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A nonlinear Fokker-Planck equation is obtained in the continuous limit of a one-dimensional lattice with
an energy landscape of wells and barriers. Interaction is possible among particles in the same energy well. A
parameter γ , related to the barrier’s heights, is introduced. Its value is determinant for the functional dependence
of the mobility and diffusion coefficient on particle concentration, but has no influence on the equilibrium solution.
A relation between the mean-field potential and the microscopic interaction energy is derived. The results are
illustrated with classical particles with interactions that reproduce fermion and boson statistics.
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I. INTRODUCTION

The complete description of a large number of interacting
particles (a many-body system) is a problem that usually
exceeds numerical or analytical capabilities. Mean-field theory
allows the description of such a system by analyzing the
behavior of only one particle subjected to an average force
produced by the rest of the particles. The mean-field force
depends on statistical properties of the rest of the particles that,
for self-consistency, are equal to the properties of the particle
considered before [1]. This is the origin of the nonlinear
character of the resulting description (see [2], p. 3). The
nonlinearities reflect the interactions between particles. For
example, Kaniadakis and Quarati [3] introduced a nonlinear
Fokker-Planck equation for the particle density in a classical
system that reproduces quantum statistics. An appropriate
choice of the transition probabilities that depend on the particle
density gives rise to Fermi-Dirac or Bose-Einstein distributions
in equilibrium. Quantum effects can be reproduced in a
classical system with an interaction potential, also called
a statistical potential [4]. For example, the Pauli exclusion
principle for fermions is analogous to a potential that becomes
infinite when two particles occupy the same state. This
hard-core interaction is the cause of a nonlinear term in the
corresponding diffusion equation [see [3]; [2], p. 280; or
Eq. (10) in [5]]. A general approach for the derivation of
a nonlinear Fokker-Planck equation starting from the master
equation can be found in [6,7]. More examples can be found
in [2]. Many researchers have devoted attention to the problem
of diffusion with interaction, in many cases motivated by the
seminal work of Batchelor [8] (see also the related works
[9–25]).

The problem that we wish to address, from a quite general
perspective, is collective diffusion of interacting particles. We
use a one-dimensional lattice, but the results can be easily
extended to higher dimensions. In our analysis, only the
collective or transport diffusion coefficient is involved (we
do not analyze here single-particle diffusion or self-diffusion
of tagged particles).
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The restriction on the interaction is that it is local: It takes
effect only among particles in the same site. In other words,
the interaction range is smaller than the lattice spacing. We
apply a mean-field approximation assuming that the evolution
of the system can be obtained by analyzing the behavior of
only one particle. We consider that this particle is subjected
to a mean-field potential Vi that depends on the number of
particles in the site ni , where i is the lattice site index. The
variation of the particle number is smooth, so the continuous
limit can be applied and a nonlinear Fokker-Planck equation is
obtained. The equilibrium solution is completely determined
by the mean-field interaction potential and, if present, an
external potential. This is not the case for the nonequilibrium
behavior. As we show in the following sections, it depends
on an additional parameter γ that determines if the transition
probability between neighboring sites depends on the potential
in the source site, in the target site, or on a mixture of both
potentials. We also show that this parameter is experimentally
accessible through the measurement of the concentration-
dependent mobility and diffusion coefficient.

II. TRANSITION PROBABILITIES

In the one-particle picture, the energy associated with a
particle in site i is given by

Ei = Vi + Ui, (1)

where Vi , the internal or mean-field potential, is an abbre-
viation of V (ni) and Ui is an external potential. We can
consider Vi as a function of ni that, in equilibrium, satisfies
the relation neq,i ∝ exp{−β[V (neq,i) + Ui]}, i.e., it is a one-
particle effective potential that satisfies Boltzmann statistics
in equilibrium.

The interaction energy of a configuration of ni particles
is given by a function �(ni). The relevant problem of
determining the relation between the mean-field potential Vi

and the interaction energy �(ni) is addressed in Sec. IV. The
interaction is local in the sense that particles interact only when
they are at the same site.

In the one-particle picture, the detailed balance condition
gives a relation between transition probabilities

e−βEi+1Wi+1,i = e−βEi Wi,i+1, (2)
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where Wi,i+1 is the transition probability from site i to site
i + 1. Using the words of Derrida [26], it is a “straightforward
generalization” to consider that (2) also holds for the transition
probabilities out of equilibrium (it is clear that this does not
mean that detailed balance holds out of equilibrium, since in
general ni �= const × e−βEi ).

Detailed balance is not enough to determine the transition
probabilities. In order to obtain an expression for them,
we assume that they can be written as a combination of
exponentials of Vi , Vi+1, Ui , and Ui+1. In the following we
present a physical interpretation of the result that also serves
as a justification of this assumption. We have

Wi,i+1 = P exp[−β(γVi+1 + γ ′Vi + αUi+1 + α′Ui)], (3)

where γ , γ ′, α, α′, and P may depend on position i; the
subindex is omitted in order to simplify the notation. We
assume that the system has an inversion symmetry. This
implies that the reversed transition probability is obtained from
(3) by exchanging i ↔ i + 1:

Wi+1,i = P exp[−β(γVi + γ ′Vi+1 + αUi + α′Ui+1)]. (4)

It can be shown that the combination that fulfills detailed
balance is γ ′ = γ − 1 and α′ = α − 1. Then

Wi,i+1 = Pe−β[(γ−1)Vi+γVi+1+(α−1)Ui+αUi+1]. (5)

A physical interpretation of the parameters γ and α is
related to the barrier’s height between neighboring sites. Let
us consider that particles can occupy discrete sites in a lattice
with a potential that has a continuous shape, as shown in Fig. 1.
Between sites i and i + 1, the potential has a maximum value
of Bi+1/2. A particle that jumps from i to i + 1 has to overcome
a barrier Bi+1/2 − Ei and the transition probability is given by

Wi,i+1 = νe−β(Bi+1/2−Ei ), (6)

where ν is the number of jump attempts per unit time.
The potential maxima depend, on the one hand, on the
characteristics of the substratum, which contributes with a
term C. They also may depend on the values of the interaction
potential on both sides of the barrier. This dependence is
symmetrical (the same for both sides) and its influence is
represented by a term γ (Vi + Vi+1); the choice of the name
of the parameter γ advances that it is the same as the one
introduced in (5). Finally, the external potential also has an
influence on the barriers. It is given by an additional parameter
η ∈ (0,1): ηUi + (1 − η)Ui+1. The influence of the external
potential on the barriers is always present. The parameter
η is an interpolation factor between sites i and i + 1 for
this influence. Taking these arguments together, the potential
maximum is

Bi+1/2 = C + γ (Vi + Vi+1) + ηUi + (1 − η)Ui+1. (7)

Substituting in (6) and considering that P = νe−βC , we obtain

Wi,i+1 = Pe−β[(γ−1)Vi+γVi+1+(1−η)(Ui+1−Ui )]. (8)

Let us compare this with Eq. (5). Since the values of Ui and
Ui+1 are, in principle, arbitrary, we have that α − 1 = −1 +
η and α = 1 − η and therefore α = η = 1/2. This result is
actually a consequence of the inversion symmetry assumed

γ = 0

i i + 1

Ei
Ei+1

Bi+1/2

γ = 1

γ = 1/2

FIG. 1. Energy landscape of wells Ei and barriers Bi+1/2. From
top to bottom γ = 0, 1/2, and 1 ∀i. In this illustration, C is constant
and Ui = 0 ∀i.

in (4). Finally, the expression for the transition probability is

Wi,i+1 = Pe−β[(γ−1)Vi+γVi+1+�U/2], (9)

with �U = Ui+1 − Ui .
The previous arguments allow us to construct an energy

landscape that gives physical meaning to the parameters and
variables involved in the transition probability. In this picture
we are using the Hänggi interpretation [27] of the Langevin
equation with multiplicative noise, or the barrier model [28],
for which the particle current, without external potential and in
a continuous space, is J = −D(x) ∂n

∂x
(for other interpretations,

the spatial dependent diffusion coefficient is inside the space
derivative [28]).

In principle, γ can take any real value. We conjecture that,
from a physical point of view, the pertinent values of γ are
in the range [0,1]. Typical situations are shown in Fig. 1.
For γ = 0, the transition probability depends on the origin
potential

Wi,i+1 = Pe−β(−Vi+�U/2) (γ = 0). (10)

For γ = 1, the transition depends on the target potential

Wi,i+1 = Pe−β(Vi+1+�U/2) (γ = 1). (11)
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For γ = 1/2 we have an intermediate case that is a frequent
choice in Monte Carlo (MC) simulations of diffusion pro-
cesses; the transition depends on the energy difference between
target and origin potentials

Wi,i+1 = Pe−β(�V +�U )/2 (γ = 1/2), (12)

with �V = Vi+1 − Vi .

III. CURRENT AND FOKKER-PLANCK EQUATION

The current J between sites i and i + 1 is

J = niWi,i+1 − ni+1Wi+1,i . (13)

We substitute (9) in (13). Now we turn to a continuous
description in which ni is replaced by n(x), Vi by V (n(x)),
and Ui by U (x), with x = ai; we approximate (ni+1 − ni)/a �
∂n
∂x

, (Vi+1 − Vi)/a � dV
dn

∂n
∂x

, and (Ui+1 − Ui)/a � ∂U
∂x

. We call
D0 = Pa2 the free-diffusion coefficient. After some algebra,
we obtain (more details are in the Appendix)

Ja = −μ
∂U

∂x
n − D

∂n

∂x
, (14)

where the mobility μ and the diffusion coefficient D are

μ = βD0e
−β(2γ−1)V , (15)

D = D0e
−β(2γ−1)V

(
βn

dV

dn
+ 1

)
. (16)

In the previous derivation the validity of the Ginzburg criterion
for a mean-field theory is assumed: The fluctuations are small
enough so that (〈n2

i 〉 − 〈ni〉2)/〈n2
i 〉 � 1. The relation between

the mobility and diffusion coefficient

D = μβ−1

(
βn

dV

dn
+ 1

)
(17)

does not depend on γ . In the absence of an interaction, we
recover the Einstein relation D = μβ−1.

The resulting Fokker-Planck equation

∂n

∂t
= ∂

∂x

(
μ

∂U

∂x
n + D

∂n

∂x

)
(18)

is nonlinear because of the dependence of μ and D on n

and V (n). It is a free-energy Fokker-Planck equation with
Boltzmann statistics (see Chap. 5 in [2]). If we consider the
notation used in Eq. (5.4) of Ref. [2], we find the following
correspondence: n → P , βU → U0/Q, βV → δUNL

δP
/Q, and

D0 → Q. The main difference of our approach is the intro-
duction of the parameter γ , which plays a relevant role in
the system’s dynamics, and its physical interpretation in the
energy landscape.

Identifying the zero-current state with equilibrium, it is easy
to see that the equilibrium concentration is neq ∝ e−β(V +U ).
The proportionality constant can be written as

neq = e−β(V +U−μc), (19)

where we can identify μc with the chemical potential. As
expected, γ plays no role in the equilibrium solution. Its
influence is present in the dynamics through the dependence

of μ and D on γ . Let us also note that the parameter γ has
influence only when an interaction potential is present.

IV. MEAN-FIELD POTENTIAL

Instead of speaking about the energy of one particle, as
in (1), let us consider the energy of the configuration of ni

particles

εi = �(ni) + niUi, (20)

where �(ni) is the interaction energy of the configuration of
ni particles. The question that lies at the core of a mean-field
theory is what the relation is between V and �.

In order to answer this question we have to appeal to the
microscopic description given by the grand partition function
for classical particles. Since there is no interaction between
different lattice sites, it can be written as

� =
∏

i

Zi, (21)

with

Zi =
∞∑

ni=0

1

ni!
e−β(εi−niμc) =

∞∑
ni=0

1

ni!
e−δini−β�(ni ), (22)

where, for simplicity, we introduced δi = β(Ui − μc). We can
obtain the equilibrium mean value 〈ni〉 with

〈ni〉 = −∂ ln Zi

∂δi

(23)

and express this result as a function of δi (for a given value
of β): 〈ni〉 = fβ(δi). This means that we can consider δi as a
parameter that allows us to scan the possible values of 〈ni〉.
From an experimentalist point of view, we can apply a varying
external potential and measure the possible values of 〈ni〉. We
will restrict ourself to situations in which fβ is invertible, i.e.,
we can write δi = f −1

β (〈ni〉); this precludes the possibility of
phase transitions, for which, for a given δi , there could be more
than one value of 〈ni〉.

The connection with the description of the previous section,
based on the nonlinear Fokker-Planck equation, is given by the
fact that 〈ni〉 should be equal to neq in x = ai. Then, using (19),
we have

〈ni〉 = e−βV −δi . (24)

In the same way that we considered that the transition
probabilities satisfy the detailed balance relation even when
the system is out of equilibrium, we can consider that the
relation between the mean-field potential V and the particle
concentration that we can derive from the previous equation
also holds out of equilibrium. This can be justified using the
local equilibrium assumption. For simplicity, we replace 〈ni〉
by n. Therefore, from (24) we obtain

V (n) = −β−1
[

ln n + f −1
β (n)

]
. (25)

The most simple situation is zero interaction; in this case
n = e−δi and f −1

β (n) = − ln n. A more direct relation between
V and � can be derived from (24); it also clarifies its physical
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meaning. We have

e−βV = −eδi
∂ ln Zi

∂δi

= eδi

Zi

∞∑
ni=0

ni

ni!
e−δini−β�(ni )

= 1

Zi

∞∑
ni=1

1

(ni − 1)!
e−δi (ni−1)−β�(ni )

= 1

Zi

∞∑
n′

i=0

1

n′
i!

e−δin
′
i−β�(n′

i+1)

= 1

Zi

∞∑
n′

i=0

e−β[�(n′
i+1)−�(n′

i )]
1

n′
i!

e−δin
′
i−β�(n′

i )

= 〈e−β[�(ni+1)−�(ni )]〉. (26)

We can interpret this result using the Jarzynski equality
[29], also called the Bochkov-Kuzovlev-Jarzynski equality
[30]. It gives a relation between the Helmholtz free-energy
variation �F and the applied work W :

e−β�F = 〈e−βW 〉. (27)

Comparing (26) and (27), we can see that the mean-field
potential V at a given point is equal to the free-energy change
when the work needed to increase the number of particles by
one, W = �(ni + 1) − �(ni), is applied to that point.

V. FERMIONS

Hard-core interaction is the prototypical case study. As
mentioned in the Introduction, an interaction that becomes
infinite for particles occupying the same state is analogous to
the Pauli exclusion principle for fermions. Phenomenological
arguments to determine the transition probabilities are usually
presented [3,22,25,31]. In the absence of an external field, the
transition probability from i to i + 1 is proportional to the
quantity 1 − ni+1, which indicates if the target site is free to
be occupied by the incoming particle:

Wi,i+1 = P (1 − ni+1). (28)

Since the transition probability depends on the target site, we
have γ = 1. From Eq. (11) we obtain Vi+1 = −β−1 ln(1 −
ni+1). In the continuous limit and neglecting fluctuations,

V (n) = −β−1 ln(1 − n). (29)

Once the mean-field potential is obtained this way, we can turn
to the more general situation in which an external potential U is
present. The resulting equilibrium concentration, which is ob-
tained by substituting (29) in (19), corresponds to Fermi-Dirac
statistics: neq = 1/(eβ(U−μc) + 1). Let us emphasize that these
results hold only for collective diffusion of indistinguishable
particles, i.e., this mean-field approach does not hold for
diffusion of tagged particles.

On the other hand, using the interaction energy

�(ni) =
{

0 for ni = 0,1
∞ for ni � 2 (30)

in (26), we can arrive at the same result (29). This procedure
does not appeal to an a priori definition of the transition

probabilities with the shape of (28) and makes a clear distinc-
tion between the mean-field potential V and the microscopic
interaction energy �.

Several results obtained from diffusion in a lattice indicate
that the hard-core interaction does not have any effect on the
collective diffusion coefficient [3,5,22,25]

DHC = D0, (31)

a relation that holds in the limit of zero size particles. (Of
course, the interaction does have an effect on the single-particle
diffusion coefficient [32,33].) This result is obtained from the
expression for the diffusion coefficient (16) using (29) for the
mean-field potential and γ = 1.

Therefore, in our description based on the γ -dependent
energy landscape, the result (31) corresponds to a constant
value of γ equal to 1. However, this is not the only possibility.
For example, for γ = 1/2 and the same hard-core interaction
we obtain

DHC = D0

1 − n
(γ = 1/2). (32)

It is interesting to note that a similar dependence of the
diffusion coefficient on the concentration has been obtained
for hard spheres in a continuous space (see, for example,
[8,12,13,23]). More complex expressions of the diffusion
coefficient can be obtained if the parameter γ that depends
on the concentration is considered. In all cases the equilibrium
solution is the same.

Now we consider the situation in which multiple occupancy
is allowed with a maximum number of particles N . Let us call
mi the number of particles at site i to distinguish this case from
the one of the preceding paragraphs. Let us consider that the
average concentration is given by 〈mi〉 = N〈ni〉. In terms of
the partition function,

〈mi〉 = −N
∂ ln Zi

∂δi

= −∂ ln ZN
i

∂δi

. (33)

Then the partition function for the multiple occupancy case is

Z′
i = (1 + e−δi )N =

N∑
mi=0

e−δimi

(
N

mi

)
. (34)

Using the definition of the partition function and comparing
with the previous equation, we obtain the interaction energy
for this case:

�′(mi) =
{

−β−1 ln N!
(N−mi )!

for 0 � mi � N

∞ for mi > N.
(35)

The mean-field potential is

V (m) = −β−1 ln(N − m). (36)

By increasing the value of N we increase the mean number
of particles at each site and reduce fluctuations, a procedure
that favors the conditions for the validity of the Fokker-Planck
equation. Equation (36) is a generalization of the mean-field
potential for multiple occupancy; Eq. (29) is recovered for
N = 1. Using (36) in (9), the transition probability is

Wi,i+1 = P (N − mi)
γ−1(N − mi+1)γ e−β�U/2.
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x/a
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0.2
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0.6

0.8

1
n

FIG. 2. Equilibrium concentration n for classical fermions with
U (x) = −Fx, βFa = 0.05, and total concentration 0.5. The curve
corresponds to the Fermi-Dirac distribution and the dots to Monte
Carlo simulations with different values of γ : γ = 0 (circles), γ = 1/2
(squares), and γ = 1 (diamonds). The same distribution is attained
for all values of γ . Simulations were made with multiple occupancy
of sites, ni = mi/N . The following are the other parameters: number
of samples, 1000; MC steps for each sample, 107 (γ = 0,1 and N =
100) or 108 (γ = 1/2 and N = 500); fixed boundary conditions; and
system size, L = 100a.

This could have divergences for γ < 1. For γ < 1 it is
necessary to consider multiple occupancy and N large enough
in order to have mi < N for all sites. Instead of a hard-core
interaction we have a repulsive soft-core interaction that
generates the same Fermi-Dirac distribution in equilibrium
(Fig. 2).

For example, for γ = 1/2, the transition probability is

Wi,i+1 = P

√
N − mi+1

N − mi

e−β�U/2 (γ = 1/2),

which depends on the origin and target sites. Then, in the
hopping model for γ = 1/2, particles tend to jump with a
larger probability when they come from a site with many
particles and when they go to a site with few particles.

Figure 2 shows the equilibrium solution with a constant
force to the right in a closed system and Monte Carlo
simulation results for different values of γ (0, 1/2, and 1);
as expected, in all cases the same equilibrium solution is
obtained. As mentioned before, the different values of γ

become relevant in nonequilibrium situations. We analyzed
two simple cases. The first one is a constant force (U = −Fx)
applied to a system with periodic boundary conditions. The
nonequilibrium stationary state is homogeneous with nonzero
current. From Eq. (14) we can obtain the mobility μ =
Ja/nF . Figure 3 shows numerical simulation results of the
mobility against concentration for different values of γ . The
results coincide with the analytical curve (15). The analytical
expressions of μ and D, for fermions and bosons (in the next
section) and for different values of γ , are shown in Table I.

The second nonequilibrium situation that we consider
is zero force with unequal fixed boundary conditions. The

0 0.3 0.6 0.9n
0

1

2

3

4

5

6

μ 
/ (

βD
0) γ = 0

γ = ½

γ = 1

FIG. 3. Fermion’s mobility μ against concentration n for different
values of γ , obtained from a system with homogeneous concentration,
constant force βFa = 0.05, and periodic boundary conditions (see
the text for more details). The curves correspond to Eq. (15). Dots
correspond to Monte Carlo simulations with γ = 0 (circles), γ =
1/2 (squares), and γ = 1 (diamonds). The following are the other
parameters: number of samples, 1000; MC steps, between 105 and
106; N = 100; and system size, L = 100a.

difference in particle concentration at both ends of the
system produces a constant current in the stationary state.
Numerically, we can obtain the density profile and also its
space derivative. From the equation for the current (14), we
have that the diffusion coefficient is D = −Ja/ ∂n

∂x
. In this way,

we can plot the diffusion coefficient against concentration for
different values of γ , as shown in Fig. 4. The numerical results
again coincide with the analytical results (16) (see Table I).

VI. BOSONS

Boson statistics can be obtained in a classical context using
a statistical potential. The behavior of quantum noninteracting
particles can be reproduced by classical particles with this
effective attractive interaction, which is given by

�(ni) = −β−1 ln ni! (37)

Its effect is to cancel the Gibbs factor in the partition function
(22), from which the Bose-Einstein distribution is obtained.

TABLE I. Mobility and diffusion coefficient as derived from
Eqs. (15) and (16), for fermions (minus sign) and bosons (plus sign).
The general expressions as functions of γ are shown in the first row
and the expressions for the values of γ used in the figures are in the
subsequent rows.

γ μ/D0β D/D0

γ (1 ± n)2γ−1 (1 ± n)2γ−2

γ = 0 1/(1 ± n) 1/(1 ± n)2

γ = 1/2 1 1/(1 ± n)
γ = 1 1 ± n 1
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0 0.2 0.4 0.6 0.8n
0

5

10

15
D

/ D
0

γ = 0

γ = ½

γ = 1

FIG. 4. Fermion’s diffusion coefficient D against concentration
n for different values of γ , obtained from a system with unequal fixed
conditions at the ends and zero force, in a nonequilibrium stationary
state (constant current J ; see the text for more details). The curves
correspond to Eq. (16). Dots correspond to Monte Carlo simulations
with γ = 0 (circles), γ = 1/2 (squares), and γ = 1 (diamonds). The
following are the other parameters: number of samples, 1000; MC
steps, between 108 and 109; N = 500; system size, L = 100a; n(0) =
0.8; and n(L) = 0.

It is not difficult to obtain the corresponding mean-field
potential from (26):

V (n) = −β−1 ln(1 + n). (38)

The equilibrium Bose-Einstein distribution is recovered when
this result is substituted in (19): neq = 1/(eβ(U−μc) − 1).
Figure 5 shows this equilibrium solution with a constant force
to the right. The figure also presents numerical results for
different values of γ , showing that in all cases the same solution
is attained.

The same procedure used in the previous section to extend
the mean-field potential of hard-core interaction to the multiple
occupancy case can also be applied for bosons. The motivation
in this case is to reduce fluctuations. Considering that mi =
Nni , the mean-field potential in terms of m in the continuous
limit is

V (m) = −β−1 ln(N + m). (39)

The expression reduces to (38) when N = 1. Substituting in
(9), the transition probability is

Wi,i+1 = P (N + mi)
γ−1(N + mi+1)γ e−β�U/2.

For example, for γ = 1/2 we have

Wi,i+1 = P

√
N + mi+1

N + mi

e−β�U/2 (γ = 1/2).

The interaction is attractive. The transition probability be-
comes larger when the origin site has few particles and when
the target site has many particles.

As in the case of hard-core interaction (or fermions), the
mean-field potential determines the equilibrium solution but
not the dynamics. The mobility and diffusion coefficient are

0 20 40 60 80 100
x/a

0

1

2

3

n

FIG. 5. Equilibrium concentration n for bosons with energy
U (x) = −Fx, βFa = 0.03, and total concentration 0.5. The curve
corresponds to the Bose-Einstein distribution and the dots to Monte
Carlo simulations with different values of γ : γ = 0 (circles), γ = 1/2
(squares), and γ = 1 (diamonds). In order to reduce simulation
fluctuations, we define the concentration ni at site i as ni = mi/N ,
where mi is the number of particles in this site. The following are
the other parameters: number of samples, 1000; MC steps for each
sample, 107; N = 10; fixed boundary conditions; and system size,
L = 100a.

not unequivocally determined by V ; they depend also on γ .
As in the previous section, we analyzed two nonequilibrium
steady-state situations from which the mobility and the
diffusion coefficient against concentration can be obtained.
Numerical results coincide with the corresponding equations
(15) and (16), as shown in Figs. 6 and 7. In all cases, for
fermions or bosons, in the limit of low concentration, both
the mobility and the diffusion coefficient coincide with the
corresponding noninteracting values βD0 and D0 respectively.

VII. GENERALIZATIONS

The generalization of the nonlinear Fokker-Planck equation
(18) to higher dimensions is straightforward:

∂n

∂t
= ∇ · (μ∇Un + D∇n). (40)

The expressions (15) and (16) for μ and D remain unchanged.
The relation (26) between V and � also keeps its validity for
higher dimensions. Let us note that these equations also hold
for a space-dependent parameter γ .

For the generalization to continuous systems we have to
take into account some considerations. The system is divided
into cells of size a, small enough to be considered pointlike
and, at the same time, large enough to contain many particles
(a standard approach in nonequilibrium statistical mechanics).
The cell size is much smaller than a typical concentration wave
number λ. Also, the interaction range r should be much smaller
than the cell size. So we have r � a � λ.

The condition a � λ allows us to take the continuous limit
and obtain the Fokker-Planck equation. The condition r � a

allows us to neglect the interaction between cells, since the
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0 0.4 0.8 1.2 1.6n
0

1

2

3
μ 

/ (
βD

0)

γ = 0

γ = 1

γ = ½

FIG. 6. Boson’s mobility μ against concentration n for different
values of γ , obtained from a system with homogeneous concentration,
constant force βFa = 0.05, and periodic boundary conditions. The
curves correspond to Eq. (15). Dots correspond to Monte Carlo
simulations with γ = 0 (circles), γ = 1/2 (squares), and γ = 1
(diamonds). The following are the other parameters: number of
samples, 5000; MC steps, between 105 and 6 × 106; N = 20; system
size, L = 100a.

interaction energy in the cell’s surface is much smaller than in
the bulk, and to keep the validity of the relation (26) between
V and �. The consequence is that the Fokker-Planck equation
is local. In this case, the parameter γ is associated with an
effective energy landscape, in the same sense that V (n) is an
effective potential.

0 1 2 3
n

0

0.5

1

1.5

D
/ D

0

γ = ½

γ = 1

γ = 0

FIG. 7. Boson’s diffusion coefficient D against concentration n

for different values of γ , obtained from a system with unequal fixed
conditions at the ends and zero force, in a nonequilibrium stationary
state. The curves correspond to Eq. (16). Dots correspond to Monte
Carlo simulations with γ = 0 (circles), γ = 1/2 (squares), and γ =
1 (diamonds). The following are the other parameters: number of
samples, 5000; MC steps, between 107 and 108; N = 100; system
size, L = 100a; n(0) = 3.5, and n(L) = 0.

VIII. EXPERIMENTAL TEST

Taking advantage of the generalization to a continuous
system mentioned in the previous section, we can propose
experiments of diffusion of a solute in, for example, water,
to validate part of the results. The concentration range of the
solute should be large enough in order to reach values for
which the interaction among particles becomes relevant.

The experimental setup for the measurement of the mobility
and diffusion coefficient may be based on the situations
described in Sec. V. The mobility can be obtained from
a system with constant force and equal fixed concentration
at both ends; it has a homogeneous concentration in the
nonequilibrium steady state. The diffusion coefficient can
be obtained from the steady-state current and concentration
gradient of a system without force, but with unequal fixed
concentrations at the ends.

Let us suppose that the mobility and diffusion coefficient
are measured as functions of the concentration, μ(n) and
D(n), and that for large enough values of n they depart from
their free-diffusion values (βD0 and D0, respectively). The
specific shape of these functions depends on the details of the
interactions among the substances chosen for the experiment.
Nevertheless, we can expect that, for example, for a repulsive
interaction, the diffusion coefficient would increase as n

increases, as qualitatively shown in Fig. 4. The concentration
per site n is related to the concentration per unit length by
c = n/a. If, for a repulsive interaction, cmax is the maximum
possible value of c, we have n = c/cmax.

From (17) we obtain an equation for V (n),

dV

dn
= 1

βn

(
βD(n)

μ(n)
− 1

)
, (41)

that can be solved with the condition V (0) = 0. With V (n) we
can obtain γ from (15)

γ = 1

2

(
1 − 1

βV (n)
ln

μ(n)

βD0

)
. (42)

In the examples of Secs. V and VI, we assumed constant values
of γ for simplicity. We can see in Eq. (42) that, in general, γ is
a function of n. Therefore, measurements of μ(n) and D(n) can
be used to experimentally check, for example, our conjecture
that γ remains bounded between 0 and 1.

IX. CONCLUSION

We derived a nonlinear Fokker-Planck equation for interact-
ing particles. The derivation is based on an energy landscape
of wells and barriers on a lattice. The mean-field potential
and the external potential determine the energy wells and
the equilibrium solution. The barrier’s heights depend on the
parameter γ ; it determines if the transition probability depends
on the mean-field potential of the origin site, the target site, or
on a mixture of both.

A relation between the mean-field potential and the mi-
croscopic interaction energy was deduced. The Jarzynski
equality can be used to interpret the mean-field potential as
the free-energy change when the work needed to increase the
number of particles by one is applied.
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The results are illustrated with the hard-core (or fermion)
and boson interactions. The corresponding mean-field po-
tentials can be combined with different values of γ . The
consequence is that, for the same potential and equilibrium
solution, the dependence of the mobility and diffusion coeffi-
cient on the concentration can have large variations determined
by the value of γ . In all cases, for small concentration, the
mobility and diffusion coefficient tend to the corresponding
noninteracting values.

We considered only different constant values of γ but,
in general, it could be a function of the position or of the
concentration. Measurements of the mobility and the diffusion
coefficient as functions of the concentration can be used to
obtain experimental values of γ .
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APPENDIX

We present here a more detailed derivation of Eqs. (14)–
(16). Using the expression for the transition probabilities (9)
in (13) we have

J = niP e−β[(γ−1)Vi+γVi+1+�U/2]

− ni+1Pe−β[(γ−1)Vi+1+γVi−�U/2].

In the continuous limit we approximate Vi+1 � V +
dV
dn

∂n
∂x

a, ni+1 � n + ∂n
∂x

a, and �U � ∂U
∂x

a. Substituting in the

expression for the current, we have

J = Pe−β(2γ−1)V

{
n exp

[
−βa

(
γ

dV

dn

∂n

∂x
+ 1

2

∂U

∂x

)]

−
(

n + ∂n

∂x
a

)
exp

[
−βa

(
(γ − 1)

dV

dn

∂n

∂x
− 1

2

∂U

∂x

)]}
.

The Ginzburg criterion was used to decorrelate products of
nonlinear terms. We expand the exponentials inside the curly
brackets and keep terms up to order a:

J =Pe−β(2γ−1)V

{
n

[
1 − βa

(
γ

dV

dn

∂n

∂x
+ 1

2

∂U

∂x

)]

−
(

n + ∂n

∂x
a

)[
1 − βa

(
(γ − 1)

dV

dn

∂n

∂x
− 1

2

∂U

∂x

)]}

= − Pae−β(2γ−1)V

{
nβ

∂U

∂x
+

(
βn

dV

dn
+ 1

)
∂n

∂x

}
.

We can identify the mobility as the factor that multiplies the
external potential gradient times n and the diffusion coefficient
as the one that multiplies the concentration gradient:

Ja = − βD0e
−β(2γ−1)V︸ ︷︷ ︸

μ

n
∂U

∂x

− D0e
−β(2γ−1)V

(
βn

dV

dn
+ 1

)
︸ ︷︷ ︸

D

∂n

∂x
,

where we have replaced Pa2 by D0. The factor a that appears
on the left-hand side is canceled when, instead of the particle
number per site, we consider the concentration per unit length
c = n/a.
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