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Combs are a simple caricature of various types of natural branched structures, which belong to the category of
loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and
present a generic method to obtain their transport properties. The random walk along the branches may be biased,
and we account for the effect of the branches by renormalizing the waiting time probability distribution function
for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find
normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on
the characteristics of the continuous time random walk along the branches, and compare our analytical results
with stochastic simulations.
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I. INTRODUCTION

Random walks often provide the underlying mesoscopic
mechanism for transport phenomena in physics, chemistry,
and biology [1–3]. A wide class of random walks gives rise
to normal diffusion, where the mean-square displacement
(MSD), 〈(�r)2(t)〉, grows linearly with time t for large
times. In many important applications, however, the MSD
behaves like 〈(�r)2(t)〉 ∝ tγ , with γ �= 1, and the diffusion
is anomalous [1,2]. Anomalous diffusion can be modeled
by various classes of random walks [4]. We focus on the
important class of continuous time random walks (CTRWs)
[1,2]. A specific feature of a CTRW is that a walker waits
for a random time τ between any two successive jumps.
These waiting times are random independent variables with
a probability distribution function (PDF) φ(τ ), and the tail
of the PDF determines if the transport is diffusive (γ = 1)
or subdiffusive (γ < 1). Heavy-tailed waiting time PDFs give
rise to subdiffusion. Realistic models of the waiting time PDF
have been formulated for transport in disordered materials with
fractal and ramified architecture, such as porous discrete media
[5] and comb and dendritic polymers [6–8], and for transport
in crowded environments [9].

A simple caricature of various types of natural branched
structures that belong to the category of loopless graphs is a
comb model (see Fig. 1). The comb model was introduced to
understand anomalous transport in percolation clusters [10–
12]. Now, comblike models are widely employed to describe
various experimental applications. These models have proven
useful to describe the transport along spiny dendrites [13,14],
percolation clusters with dangling bonds [11], diffusion of
drugs in the circulatory system [15], energy transfer in comb
polymers [6,7] and dendritic polymers [8], diffusion in porous
materials [16–18], the influence of vegetation architecture on
the diffusion of insects on plant surfaces [19], and many other
interdisciplinary applications.

Simple random walks on comb structures provide a geomet-
rical explanation of anomalous diffusion as happens also with
walks on fractal structures. The excursion of the walker into the
branches can be viewed as creating an effective waiting time

for the walk along the backbone [20], conferring a subdiffusive
character on the transport; see, e.g., [11,21,22]. Several authors
have determined various properties of walks on combs, such
as the mean distance from the origin covered by a walker,
the random walk dimension of the structure, the maximum
deviation and span after a number of steps [22], and the spectral
dimension and the mean first passage time for random walks
on random and nontranslationally invariant combs [23] and
for biased random walks [20]. Other studies have combined
the complexity of combs with other statistical properties of the
random walk. For example, a numerical study of the encounter
problem of two walkers in branched structures shows that
the topological heterogeneity of the structure can play an
important role [24]. The hitting time between two arbitrary
points of the comb and the mean first passage time in general
d-dimensional combs has been determined in [25]. Further
examples are the occupation time statistics for random walkers
on combs where the branches can be regarded as independent
complex structures, namely fractal or other ramified branches
[26], and the effects of a magnetic field on a charged particle
performing a random walk on a comb [27]. Finally, we want to
mention studies to understand the diffusion mechanism along a
variety of branched systems where scaling arguments, verified
by numerical simulations, have been able to predict how the
MSD grows with time [28].

Diffusion on comb structures has also been studied by
macroscopic approaches, based on Fokker-Planck equations
[12], which have been applied to describe diffusive properties
in discrete systems, such as porous discrete media [5],
infiltration of diffusing particles from one material into another
[29], and superdiffusion due to the presence of inhomogeneous
convection flow [30,31]. Other macroscopic descriptions,
based on renormalizing the waiting time PDF for jumps along
the backbone to take into account the transport along the
branches [32], have been found useful to model continuous-
time-reaction-transport processes [33] and human migrations
along river networks [34].

Kahng and Redner provided a mesoscopic, probabilistic
description of random walks on combs by using the successive
decimation of the discrete-time master equation to obtain a
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FIG. 1. Comb structure consisting of a backbone and branches.
Each point represents a node where the walker may jump or wait a
random time.

mesoscopic balance equation for the probability of the walker
to be at a given node at a given time [35]. A mesoscopic
approach is necessary for an accurate description of the
transport properties, such as the diffusion coefficient or the
mean visiting time in a branch, in terms of the parameters that
characterize the random walk process.

Previous studies of random walks on combs have mostly
considered Markovian walks, typically simple random walks
where the particle makes one step on the structure at each
discrete unit time interval. We consider the general case of
non-Markovian random walks and adopt the formalism of
CTRWs. We assume that the walker waits a random time
distributed according to a general PDF φ0(τ ) at each node
of the graph. The random waiting time may, for example,
be due to binding-unbinding events at the nodes [9]. In
addition, the walk along the branches may be biased. In
the case of simple random walks, the excursions into the
branches create a waiting time PDF for the motion along the
backbone. This PDF depends on the interplay of the topology
of the structure and the bias. In our case of non-Markovian
random walks, the excursions into the branches modify the
local waiting time PDF φ0(τ ), a mesoscopic characteristic
of the comb, and generate an effective waiting time PDF
φ(τ ) for the motion along the backbone of the comb. In
other words, the non-Markovian CTRW on the comb can be
reduced to a non-Markovian CTRW on a one-dimensional
lattice, corresponding to the backbone only. We employ the
decimation method of Kahng and Redner [35] to determine
the effective waiting time PDF φ(τ ); see also chapter 6.3 in
[36]. The time spent by the walker between its entry into a
branch and its return to the backbone for the first time is
treated as a contribution to the effective waiting time at the
node where the branch crosses the backbone. Our main results
are exact analytic expressions for the effective waiting time
PDF φ(τ ) of the backbone motion and for key observables,
such as the mean waiting time of the backbone dynamics, the
diffusion coefficient, and the mean-square displacement, in
terms of the mesoscopic characteristics of the walk, namely
the local waiting PDF φ0(τ ), the bias probability q along the
branches, and the number of branch nodes N . We find that
non-Markovian CTRWs on a comb can display three different

transport regimes: normal diffusion, anomalous diffusion, and
stochastic localization.

The paper is organized as follows. In Sec. II, we formulate
the mesoscopic description of the random walk on the comb
and reduce the walker’s motion to an effective motion along
the backbone only with a renormalized waiting time PDF for
the backbone nodes. Section III deals with the MSD of the
effective backbone motion. The effective diffusion coefficient
is derived, and the conditions for normal diffusion, anomalous
diffusion, and stochastic localization (diffusion failure) [37] in
terms of the number of branch nodes and the degree of bias of
the motion along the branches are established. We summarize
our results in Sec. IV.

II. MESOSCOPIC DESCRIPTION

The simplest comb model, shown in Fig. 1, is formed by a
principal axis, called the backbone, which is a one-dimensional
lattice with spacing a and identical branches that cross the
backbone perpendicularly at each node.

The walker moves through the comb by performing jumps
between nearest-neighbor nodes along the backbone or along
the branches. We assume that the walker performs isotropic
jumps along the backbone, but the jumps along the branches
may be biased, for example by an external field [10]. When
the walker arrives at a node, it waits a random time τ before
performing a new jump to a nearest-neighbor node. We assume
that the comb is homogeneous and the local waiting time PDF
at any given node is given by φ0(τ ).

When the walker enters a branch, it spends some time
moving inside the branch before returning to the backbone.
This sojourn time can be used to determine an effective waiting
time PDF φ(τ ) for the walker’s motion along the backbone.
In other words, the motion of the walker on the comb can
be reduced to the effective motion along a one-dimensional
lattice, corresponding to the backbone only. This motion is
non-Markovian and can be described mesoscopically by the
generalized master equation (GME) for the PDF Pbb(x,t) of
finding the walker at node x on the backbone at time t :

∂Pbb(x,t)

∂t
=

∫ t

0
K(t − t ′)dt ′

[∫ ∞

−∞
Pbb(x − x ′,t ′)�(x ′)dx ′

− Pbb(x,t ′)
]
. (2.1)

Here, K(t) is the memory kernel related to the effective waiting
time PDF via its Laplace transform, K(s) = sφ(s)/[1 − φ(s)],
where s is the Laplace variable. The dispersal kernel �(x)
represents the probability of the walker performing a jump of
length x. If the walker moves isotropically between nearest
neighbors in a one-dimensional lattice of spacing a, the
dispersal kernel reads �(x) = δ(x − a)/2 + δ(x + a)/2. We
assume that the walker is initially located at x = 0, i.e.,
Pbb(x,0) = δx,0, with x = ia and i = 0, ± 1, ± 2, . . . , where
δx,0 is the Kronecker delta. Then the Laplace transform of the
GME for x �= 0 reads

Pbb(x,s) = φ(s)

2
[Pbb(x − a,s) + Pbb(x + a,s)]. (2.2)
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FIG. 2. Schematic representation of the possible jumps of a
walker with the corresponding probabilities.

To derive the effective waiting time PDF φ(t) for the
backbone dynamics and relate it to the local waiting time PDF
φ0(t) and the other mesoscopic characteristics of the comb, viz.
q and N , we formulate the mesoscopic balance equation for the
CTRW on the comb. Let P (x,y,t) be the PDF that the walker
on the comb is located at the node with backbone coordinate
x and branch coordinate y at time t , and let P (x,y,s) be its
Laplace transform. Taking into account the contributions of the
walker arriving from the upper and lower branch (see Fig. 2),
we obtain the mesoscopic balance equation for the walker
being at node (x,y) = (ia,0), i.e., being at a backbone node,

P (x,s) = φ0(s)

4
[P (x − a,s) + P (x + a,s)]

+ (1 − q)φ0(s)[P (y = a,s) + P (y = −a,s)].

(2.3)

To achieve a concise notation, we are using P (x,s), P (x −
a,s), and P (x + a,s) as shorthand for P (x,y = 0,s), P (x −
a,y = 0,s), and P (x + a,y = 0,s), and P (y = a,s) and
P (y = −a,s) stand for P (x,y = a,s) and P (x,y = −a,s),
respectively.

The term φ0(s)[P (x − a,s) + P (x + a,s)]/4 corresponds
to the contribution of the walker arriving at node x = ia from
the left or from the right with probability 1/4 after waiting a
random time τ with PDF φ0(τ ) at nodes x + a or x − a.

As shown in Fig. 2, the walker located at the ith node of
the backbone may jump to the right, left, up, or down with

probability 1/4. We assume that the walker moves forward
(away from the backbone) along the branches with probability
q and back to the backbone with probability 1 − q. The term

(1 − q)φ0(s)[P (y = a,s) + P (y = −a,s)] (2.4)

in (2.3) corresponds the contribution of the walker arriving at
the backbone node x from the first node of the upper or lower
branch after waiting there a random time τ with PDF φ0(τ ).

If we can express P (y = a,s) and P (y = −a,s) in (2.3) in
terms of P (x,s), then (2.3) can be cast in the form of (2.2).
In other words, any contribution from branch nodes will have
been eliminated and we will obtain a closed balance equation
for P (x,s) = P (x,y = 0,s) purely in terms of the probabilities
of the walker being at adjacent backbone nodes. We can then
identify P (x,s) with Pbb(x,s) and replace the CTRW on the
comb by an effective CTRW on a one-dimensional lattice,
corresponding to the backbone. This effective walk accounts
for the excursions of the walker on the comb into the side
branches in terms of an effective waiting time PDF φ(τ ) at
backbone nodes.

We proceed as follows. Consider the motion along the upper
branches. The lower branch dynamics is the same due to the
symmetry of the comb. The mesoscopic balance equation for
the first node of the upper branches reads

P (y = a,s) = φ0(s)

4
P (x,s) + φ0(s)(1 − q)P (y = 2a,s).

(2.5)

The first term φ0(s)P (x,s)/4 corresponds to the contribution
of the walker arriving from the backbone, while φ0(s)(1 −
q)P (y = 2a,s) is the contribution of the walker jumping from
the upper node y = 2a to y = a with probability 1 − q after
waiting a random time τ with PDF φ0(τ ). Analogously, we
have, for the lower branches,

P (y = −a,s) = φ0(s)

4
P (x,s) + φ0(s)(1 − q)P (y = −2a,s).

(2.6)

We now need to relate P (y = ±2a,s) to P (y = ±a,s) to close
(2.5) and (2.6). After some calculations (see the Appendix for
details), we find

P (y = ±2a,s) = G(q,φ0(s))P (y = ±a,s), (2.7)

where

G(q,φ0(s)) = 2qφ0(s)

1 + 1 + H (q,φ0(s))

1 − H (q,φ0(s))

√
1 − 4q(1 − q)φ2

0(s)
,

(2.8)

H (q,φ0(s)) =
(

λ−
λ+

)N−5
λ− − h(φ0(s))

λ+ − h(φ0(s))
, (2.9)

and

h(φ0(s)) = qφ0(s)
[
1 − qφ2

0(s)
]

1 + q(q − 2)φ2
0(s)

. (2.10)

Substituting (2.7) into (2.5) and (2.6) and using the resulting
expressions in (2.3), we obtain an equation of the form (2.2)
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with

φ(s) = φ0(s)

2 − (1 − q)φ2
0(s)

1 − (1 − q)φ0(s)G(q,φ0(s))

, (2.11)

whose Laplace inversion yields φ(τ ). The waiting time PDF
φ(τ ) incorporates the dynamics along the branches and can
be understood as the effective waiting time PDF for a walker
moving along the backbone only. This is our first main result.
We have derived an exact analytical expression for the effective
waiting time PDF φ(τ ) of the backbone dynamics in terms
of the mesoscopic characteristics of the random walk on
the comb, namely the local waiting time PDF φ0(τ ), the
bias probability q, and the number of branch nodes N . This
result allows us to obtain exact analytical expressions for key
observables of the transport on the comb, as we show in the
next section.

III. STATISTICAL PROPERTIES

A. N finite

If the local waiting time PDF φ0(τ ) has finite moments, its
Laplace transform reads [2] φ0(s) � 1 − st̄ in the large time
limit s → 0, where t̄ is the local mean waiting time at each
node. Taking the limit s → 0 in (2.11), we obtain the effective
waiting time PDF for the backbone dynamics,

φ(s) � (1 + s〈t〉)−1. (3.1)

The effective mean waiting time 〈t〉 for backbone nodes is
given by

〈t〉 = t̄

2q − 1
[2(1 − q)1−NqN + 4q − 3]. (3.2)

0
5

10
15
20
25
30
35
40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N = 2

N = 3

0

10

20

30

40

50

2 4 6 8 10 12 14

q > 1 2

q = 1 2

q < 1 2

t
t̄

q

t
t̄

N

FIG. 3. (Color online) Dimensionless mean waiting time of the
effective backbone dynamics.

In Fig. 3, we plot this effective mean waiting time versus N

and q. The mean waiting time 〈t〉 is a monotonically increasing
function of both q and N . If the random walk inside the
branches is isotropic, q = 1/2, we obtain by l’Hôpital’s rule
from (3.2),

lim
q→1/2

〈t〉 = (1 + 2N )t̄ . (3.3)

To determine the diffusion coefficient D for diffusion
through the comb, we first calculate the MSD. Performing
the Fourier-Laplace transform on (2.1), we obtain

P (k,s) = 1 − φ(s)

s[1 − �(k)φ(s)]
. (3.4)

The MSD in Laplace space reads (see, e.g., [2])

〈x2(s)〉 = − lim
k→0

d2P (k,s)

dk2
. (3.5)

As mentioned in Sec. II, we assume that the motion on the
backbone is unbiased and that the walker only jumps to nearest
neighbors. This implies that the kernel �(x) is given by �(x) =
δ(x − a)/2 + δ(x + a)/2, and we obtain, from (3.5),

〈x2(s)〉 = a2

s[φ(s)−1 − 1]
. (3.6)

If the local waiting time PDF φ0(t) possesses a finite first
moment, then so does the effective waiting time PDF φ(t) [see
(3.1)], and the MSD along the backbone corresponds to normal
diffusion, 〈x2(t)〉 = 2Dt . The diffusion coefficient is given by

D = a2

2〈t〉 = a2

2t̄

2q − 1

2(1 − q)1−NqN + 4q − 3
. (3.7)

Note that in the limit of an isotropic random walk (q = 1/2),
D behaves like N−1 for large N by virtue of (3.3) and (3.7),
in agreement with the scaling results found in [38]. In Fig. 4,
we compare the result provided by (3.7) with numerical sim-
ulations. As Fig. 3 demonstrates, 〈t〉 increases monotonically
with N for q < 1/2 and saturates at (4q − 3)/(2q − 1) for
N → ∞. Consequently, the mean waiting time 〈t〉 is finite for
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FIG. 4. (Color online) Plot of the diffusion coefficient for trans-
port through the comb for N = 2, N = 3, and N = 6 vs q with
a = 1. Solid curves correspond to exact analytical results given by
(3.7). Results from numerical simulations are depicted with symbols.
Inset: MSD/2D for N = 5 and three different values of q: q = 0.4
(squares), q = 0.5 (circles), and q = 0.6 (triangles).
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N → ∞; the overall diffusion along the backbone is normal.
However, for q � 1/2, the mean waiting time 〈t〉 increases
without bound as N increases, and anomalous transport is
expected for N → ∞. In Fig. 4 (inset), we plot the MSD
scaled by the diffusion coefficient. It illustrates the result given
by (3.7) for the MSD. The transport is diffusive for finite
N , regardless of the value of q and the specific form of the
local waiting time PDF φ0(τ ), as long as the latter has finite
moments.

We consider now the case of a local waiting time PDF with
the large time limit φ0(τ ) ∼ τ−1−γ , with Laplace transform
φ0(s) � 1 − (sτ0)γ and 0 < γ < 1, which does not possess
finite moments. Here τ0 is a parameter with units of time. In
this case, the effective waiting time PDF for the backbone
dynamics is obtained by simply replacing st̄ with (sτ0)γ ,
and (3.1) reads φ(s) � [1 + (sτ0)γ 〈t〉/τ0]−1. Substituting this
result into (3.6), we find

〈x2(t)〉 = a2τ0

〈t〉
(t/τ0)γ


(1 + γ )
, (3.8)

for large t , where 〈t〉 is given by (3.2), with τ0 instead of t̄ . If
the local waiting time PDF φ0(τ ) at each node of the comb has
a power-law tail, then the overall transport along the backbone
is anomalous. Note that the anomaly exponent of the effective
backbone transport is the same as the anomaly exponent of the
CTRW on the comb.

B. N → ∞
If the number of nodes of the branches goes to infinity, the

mean time spent by the walker visiting a branch increases
monotonically; see (3.2). If the diffusion coefficient tends
asymptotically to a constant, which is the case for q < 1/2,
the diffusive scaling will saturate at D = a2(2q − 1)/[2t̄(4q −
3)], according to (3.7). For q � 1/2, the limit N → ∞ leads
to D → 0 and we expect a different scaling. For N → ∞, the
quotient (λ−/λ+)N → 0 and also H → 0. We obtain, from
(2.8),

G(q,φ0(s)) = 2qφ0(s)

1 +
√

1 − 4q(1 − q)φ2
0(s)

≡ 2qφ0(s)

1 + g(q)
,

(3.9)

where we define g(q) ≡
√

1 − 4q(1 − q)φ2
0(s) for convenience.

Equation (2.11) for the Laplace transform of the effective
waiting time PDF reduces to

φ(s) = φ0(s)
[
1 + g(q) − 2q(1 − q)φ2

0(s)
]

2 − (1 + 3q − 4q2)φ2
0(s) + [

2 − (1 − q)φ2
0(s)

]
g(q)

.

(3.10)

We take the limit s → 0 and consider first the case where
the local waiting time PDF φ0(τ ) has finite moments. Then
φ0(s) � 1 − st̄ , as s → 0, and the effective waiting time PDF
of the backbone dynamics is given by

φ(s) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + 4q−3

2q−1 st̄
)−1

, q < 1/2

(1 + √
2st̄)−1, q = 1/2[ 3q−1

q
+ 4q2−3q+1

(2q−1)q st̄
]−1

, q > 1/2.

(3.11)

FIG. 5. (Color online) MSD for three values of q, displaying the
three different transport regimes. Solid curves correspond to the
results given by (3.12) for q = 0.4, q = 0.5, and q = 0.6. Symbols
correspond to the results of numerical simulations with N = 104 and
a = 1.

Substituting (3.11) into (3.6), we find, for large t ,

〈x2(t)〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2 2q−1
4q−3

t
t̄
, q < 1/2

a2
√

2t
π t̄

, q = 1/2

a2 q

2q−1 (1 − e−αt ), q > 1/2,

(3.12)

where the rate of saturation is

α = (2q − 1)2

(4q2 − 3q + 1)t̄
. (3.13)

In Fig. 5, we compare these results with numerical simu-
lations for N = 104. For q = 1/2, we obtain the well-known
result of subdiffusive transport with the MSD ∼ √

t . However,
for q �= 1/2, the side branches experience advection and the
transport is remarkably different. Namely, for q > 1/2, the
advection is away from the backbone along the branches, y →
±∞. The walker is effectively trapped inside the branches and
stochastic localization (diffusion failure) occurs, 〈x2(∞)〉 <

∞ [37]. For q < 1/2, the advection is towards the backbone.
It enhances the backbone dynamics and normal diffusion takes
place.

Of course the limit N → ∞ cannot be attained in a strict
sense for real systems. However, transport on a comb structure
will display the behavior discussed above for sufficiently large
N . Note that the numerical results in Fig. 5 were obtained
for N = 104. On the other hand, we expect that (3.12) holds
experimentally only up to a large finite time, namely as long as
the walker does not experience the finite size of the branches.
This is illustrated in Fig. 6, where we have used an intermediate
value N = 100. We show only the case q = 1/2 for easier
visualization. We clearly observe that the result (3.12) holds
for an intermediate time regime. For large times, when the
walkers have had time to reach the extremes of the branches
and return to the backbone, the diffusive scaling, with D given
by (3.7), is recovered. This is in agreement with the scaling
results for the dynamical crossover obtained in [38].
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FIG. 6. (Color online) MSD behavior for q = 1/2 for large N .
Here, N = 100 is used. The numerical results (circles) fit the result
(3.12) for intermediate times, as if the branches were infinite. For
large times, the linear scaling corresponding to finite N is recovered.

We consider now the case where the local waiting time PDF
is φ0(τ ) ∼ τ−1−γ , i.e., φ0(s) � 1 − (sτ0)γ with 0 < γ < 1, as
s → 0. The MSD in this case can be obtained straightforwardly
by replacing st̄ with (sτ0)γ in (3.11). For large times, it reads

〈x2(t)〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2


(1+γ )
2q−1
4q−3

(
t
τ0

)γ
, q < 1/2

a2√
2
(1+γ /2)

(
t
τ0

)γ /2
, q = 1/2

a2q(2q−1)
(4q2−3q+1)μ(t/τ0), q > 1/2,

(3.14)

where

μ(t/τ0) = (t/τ0)γ Eγ,γ+1

[
−

(
t

τ0

)γ (2q − 1)2

4q2 − 3q + 1

]
(3.15)

is expressed in terms of the generalized Mittag-Leffler function
Eα,β (z). We use the following property of integration of the
Mittag-Leffler function [39]:∫ t

0
Eα,β (bzα)zβ−1dz = tβEα,β+1(btα). (3.16)

FIG. 7. (Color online) MSD for three values of q, displaying
the different transport regimes, for γ = 0.7. Lines correspond to
the asymptotic results given by (3.14) for q = 0.4, q = 0.5, and
q = 0.6. Symbols correspond to results from numerical simulations
with N = 104, a = 1, and tmin = 1.

FIG. 8. (Color online) MSD for three values of q, displaying
the different transport regimes, for γ = 0.4. Lines correspond to
the asymptotic results given by (3.14) for q = 0.4, q = 0.5, and
q = 0.6. Symbols correspond to results from numerical simulations
with N = 104, a = 1, and tmin = 1.

Subdiffusion in the branches results in backbone subdiffusion
for q � 1/2. For advection towards the backbone, q < 1/2,
the anomaly exponent of the effective backbone transport is
the same as the anomaly exponent of the CTRW on the comb.
For the case of no bias, q = 1/2, the anomaly exponent of the
effective backbone transport is half that of the CTRW on the
comb. For advection away from the backbone, q > 1/2, we
again find stochastic localization. For t/τ0 
 1, Eα,β (−atα) ∼
t−α/
(β − α) [40], and, consequently, μ(t/τ0) approaches a
finite value as t → ∞.

The validity of (3.14) is confirmed by the numerical results
shown in Figs. 7 and 8, which are the analog of Fig. 5,
for γ = 0.7 and γ = 0.4, respectively. The numerical results
were obtained by explicitly introducing waiting times between
jumps in the random walk process along the comb structure.
These random times were generated according to the PDF
φ0(t) = γ t−1

min(t/tmin)−1−γ defined for the interval t > tmin.
Note that this choice leads straightforwardly to the desired
asymptotic behavior φ0(s) � 1 − (sτ0)γ in Laplace space, with
τ

γ

0 = γπ csc [(1 + γ )π ]/
(1 + γ ).

IV. CONCLUSION

We have derived an effective mesoscopic equation, given by
(2.2) and (2.11), for a random walk on a regular comb structure.
The random walk along the branches consists of possibly
biased jumps to the nearest-neighbor nodes, while the walker
waits at each node for a random time τ distributed according
to the local waiting time PDF φ0(τ ) before proceeding with the
next jump. The overall dynamics along the branches has been
reduced to an effective waiting time PDF φ(τ ), given by (2.11),
for motion solely along the backbone. We have obtained exact
analytical expressions for the statistical properties, such as the
effective mean waiting time 〈t〉 for the backbone nodes, the
diffusion coefficient D, and the MSD of the overall structure
in terms of the bias probability q for the cases where the
number of nodes N of the branches is finite or infinite. We
have established that a comb can display normal diffusion,
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subdiffusion, and stochastic localization, which is dependent
on the characteristic parameters of the CTRW.

If N is finite and the local waiting time PDF φ0(τ ) has finite
moments, exact expressions for both 〈t〉 and D are derived
analytically in terms of the bias probability q, the number of
nodes N on the branch, and the mean waiting time probability
at each node. The transport always corresponds to normal
diffusion in this case. If the local waiting time PDF φ0(τ ) ∼
τ−1−γ for large time, it does not posses finite moments and the
MSD of the random walker along the backbone behaves like tγ .
The transport on the comb corresponds to anomalous diffusion.

If N is infinite, the value of q is the crucial factor. If
the local waiting time PDF φ0(τ ) has finite moments, then
the transport corresponds to normal diffusion for q < 1/2.
If q = 1/2, the MSD behaves like t1/2, and the transport is
subdiffusive. If q > 1/2, the MSD approaches a constant finite
value for large time, corresponding to stochastic localization
(diffusion failure). If the local waiting time PDF φ0(τ ) does not
have finite moments, φ0(τ ) ∼ τ−1−γ for large time, then the
MSD behaves like tγ for q < 1/2 and like tγ /2 for q = 1/2;
the transport is subdiffusive. Stochastic localization occurs
again for q > 1/2. In all cases, the theoretical predictions
have been verified by numerical simulations. In summary, if
the bias probability of moving away from the backbone is
q > 1/2, then stochastic localization occurs, regardless of the
other characteristic parameters related to the random walk on
the branches.
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APPENDIX: DERIVATION OF EQ. (2.7)

Generalizing (2.5) to any node of the branches located
between 2a � y � (N − 2)a, we obtain the balance equation
for the upper branches,

P (y,s) = φ0(s)[qP (y − a,s) + (1 − q)P (y + a,s)], (A1)

where P (y,t) is shorthand for P (x,y,t), the PDF of finding
the walker at time t at node y on the branch originating at x

from the backbone, and P (y,s) is its Laplace transform.
To determine the Laplace transform φ(s) of the effective

backbone node waiting time PDF, we need to determine P (y =
a,s) and P (y = −a,s) in (2.3) in terms of P (x,s), so that (2.3)
can be cast in the form of (2.2). Given (2.5) and (2.6), this
goal can be achieved if P (y = 2a,s) and P (y = −2a,s) can
be related to P (y = a,s) and P (y = −a,s). We proceed as

follows. The solution of (A1) reads

P (y,s) = A1λ
y/a
+ + A2λ

y/a
− , (A2)

where

λ± =
1 ±

√
1 − 4q(1 − q)φ2

0(s)

2(1 − q)φ0(s)
. (A3)

To find expressions for the quantities A1 and A2, whose
dependence on x and s is not displayed, we apply (A2) to
the node y = 2a:

P (y = 2a,s) = A1λ
2
+ + A2λ

2
−. (A4)

On the other hand, setting y = 2a in (A1), we find

P (y = 2a,s) − φ0(s)qP (y = a,s)

= φ0(s)(1 − q)P (y = 3a,s). (A5)

Setting y = 3a in (A2), we obtain

P (y = 2a,s) − qφ0(s)P (y = a,s)

= φ0(s)(1 − q)[A1λ
3
+ + A2λ

3
−]. (A6)

Solving the system of Eqs. (A4) and (A6) for the quantities A1

and A2, we obtain

A1 = P (y = 2a,s) − qφ0(s)P (y = a,s)

λ2+(λ+ − λ−)φ0(s)(1 − q)
− λ−P (y = 2a,s)

λ2+(λ+ − λ−)
,

(A7)

A2 = −P (y = 2a,s) + qφ0(s)P (y = a,s)

λ2−(λ+ − λ−)φ0(s)(1 − q)

+ λ+P (y = 2a,s)

λ2−(λ+ − λ−)
. (A8)

A special situation occurs at the end of the branches, where
we have to impose reflecting boundary conditions, i.e.,

P (y = Na,s) = qφ0(s)P [y = (N − 1)a,s]. (A9)

The node at y = (N − 1)a also needs a special balance
equation (see Fig. 2),

P [y = (N − 1)a,s] = qφ0(s)P [y = (N − 2)a,s]

+φ0(s)P (y = Na,s). (A10)

Substituting y = (N − 2)a into (A1) and taking into ac-
count (A9), we can write

P [y = (N − 2)a,s] = h(φ0(s))P [y = (N − 3)a,s], (A11)

where

h(φ0(s)) = qφ0(s)
[
1 − qφ2

0(s)
]

1 + q(q − 2)φ2
0(s)

. (A12)

Substituting the solutions from (A2), (A7), and (A8) into
(A11), we find

P (y = 2a,s) = G(q,φ0(s))P (y = a,s), (A13)
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where

G(q,φ0(s)) = 2qφ0(s)

1 + 1 + H (q,φ0(s))

1 − H (q,φ0(s))

√
1 − 4q(1 − q)φ2

0(s)
,

(A14)

H (q,φ0(s)) =
(

λ−
λ+

)N−5
λ− − h(φ0(s))

λ+ − h(φ0(s))
. (A15)

For the lower branch, we obtain, in a similar manner,

P (y = −2a,s) = G(q,φ0(s))P (y = −a,s). (A16)

We have achieved our goal of expressing P (y =
2a,s) and P (y = −2a,s) in terms of P (y = a,s) and
P (y = −a,s).
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