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Recent works have explored the properties of Lévy flights with resetting in one-dimensional domains and
have reported the existence of phase transitions in the phase space of parameters which minimizes the mean first
passage time (MFPT) through the origin [L. Kusmierz et al., Phys. Rev. Lett. 113, 220602 (2014)]. Here, we
show how actually an interesting dynamics, including also phase transitions for the minimization of the MFPT,
can also be obtained without invoking the use of Lévy statistics but for the simpler case of random walks with
exponentially distributed flights of constant speed. We explore this dynamics both in the case of finite and infinite
domains, and for different implementations of the resetting mechanism to show that different ways to introduce
resetting consistently lead to a quite similar dynamics. The use of exponential flights has the strong advantage that
exact solutions can be obtained easily for the MFPT through the origin, so a complete analytical characterization
of the system dynamics can be provided. Furthermore, we discuss in detail how the phase transitions observed
in random walks with resetting are closely related to several ideas recurrently used in the field of random search
theory, in particular, to other mechanisms proposed to understand random search in space as mortal random
walks or multiscale random walks. As a whole, we corroborate that one of the essential ingredients behind MFPT

minimization lies in the combination of multiple movement scales (regardless of their specific origin).
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I. INTRODUCTION

Resetting can be defined as the interruption of a process
in such a way that it is brought back instantaneously from
its present state to another fixed state (presumably the initial
one) and allowed to evolve once again from there. In the
last years there has been a growing interest for studying
classical and well-known stochastic transport processes (e.g.,
Brownian motion, continuous-time random walks, etc.) when
subject to stochastic resetting [1-5]. This idea of allowing
the particles to start anew its process after some random time
has been claimed to have potential applicability to the study
of many different systems. For instance, animal foraging is
often constrained by the existence of a homing dynamics that
makes individuals return from time to time to its nest [6,7],
leading to the ecological concept of central place foraging.
Alternatively, the tendency to revisit well-known places in
animals can be more complex and be driven by sophisticated
memory mechanisms [8,9], a fact which is of particular interest
since similar ideas have been used to explain human mobility
patterns, too [10,11]. These behavioral mechanisms, driven
by higher cognitive processes, require an extension of the
concept of resetting whose properties have just begun being
understood [12,13]. In a different context, the transport of
information packets through both wired or wireless networks
is often subject to transmission losses (errors, overflow, ...),
which may require the transmission of new packets after some
time (a mechanism which also coincides with resetting under
proper assumptions) for increasing the probability of reaching
a target whose location is unknown [14]. Similar mechanisms
could apply too to beam propagation through optical fiber
with random inhomogeneities [3] and many other transport
processes on graphs and complex media.

Beyond this practical interest, processes with resetting are
attractive from a theoretical perspective as they can induce
dramatic changes in the system dynamics if compared to
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their resetting-absent counterparts. So, resetting facilitates the
emergence of nonequilibrium stationary states in different sce-
narios as in free diffusion [5,15], in motion subject to potential
landscapes [16], or in coagulation-diffusion processes [17].
Also, it can induce heavy-tailed decays in the probability
distribution of models of transport and/or growth [1,18]. On
more mathematical grounds, resetting processes have been
found to have interesting connections to some variants of the
multiarmed bandit problem [19,20], which may contribute to
extend their potential range of interest.

The focus of this work is in the use of stochastic resetting as
a possible mechanism for optimizing random spatial searches.
The relevance of this problem has been already recognized
and discussed in some of the aforementioned works (see,
e.g., [1,2,4]), but a more specific discussion, addressing the
connections of resetting to well-known concepts and results
from the literature on random search theory, is still lacking.
We aim thus at covering this existing gap.

First of all, let us note that search efficiency can be measured
in many different ways attending to time, energetic, or other
biological or physical constraints [21]. In agreement with
most statistical physics approaches to the field we identify
here efficiency with the time required to reach the target,
so we will focus on the mean first passage time (MFPT) of
the random walker through the target location as the main
magnitude of interest. Previous works have already determined
the existence of an optimal value of the resetting rate » which
minimizes the MFPT of Brownian walkers through the origin
in a semi-infinite media [1,2]. The extension of this idea
to the case of particles moving according to Lévy flights
has revealed the existence of a first-order transition in the
optimal values of the phase space (r,u) (with p the Lévy
index) for which the MFPT becomes a minimum [4]. So, for
small values of the initial position x¢, intermediate optimal
values (r*,u*) = (0.25,1.2893...) are found, independent of
the specific value of x¢. This regime extends up to a critical
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value (xg),, such that for xo > (xo),, the optimal combination
becomes (0.22145...,0).

Here, we will revisit this problem and will show how
actually first-order phase transitions (although of a slightly
different nature) do also appear also for simpler random
walks, in particular for walks with exponentially distributed
flights. For this purpose, we will present two different resetting
mechanisms (Sec. II) and will compute their MFPT for the
case of motion in the positive semiaxis with a target located at
the origin (Sec. III), and then for the case of a finite domain
with periodic boundary conditions (Sec. IV). Furthermore, we
will try to establish a connection between these results and
other models as mortal random walks and multiscale random
walks which have been used previously in the random search
literature. As a whole, we will show the existence of a common
force behind all these motion mechanisms driving MFPT
minimization. This force is strongly related to the compromise
between efficiently covering nearby regions (exploitation) and
the exploration of new areas, as happens in Lévy or multiscale
search strategies [22—-24]. From this perspective, resetting must
be viewed as a mechanism that promotes exploitation as it
allows the possibility to revisit regions which may have been
initially missed. To clarify the reach of this idea, we will also
explore (Sec. V) the case of delayed resetting, which allows
us to understand how the MFPT dynamics gets modified if
resetting is not an instantaneous process but takes a finite time
to occur (an idea which also provides an additional level of
realism for animal foraging and other search applications). We
will finish in Sec. VI by summarizing the main conclusions
from the paper.

II. FIRST PASSAGE PROPERTIES OF RANDOM WALKS
WITH RESETTING

We will consider for the moment random walkers moving
in a one-dimensional infinite domain (which under proper
assumptions provide a convenient representation of many
realistic search processes [24,25]), and will focus on the role
that stochastic resetting plays on the MFPT through the origin,
given the walker starts from an arbitrary initial position xg.
Note in advance that resetting is not expected to be a convenient
mechanism for searching unless the target is relatively close to
Xo; otherwise, resetting would just prevent the walker from
reaching new unexplored areas. So, the use of an infinite
domain with resetting can effectively serve to describe the
search for nearby targets in finite domains provided that the
domain size is much larger than the typical distance covered
before resetting.

In contrast with the cases studied in previous works, we
will rather consider here that walkers move according to an
isotropic velocity model. So, the flights will not be done
instantaneously after some waiting time but the transition
occurs progressively at a fixed velocity vy or —vg, each with
probability % We do so because we consider that a velocity
model is probably a more realistic choice for most search
applications; anyway, we stress that the extension of our results
to the case of instantaneous jumps separated by waiting times
would be straightforward.

We will compare the results for two different resetting
mechanisms for the sake of completeness. The first one
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consists of giving the walker the possibility to reset its position
to xo whenever a single flight is completed. Accordingly,
we will denote by X, X>, ... the successive positions of the
particle after the first, second, ... event (where each event can
be either a flight or a reset). Thus, the position of the particle
after the (i + 1)th event is chosen according to the rule

o= Xxo, with prob. r if the ith event was not a reset
171X, £ 0U;, otherwise. "

Here, the flight durations U;’s are independent and positive
random times determined by the probability distribution func-
tion (PDF) ¢(¢), and the symbol =+ denotes that the increment
in X; can be positive or negative with the same probability.
In the following, we will term this resetting mechanism as
being subordinated to flights since the statistics of the flights
determines in part the rate at which resetting will occur. Note
that this mechanism is slightly different to that proposed in [4]
since here two consecutive reset events are not allowed, but
they must be necessarily separated by at least one flight. This
has the advantage that the dynamics in the limit » — 1 will
be nontrivial since there the walker will successively carry
out one-flight excursions separated by reset events. Instead, if
consecutive resets were allowed as in [4], then for r — 1 the
particle would be kept permanently at xo (which looks some-
what unrealistic) and the MFPT would diverge in that limit.

Alternatively, we will compare this with a second mech-
anism (which has been already used in [3]) in which the
statistics of resetting is independent of jumps. In this case,
flight times are again distributed according to ¢(¢), but the
successive times at which a reset occurs are also i.i.d. variables
which follow its own PDF 6(¢) [independent from ¢(#)]. So,
in this case resetting is not necessarily driven by a single
probability » but could be allowed to follow a much more
complex dynamics. By introducing this second mechanism
(termed as resetting independent of motion) we will be able to
check if subordination to the motion process has any influence
on how resetting affects the values of the MFPT and the
dynamics of optimal search.

So, the evolution of our random walkers will be completely
determined for a particular choice of vy and ¢(¢) [also 6(¢),
in the case of motion-independent resetting]. To compute the
MFPT, we will determine first the rate g(t; xo,x;) at which
crossings through the origin occur at time ¢ for a free random
walk starting from xo. The parameter x; gives the position of
the walker immediately after it is reset (for the moment we
will set x; as independent of xo for convenience, while in the
end we are mainly interested in the case x;j = x¢). Then, we
can apply the renewal property [7,26,27]

t

q(t;x0,x5) = f(t;xo,XS)+/ dr’ f(t'; x0.x3)q(t — 1';0,x7),
0

2)

where f(t;x¢) is the corresponding first passage distribution
through the origin. So, trajectories contributing to g(z; xo,x)
are divided into those which cross the origin at ¢ for the first
time (first term on the right-hand side) and those which did
it for the first time at a previous time ¢’ (last term on the
right-hand side). The connection of the rate function to the
free propagator P(x,t;xo,x;) (i.e., the probability density of
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particles in the absence of targets and resetting) for the case of
velocity models with constant speed, is simply given by [28]

voP(0,1;x0,x5), ifxo #0

9t x0,%0) = {vOP(O,t;xo =0,x}) — 18(1), ifxg=0.

3)

Here, the additional term —%8([) has been introduced to
neglect crossings at ¢ = 0 by explicitly imposing the condition
q(0;0,x5) = 0. This choice is done because we consider that
for xo = 0 the MFPT value should include only returns to the
target for some t > 0; stopping the process at ¢t = 0 would
not fit, in our opinion, the intuitive meaning of what a search
process is.

The MFPT can be obtained now easily by using for
instance Laplace transform techniques [25,29]. So, if g(s) =
fooo e~*" g(r)dr represents the Laplace transform of an arbitrary
time-dependent function g(¢), then one obtains from (2) the
expression for the MFPT

(T) = — lim df(sixo.xg) . d q(s; X0,xg)
5—0 ds s=0ds |14 q(s;xo = 0,x5)
— lim d voP(x = 0,s; x0,x5) ’ @
s—0ds 1/2+UQP()C =0,s;x0=0,x6‘)
where the first identity follows from the relation

lim,_ o &0 — fim_, fooo dte™'tf(t; x0,x3). Also, note

that Eq. (4) implicitly contains the expression for the first pas-
sage distribution f (s; x0,x5) = q(s; x0,x3)/[1 + q(s;0,x7)] in
the Laplace space.

Note that renewal properties like that in (2) are strictly valid
only for Markovian processes (although they can often be used
as a reasonably good approximation for more sophisticated
cases, especially regarding MFPT computation [29]). So, in
the following we will focus for simplicity on situations which
either are Markovian or, equivalently, admit a Markovian
embedding.

A. Resetting subordinated to motion

The velocity model driven by the process (1) can be
conveniently described through a continuous-time random
walk (CTRW) scheme [3,25]. For this we introduce the
probability density j(x,t;x0,x;) for the particles starting a
flight from x at time ¢. This allows us to write the mesoscopic
balance equation

J(x,t3x0,X5)
t o0
= 5(8(x — x0) + (1 — r)/ dt’/ dx"W(x', 1)
0 —00
xj(x —x'st — t'5x0,x5) + ré(x — x3)
t [ee]
x/ dt’/ dx (") j(x,t — "5 x0,x7). 5)
0 —00

The second and third terms on the right-hand side of (5)
account for flights starting after another flight or after a reset,
respectively. This, together with the initial condition term
8(t)8(x — xp), prevents the particles from being reset until
having completed at least its first flight. In the expression (5)
we have introduced the joint probability W (x,#) of performing
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a jump of length x with constant speed vy during time 7. Using
that flights are done at speed vy or —vp, each with the same
probability, these PDFs can be easily related to the PDF of
flight times through

W(x,t) = %[S(x — vot) + 8(x + vot)]op(t)

_ La(; _ ﬂ)%. ©)
Vo

21)0

The free propagator for this scheme can be defined as the
probability density of particles that are located at point x at
time ¢, i.e.,

P(x,t;x0,X})
t o0
= / dt’/ dx'¢(x' 1) j(x —x';t — t'5x0,x5), (7)
0 —00
where we have defined
o0
d(x,1) = %[5(16 — vpt) + 8(x + vot)]/ dr'e(t). (8)
t

This last function gives us the probability that a single flight
has not finished yet after having traveled during a time ¢ and
having covered (either to left or right) a distance vyt. To find
an explicit expression for the free propagator we introduce the
Fourier-Laplace transform of an arbitrary function g(x,?) as

g(k,s)=/ dte_‘”/ dx e ® g(x,1). 9)
0 _

o]

In the Fourier-Laplace space, the expressions (5)—(8) become
simplified by virtue of the space and time convolution
theorems. For example, transforming by Fourier-Laplace
equation (5) we obtain

Jk,s3x0,x8) = e ™0 4 (1 — r)W(k,5) (k,s; x0,X5)
+re ™6 j(k = 0,85 x0,x)@(s),  (10)

where the hat and tilde symbols mean Fourier-Laplace and
Laplace transforms, respectively, and k and s are the corre-
sponding Fourier and Laplace arguments. Setting k = 0 into
Eq. (10) we can solve for j(k = 0,s; xo,x;), which yields
1

1= g(s)’

and then introduce tAhis again into (10) to find a
closed expression for j(k,s;xp,x;). Finally, by transform-
ing Eq. (7) by Fourier-Laplace we obtain f’(k,s;xo,x()“) =
d(k,s)j(k,s;x0,x5). This, combined with Eq. (10), yields a
closed expression for P(k,s; xo,x;) as

(1)

Jlke = 0,55x0,x)) =

P(k,s; x0,x)

e (1¢£k;;3ﬁ(k,s) [ o %e[kxé}’ (12
where \i/(k,s) and cj;(k,s) are given by
U(k,s) = 1[@(s — ikvo) + @(s + ikvo)] (13)
and
b(k.s) = 3[@"(s — ikvo) + ¢*(s + ikvp)].  (14)
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While the system (12)-(14) can be formally written for
a wide range of flight distributions ¢(¢), inverting it from
Fourier space to real space [which is necessary to apply (3)]
is extremely cumbersome except for some particular choices.
So, we will focus now for simplicity in the case where the
dynamics of flights is Markovian. This corresponds to the
case when the flight time distribution is exponential, i.e.,
@(t) = e . Replacing this expression into Eq. (12), we find
after some algebra

(s + A)e ko 4 rk(l + %)e‘ik"g

Pk,s: xo,x%) =
(k.53 %0.%p) (s + M) + rA) + v2k?

)
and after inverting the Fourier transform

- 1 s+ A 50
P(x,s;x0,x3) = W /—S - Me‘v“J’“(“’”\)"‘_)“)V”0
0

N I S c=wy ey PRIV
e . (16)
25v9V s +rA

Inserting this expression into (3) and (4) we will finally obtain
the expression for the first passage time distribution and the
MFPT. For simplicity, we just show the result for the case of
interest x; = xo, which reads as

" s+ri
f(s 2 x0.x5) = an
A+ s(l + %)ev(ﬁk)(ﬁrkﬂml/vo
and
1 1+r
(= E(exﬁm/w Bl 1)' 1%

This result will be discussed in greater detail in Sec. III.
For the moment, let us note that by comparing this with the
results in [4] for the case of Lévy flights, we observe that
the scaling lim, .o (7") ~ r12 s kept. However, the universal
result for xo — O reported there [see Eq. (8) in Ref. [4]],
ie., limy,_o(T) = (Jr — r)~!, is not recovered. This is a
consequence of the rule (1) we have imposed; by forcing the
walker to make at least one flight before being reset, we have
introduced some sort of memory in the system (in the sense
that not all events are equivalent). As stated by the authors
in [4], their result is a consequence of the Sparre-Andersen
theorem, according to which there is a universal asymptotic
decay ~t*? for the PDF of return times to the origin in
isotropic and memoryless random walks in one dimension.
In consequence, the necessary conditions for this theorem to
hold are not met in our case. Actually, the differences between
the dynamics in the two cases are clear by noting that the
expression (/7 — r)~! leads to the divergence of the MFPT as
r — 1, as we have mentioned above. Instead, it is easy to see
from (18) that the MFPT for our case does not diverge in that
limit.

B. Resetting independent of motion

If the resetting mechanism follows its own time dynamics
[according to the time PDF 0(z), as described above], then it is
not convenient to use a continuous-time random walk scheme
as done in the previous section to derive the free propagator of
the walk. Instead, we will use the analogy between random

PHYSICAL REVIEW E 92, 062115 (2015)

walks with resetting and mortal random walks. Following
the nomenclature of several recent works [28,30,31], mortal
random walks are defined as walks subject to a mortality
function such that after a random time, governed by a given
PDF, the particle will disappear (that is, it will “die”). So, if
we define in our random walks with resetting an excursion
as the action that goes from ¢ = 0 to the first reset event
or, alternatively, from the ith to the (i 4+ 1)th reset event,
then every one of these excursions can be interpreted as an
independent mortal random walk. Consequently, the random
walk with resetting consists of the time convolution of
successive mortal random walks governed by the “mortality”
function 0(¢).

We will focus again for simplicity in the Markovian case,
so we choose for the resetting mechanism 0(¢) = w,,e” "'
with w,, being the frequency of resets (or, alternatively, the
“mortality” rate). So, note that we introduce a change in
notation if we compare to the case of resetting subordinated
to motion since the role of the resetting probability r is now
played by the rate w,,. In addition, we consider ¢(¢) = Ae ™,
as done in the previous section. For this specific choice, the
free propagator of a mortal random walk in the Laplace space
for an isotropic velocity model has been derived before [28]
and reads as

P,(x,s;x0) = L S+ wpy + )»e, /(S+a),,1)(S“rwm“r)\.)‘Xfxo‘/vo’
2vp s + wp
(19)
where the subindex m stands for mortal.
Using the ideas discussed above, and denoting the time
convolution operator as *, we can write the free propagator for

the random walk with resetting as

P(x,t;x0,%3) = Pu(x,15x0) + Pp(x,15x5) * @(t)
+ Po(x,15x5) * @) x (1) + ... (20)

or, transforming to the Laplace space,

Pr(x,55x5)0(s)
1 —(s)

The first term on the left-hand side of (20) accounts for the case
where no resetting has occurred yet since ¢t = 0, the second
term stands for the case where only one resetting to the position
xg has occurred up to now, and so on.

Now, following the same procedure as above, we can insert
Egs. (19) and (21) into (4) to provide an expression for the first
passage distribution

P(x,55x0,X3) = Ppu(x,8;x0) + (21)

" S + Wy
f(s5x0,x5) =
Wm + s(] + %)e¢(s+w,,l)(s+wm+A)IXU|/vo
(22)
and for its corresponding MFPT
1 I+ w,c:ik
(T) = — —1]. (23)

wy | e=vVen(@nthlxol/vo

One remarkable point is that one can recover from this result
in the diffusive limit (A — oo, v9 — 0o with vj/A — D) the
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expression

(T) = —— (Pl 1), (24)
wl‘ﬂ

which was derived for a Brownian walker with resetting in [1].
Likewise, it is easy to check from (23) that lim,,, .o (7)) = oo
and lim,,, .o (T") = 00, which guarantees the existence of an
optimum resetting rate, except for the case xo = 0, where the
MFPT decays monotonically with w,, and so the minimum
MFPT is obtained for w,, — oo. This qualitatively coincides
with the result found for the case of resetting subordinated
to jumps, which shows that in the limit xo — O the optimal
strategy is always resetting as much or as fast as possible. A
more complete discussion on this point is provided in the next
section.

Again, in the limit w, — 0 we obtain a scaling (T') ~
a),;” 2, which really seems to represent a universal behavior
independent of the mechanism used for resetting. This univer-
sal feature is actually reminiscent of the scaling ~¢~'/? for the
revisit times to a given position of random walkers which have
jump PDFs with finite moments. The first passage statistics is
expected to be asymptotically governed by the probability to
be brought back (through a reset) to the initial position after
very long excursions. Specifically, MFPT should be inversely
proportional to that probability, which leads to (T) ~ (¢)!/2,
with (f) the mean time for resetting. Consequently, the scaling

(T) ~ w,}l/ ? follows straightforward.

III. OPTIMAL SEARCH TIMES IN INFINITE DOMAINS

Next, we will use the results (18) and (23) just derived to
analyze the existence of an optimal point in the phase space
(r,A) [or (w,,A)] such that it minimizes (T) as a function
of x¢. Since we have deliberately chosen a very simple
scenario in which both processes (resetting and motion) are
characterized by one single scale (together with the spatial
scale of the problem x), one should expect that the optimal
strategy is relatively trivial, in comparison with more complex
multiscale or scale-free situations as in Lévy flights, which
surprisingly lead to a first-order transition in the phase space
for the optimum (T) [4]. As we will show in the following
section, however, the dynamics becomes especially interesting
when finite domains are considered (so a new spatial scale is
introduced) with the emergence of phase transitions similar to
those reported in the Lévy case.

We start by analyzing the result (18). By differentiating
with respect to A one finds that a minimum is found for

_ % _ -t
A""‘_J7|xo|{HWL(H\/?)“’ *)

where W(. . .) denotes the Lambert W function. One can check
that Aoy is always positive for any value in the interval
0 < r < 1. Replacing its expression into (18), the global
minimum is always found for r = 1, which corresponds to
Aopt = XVo/|Xol, where we define x = [1 4+ W(-0.5/e)] ~
0.768. So, the global strategy in this case corresponds trivially
to using resetting as much as possible while adapting the flight
durations to the spatial scale x.

Next, we go for the case of resetting independent of motion.
Since one can easily check from (23) that the derivative of the
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MFPT with respect to A is always positive, this immediately
leads to the conclusion that the global optimum must be at A =
0. Differentiation with respect to w,, then allows one to find
that the optimum satisfies (W )ope = X Vo/[X0| & 0.768vo/|x0].
It is found then that the optimal strategy coincides with that
in the case of resetting subordinated to jumps, and it consists
of single-flight excursions interrupted by resetting at the rate
XVo/|xo|. These results are actually very intuitive: resetting
will be in general a more convenient mechanism for going
back to the initial position than turning the direction of motion
(at least while resetting is considered to be an instantaneous
process), and consequently optimizing the MFPT should rely
just on appropriately adjusting resetting to each particular
situation.

We stress that additional mechanisms for resetting have
been tested in which the same optimal behavior has been
obtained, again with the same optimal resetting rate x vo/|xo|-
So, we can conclude from the above that this is a universal
feature for all random walk models with constant velocity vg
provided that resetting is Markovian.

IV. OPTIMAL SEARCH TIMES IN FINITE DOMAINS

We consider now that the random walkers move in
the interval (0,L) with periodic boundary conditions. Note
that the procedure to obtain the MFPT described in (3)
and (4) is still completely valid, provided that now the free
propagator P(x,t;xo,x;) is replaced there by the propagator
Ppr(x,t; x0,x5) for a finite domain of size L. Transforming from
one to another is relatively simple just by explicitly imposing
periodic summation techniques (see, e.g., [28,32,33])

o0

Pu(x.t;x0.x3) = Y P(x+mL.tixox;),  (26)

m=—00

which is valid in the region of interest x € (0,L).

Introducing in (26) the expressions for the free propagators
we have already derived in previous sections, one can obtain
again the corresponding MFPT. Since these calculations do not
provide any additional insight into the problem we will just
reproduce here the final expressions obtained. For the cases
of subordinated and independent resetting with x§ = xo the
MFPT reads as, respectively,

_ 1[1+r+0- «/;)e_AﬁL/UU 1 27)
o E e~ MWrxo/vo 4 g=AV/r(L—x0)/vo (
and
| (1 + cu,(,l,)ix\)(l _efmuvo)
(T) = — -

Wy | e~ VOn(@ntxo/vo 4 o= On(@n+A)L—x0)/vo ’

(28)

from which (18) and (23) can be recovered, respectively, in
the limit L — oo.

The main focus of interest now is in understanding how
the global optima found in the previous section for infinite
domains changes as the domain size gets reduced. For this,
note that in the case where the spatial scales x( and L are of the
same order, then both resetting and changes of direction will
be detrimental since coming back to xq is only a good strategy
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FIG. 1. MFPT for resetting subordinated to motion as a function
of the resetting probability r and the average flight length A for
different values of the spatial scale: xo/L = 0.005 (a), 0.025 (b),
0.1 (c), 0.25 (d). The legends on the right of each panel provide
information about the order of magnitude of typical values of the
MFPT. Arbitrary values vp = 1 and L = 200 have been used in all
the cases.

provided there is a target close enough to there, and this will
only be the case for xo < L (or, equivalently, |L — xo| < L).
Hence, aslong as L decreases and that condition is not fulfilled,
we should find that the optimal point in the phase space (r,1),
or (wy,,A), will move towards (0,0).

Interestingly, what we obtain from both (27) and (28)
is that the transition from one regime to the other is not
smooth but follows a first-order phase transition. Figure 1
provides plots of (T') as a function of r and A for resetting
subordinated to motion. There, it can be seen how the point
(0,0) represents a global minimum for xo/L large [Fig. 1(d)],
but when this parameter is small an intermediate minimum
appears and eventually it becomes the global minimum [see
Figs. 1(a) and 1(b)]. This picture can be completed with the
information provided in Figs. 2 and 3 (which correspond to
the case subordinated to motion and independent of motion,
respectively). There, we have computed the optimal value (of
A or w,,, respectively) as a function of the order parameter
xo/L, and we have marked with a vertical dotted line the point
at which the phase transition occurs. The scaling Aqpe ~ X, !
and (@ )op; ~ Xg ! can be also observed there.

The critical point can be easily approximated as follows.
First, one should see that the MFPT at the point (0,0) reads
as (T') = L/2vy, as can be computed from (27) or (28); this
coincides with the MFPT one would expect for a ballistic
particle moving in the periodic domain (0, L). Then, we should
determine when the intermediate minimum observed in Fig. 1
takes a value equal to L/2vy. For doing this, we note that the
coordinates of that point can be well approximated
by the optimum point we have found in the previous section
(for the case of infinite domains); the justification for this is
that we still expect the condition xy < L to be valid close to the
critical point. Then, we will use the points (r,1) = (1, x vo/xo)
for the subordinated case, and (w,,,A) = (X vo/x0,0) for the

PHYSICAL REVIEW E 92, 062115 (2015)

103
0.1 T T T T T T T T T
102 | 008 1]
4% 0.06 f
0.04 F ,
101 F 0.02 [ N N R 1
2 0.05 0.1 0.15
< IQ/L
100 | g
107 g
1072 I I I ﬁ
1075 1074 1073 1072 1071

Io/L

FIG. 2. Optimal value of the rate A for the case of resetting
subordinated to motion. The vertical dotted line represents the
critical value for which the global optima becomes (r,A) = (0,0). The
behavior close to the critical value is shown in the inset. Arbitrary
values vop = 1 and L = 200 have been used in all the cases.

independent case. If we replace this into (18) and (23), we
obtain

X0 X
—_ =—>"  x~0.1159 29
(L )Cr 2(2ex — 1) 29

as the critical point at which the transition occurs for both
mechanisms. This result coincides well with that reported
directly from Eqgs. (27) and (28) in Figs. 2 and 3 (see insets
there). Again, we stress that this result will be valid for any
Markovian resetting mechanism provided that random walks
are isotropic and the walkers move at a constant speed.

103
0.1 T T T T T T T T T
102 L 5008 L ]
= 0.06 :
3 004 F ]
1 C ]
2 10 F 0.02 [ N N R !
= 0.05 0.1 0.15
§ Io/L
~ 100 i
1071 L 4
1072 I I I ﬁ
105 10~4 1073 102 101

ID/L

FIG. 3. Optimal value of the rate A for the case of resetting
independent of motion. The vertical dotted line represents the critical
value for which the global optima becomes (w,,,A) = (0,0). The
behavior close to the critical value is shown in the inset. Arbitrary
values vy = 1 and L = 200 have been used in all the cases.
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V. OPTIMAL TIMES WITH DELAYED RESETTING

We find then that our walkers with constant speed must
adopt a very extreme strategy in order to optimize its search
times, as they must always interrupt excursions with a reset
just after the first flight is completed. One may think that
this is simply because resetting is considered here to be an
instantaneous process, so it is costless in terms of time. So,
we could introduce a delay such that when a reset is carried
out the particle must wait an average time 7 before starting a
new excursion. This would punish resets so a different (maybe
richer) dynamics could be expected.

For the case of resetting subordinated to motion and
independent to motion, we can replace the last term in Eq. (5)
by

t o0
ré(x — x(’)‘)/ dt'/ dx o(t")jx,t — 1" — t3x0,x5), (30)
0 —00

so we explicitly introduce the delay 7 in the resetting term.
With this change now the free propagator in the infinite domain
[Eq. (16)] reads as

s+ A o VTR R —x0l/vo
s+ra

n rA
2[se™s +ri(e™s —1)]

o1
P(x,s;x0,xy) = 2

| SEA vEEET s (31
s+ ria

Using again Eq. (26) and repeating the same procedure as
above for obtaining the MFPT, the result reached for x§j = xg
is

(T) = (1 + Art){Tp), (32)

where (Tj) is the MFPT in the absence of the delay [given
by the expression (27)]. Actually, it is possible to extend this
result (not shown here) to check that (32) is also valid when
the time delay is a random variable that follows any PDF with
average T.

Likewise, the case of resetting independent of motion leads
similarly to

(T) = (1 + A1)(Tp). (33)

Since the delay only introduces a multiplicative factor in
the computation of the MFPT, the effect of this on the
optimal strategy is actually minor. One can check (Fig. 4,
triangles) that the optimal point in the phase space (r,A) for
resetting subordinated to motion decreases when the delay ©
increases, and eventually for a critical value of 7 the phase
transition disappears and the trivial point (0,0) remains as the
unique global optima. For the resetting independent of motion
(Fig. 4, circles), the delay does not introduce any change in
the dynamics of the optimal MFPT since the parameter w,,
does not appear in the prefactor in (33). This reflects that
the equivalence between both reset mechanisms studied here
breaks down when additional (non-Markovian) effects as a
delay effect are introduced.
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FIG. 4. Critical value of xo/L as a function of the delay t
introduced after the reset. Results are shown both for the case of
resetting subordinated to motion (triangles) and resetting independent
of motion (circles) to observe the different dynamics that the delay
induces in each case. Arbitrary values vy = 1 and L = 200 have been
used in all the cases.

VI. DISCUSSION: LINKS BETWEEN RESETTING
AND MULTISCALE WALKS

First passage time distributions of simple random walks
in infinite media typically decay very slowly following a
power-law function or similar, the most famous case being that
predicted by the Sparre-Andersen theorem. Instead, resetting
destroys this scaling by introducing memory effects in the
process and leads eventually to an exponential decay of the
first passage PDF, as typically found in finite media (albeit
one must be aware that both situations are of a different
nature; while the latter reaches an equilibrium state, the former
asymptotically approaches a nonequilibrium stationary state).
As a consequence of this, we have showed here that an optimal
resetting rate (in terms of minimizing the MFPT through
the origin) does appear. From that point of view, our work
extends the case of diffusive movement with resetting which
was already explored in Refs. [1,2] to the case of walkers
moving at constant speed vy and carrying out exponentially
distributed flights. It is so illustrative to recall the optimum
resetting rate found in [1], which in our notation corresponds
to 2.538v3/Ax. Here, we have checked that the case of
exponential flights leads in all cases to an optimal rate
0.768vq/|xo|. The different scaling found in the two cases
comes from the fact that our random walkers follow a velocity
model, so characteristic times for the motion process over
a distance x are typically x/vy (in comparison to Brownian
motion where typical times read as x?/D = Ax?/v}).

The case of finite domains we have also explored (now
with x( defined as positive) shows that when we introduce
the additional spatial scale L, then xo/L plays the role of an
order parameter such that a first-order phase transition for the
optimal resetting rate is found. So, for xo/L small we still can
approximate the optimum rate by 0.768vy/xy, while above
the critical point xo/L =~ 0.1159 the optimum resetting rate is
trivially zero. Itis interesting to note that an analogous behavior
has been found for the case of two-scale random walks (without
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resetting) in finite media [24]. If the walker is allowed to
move according to two characteristic movement scales (say
A1 and A,), there it was found a critical value xo/L = 0.105
above which the global optima correspond to A; = A, = 0.
Instead, for the region under the critical value, the best strategy
corresponds to A} = 0 and X, ~ 0.5vy/xp. So, we observe that
the role played by this second movement scale A, is similar
to the effect of resetting (although both mechanisms have
fundamental differences since resetting clearly introduces a
bias in motion towards the initial point while the two-scale
walk is completely isotropic). These results reinforce the idea
discussed in previous works on search theory [23,24,34] that
optimizing search efficiency of random walks (in terms of
minimizing their MFPT) necessarily implies an appropriate
combination of different (at least two) motion scales, which
in the limit case leads to the use of free-scale, i.e., Lévy,

PHYSICAL REVIEW E 92, 062115 (2015)

strategies. Smaller scales will then be used to efficiently exploit
closer regions to detect closer targets, while larger scales will
be used to explore further regions. While a more generalized
and fundamental study of the link between multiscale motion
and MFPT optimization is still elusive, this work provides
significant evidence in this line.
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