectly
ordered state and ordering process from the perfectly disordered state
in an inverse semilog plot, and (b) in the 2D q = 5 and 6 (inset)
Potts models from the perfectly disordered state adjusted by the
random-walk growth of clusters ∼L−d/2 in a log-log plot. All the
data are located on a single curve up to the onset of trapping behavior
(arrows).

the relaxation time until equilibrium seems proportional to Ld

in this case, numerical efforts are proportional to L2d together
with trivial increase proportional to volume Ld .

In Fig. 4(b) the data in the ordering process from the
perfectly disordered state at q = 5 are plotted in a log-log
scale by taking the size dependence of random-walk growth
(1) into account. The data for various system sizes are on a
single curve after adjusting this ∼L−d/2 size dependence up
to the onset of trapping behavior indicated by the arrow. Such
behavior becomes clearer in comparison with the data at q = 6
for smaller sizes in the inset. The apparent trapping behavior
for L = 1000 is not observed for smaller sizes, and the waving
behaviors for L = 250 and 500 at q = 6 seem comparable
to those for L = 1000 and 4000 at q = 5, respectively. This
correspondence suggests that the clear trapping behavior may
not be observed at q = 5 even for L ∼ 1 × 104, which is
beyond reach numerically at present.

V. DISCUSSION

Simple-exponential critical relaxation in the 2D XY model
is quite nontrivial, because such behavior is usually observed

above Tc (from the perfectly ordered state) or below Tc

(from the perfectly disordered state). Such anomalous critical
relaxation looks suitable for the anomalous BKT phase
transition specific to two dimensions. Actually, equivalence
of the exponent σ of the stretched-exponential behavior in
the 3D and 4D XY models is equally nontrivial, because
the upper critical dimension dc of the XY model is four.
That is, dynamical behaviors in the cluster NER might be
different from the mean-field one even above dc. Further
investigations on this topic in the Ising models are now in
progress [14].

The waving behavior in the ordering process of magnetiza-
tion in the 2D q = 5 Potts model could be regarded as the sign
of trapping behavior to pure stable states, which is characteris-
tic to the first-order phase transition. However, the onset of this
behavior coincides with that of the saturation behavior toward
equilibrium for L = 500, as shown in Fig. 4(b); that is, no
explicit behaviors to represent the first-order phase transition
can be observed for L � 500. Such a critical system size can
be much larger when the first-order phase transition is much
weaker, and direct numerical evidence of the first-order phase
transition becomes beyond reach in such a case.

It would rather be a quantitative criterion of the “weak
first-order phase transition” that no signs of trapping behavior
to pure stable states are observed even in the numerically
accessible maximum system size. Nevertheless, power-law
behavior in the cluster NER exists even in such a case. Analytic
treatment of the cluster NER is possible in the infinite-range
model, and the study on the infinite-range q = 3 Potts model
exhibits [15] similar power-law behavior in the first-order
phase transition.

VI. SUMMARY

In the present article the BKT phase transition in the 2D
XY model and the (weak) first-order phase transition in the
2D q = 5 Potts model are analyzed with the nonequilibrium
relaxation (NER) in the Swendsen-Wang algorithm. Ordering
process shows the simple-exponential critical relaxation in the
former, and it shows the power-law critical relaxation in the
latter. Both behaviors are qualitatively different from those in
the second-order phase transition such as in the 3D and 4D XY
models or in the 2D Potts model for 2 � q � 4, which show
the stretched-exponential critical relaxation. These behaviors
can be regarded as the essential merit of the cluster NER,
because nontrivial physical results can be obtained only from
initial relaxation behaviors in these cases similarly to those in
the standard NER.

The simple-exponential relaxation in the 2D XY model
corresponds to σ = 1 in the stretched-exponential time de-
pendence (1), and such relaxation is usually observed above
or below Tc. The critical relaxation in the 3D and 4D XY models
is characterized by the exponent σ = 1/2 (such universality
of the exponent σ independent of the spatial dimension is also
nontrivial), and this large deviation of σ ensures anomaly in the
BKT phase transition. The first-order phase transition in the 2D
q � 6 Potts models is characterized by the trapping behavior
to pure stable states in dynamical processes, which is not
observed in the 2D q = 5 Potts model within the numerically
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accessible system sizes. Size dependence in the first-order
phase transition is clarified by a kind of finite-size scaling
analysis including the random-walk growth of spin clusters,
and a quantitative criterion on the “weak first-order phase
transition” is proposed.
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