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We study off-equilibrium behaviors at first-order transitions (FOTs) driven by a time dependence of the
temperature across the transition point Tc, such as the linear behavior T (t)/Tc = 1 ± t/ts where ts is a time
scale. In particular, we investigate the possibility of nontrivial off-equilibrium scaling behaviors in the regime
of slow changes, corresponding to large ts . We consider the two-dimensional Potts models, which provide an
ideal theoretical laboratory to investigate issues related to FOTs driven by thermal fluctuations. We put forward
general ansatzes for off-equilibrium scaling behaviors around the time t = 0 corresponding to Tc. Then we present
numerical results for the q = 10 and 20 Potts models. We show that off-equilibrium scaling behaviors emerge at
FOTs with relaxational dynamics, when appropriate boundary conditions are considered, such as mixed boundary
conditions favoring different phases at the opposite sides of the system, which enforce an interface in the system.
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I. INTRODUCTION

Slow time variations of system parameters across contin-
uous transitions inevitably lead to off-equilibrium behaviors,
giving rise to the so-called Kibble-Zurek (KZ) mechanism
[1,2]. A typical example is provided by a linear change
of the temperature across its transition value Tc, such as
T (t)/Tc = 1 − t/ts starting from t = ti < 0 to t = tf > 0,
where ts controls the speed of the temperature variation. The
emergence of off-equilibrium phenomena is essentially related
to the fact that continuous transitions develop correlations
with diverging length scale, which cannot adapt themselves
to the variations of the temperature, even in the regime of
slow variations. However, in the limit of large ts , the system
develops an off-equilibrium scaling behavior involving ts ,
which is controlled by the same critical exponents of the
system at equilibrium [2–4]. This issue has been also extended
to quantum transitions, obtaining analogous behaviors when
quasiadiabatic changes of an external parameter go through
continuous quantum transitions [5–7]. Several experiments
have investigated these off-equilibrium phenomena, in par-
ticular checking the predictions for the abundance of residual
defects arising from the off-equilibrium conditions across Tc,
as predicted by the KZ mechanism; see, e.g., Refs. [8–30].

In this paper we investigate whether off-equilibrium scaling
phenomena arise in systems undergoing first-order transitions
(FOTs), characterized by a discontinuity of the energy density
in the thermodynamic limit. Unlike continuous transitions,
the length scale of the correlations in the thermodynamic
limit (within each phase) remains finite when approaching Tc.
Nevertheless, we show that off-equilibrium scaling behaviors
may also arise at FOTs when slowly varying the temperature
across Tc, in systems with appropriate boundary conditions
favoring the presence of an interface.

Two-dimensional (2D) q-state Potts models provide an
ideal theoretical laboratory to investigate issues related to
FOTs driven by the temperature (when q > 4). We consider the
off-equilibrium behavior arising from a relaxational dynamics
with a time-dependent temperature T crossing Tc, such as
T (t)/Tc ≈ 1 ± t/ts . We show that, when slowly crossing the
FOT, i.e., for large time scales ts , the off-equilibrium behavior

turns out to be dependent on the geometry and boundary
conditions. This is essentially related to the dependence of the
equilibrium relaxational dynamics at FOTs on the boundary
conditions. For symmetric boundary conditions, such as peri-
odic boundary conditions (PBCs), systems of size L are char-
acterized by an exponentially slow dynamics due to an expo-
nentially large tunneling time τ ∼ eσL between the coexisting
phases. On the other hand, power-law behaviors characterize
the slow dynamics when mixed boundary conditions (MBCs)
are considered, i.e., when the boundary conditions at two oppo-
site sides of the system are related to the different high-T and
low-T phases, effectively generating an interface. We argue
that the MBC settings lead to a power-law off-equilibrium
scaling behavior involving the time scale ts of the slow
temperature variation across the FOT point. This is confirmed
by a numerical analysis of Monte Carlo (MC) simulations.

We mention that off-equilibrium behaviors arising from
sudden quenches below and at the FOT point have been
discussed in several works; see, e.g., Refs. [31–37].

The paper is organized as follows. In Sec. II we present
the 2D Potts model in which we develop and check the off-
equilibrium scaling theory at FOTs. There we also define the
protocol we consider for the time variation of the temperature
across Tc, which leads to the off-equilibrium behavior. In
Sec. III we develop an off-equilibrium scaling theory at FOTs,
stressing the crucial dependence on the geometry and boundary
conditions of the system undergoing the FOT. We essentially
report results for the 2D Potts model, but the main features can
be straightforwardly generalized to other systems. In Sec. IV
we report a numerical analysis which provides support to
the off-equilibrium scaling behavior put forward in Sec. III.
Finally, we draw our conclusions in Sec. V. The appendices
contain some details of our numerical study.

II. THE MODEL AND THE OFF-EQUILIBRIUM
PROTOCOL

A. The 2D Potts model

2D q-state Potts models provide a useful theoretical
laboratory where to study issues related to FOTs driven by
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thermal fluctuations. They are defined by the partition function

Z =
∑

{sx}
e−H/T , H = −

∑

〈xy〉
δ(sx,sy), (1)

where the sum in the Hamiltonian is meant over the nearest-
neighbor sites of a square lattice, and sx are integer variables
1 � sx � q, δ(a,b) = 1 if a = b and zero otherwise. The Potts
model undergoes a phase transition [38,39] at

βc = T −1
c = ln(1 + √

q), (2)

which is continuous for q � 4 and first order for q > 4. For
q = 2 the Potts model becomes equivalent to the Ising model.
FOTs for q > 4 become stronger and stronger with increasing
q; indeed, the latent heat grows with increasing q.

We consider 2D Potts models with two different geome-
tries: square L × L lattices and anisotropic L⊥ × L‖ slablike
lattices with L‖ 	 L⊥. We also consider different boundary
conditions: periodic boundary conditions (PBCs) and mixed
boundary conditions (MBCs) where opposite boundary sides
are related to the different high-T and low-T phases.

More precisely, in the MBC case we consider anisotropic
L⊥ × L‖ lattices with L⊥ = 2L + 1, so that −L � x1 � L

and 1 � x2 � L‖. We take open boundary conditions along
the x1 = L line, which corresponds to having T = ∞ bonds
between the line sL,x2 and a further fictitious line sL+1,x2 .
At the opposite side, in order to have boundary conditions
corresponding to the ordered T = 0 phase, we add a fictitious
x1 = −L − 1 line where we fix s−L−1,x2 = 1, and add the
corresponding bond terms to the Hamiltonian. The boundary
conditions are chosen periodic along the x2 direction of size
L‖. Note that MBC breaks explicitly the q-state permutation
symmetry of the Potts model.

In our study we consider observables related to the
magnetization and energy density, i.e.,

m = 1

V

∑

x

qδ(sx,1) − 1

q − 1
, (3)

e = 1

V

∑

x

δ
(
sx1,x2 ,sx1,x2+1

)
, (4)

where V is the number of sites of the lattice. Their equilibrium
values at the FOT point are known for any q > 4 [39]. In partic-
ular, approaching the transition point after the thermodynamic
L → ∞ limit, we have

e−
c ≡ e(T −

c ) = 0.910342 . . . , e+
c = e(T +

c ) = 0.313265 . . . ,

mc ≡ m(T −
c ) = 0.9411759 . . . , for q = 20, (5)

and

e−
c = 0.832126 . . . , e+

c = 0.428553 . . . ,
(6)

mc = 0.857106 . . . , for q = 10.

We also define the related renormalized quantities

mr (t) ≡ m(t)

mc

, er (t) ≡ e(t) − e+
c

e−
c − e+

c

, (7)

so that, at equilibrium and in the thermodynamic limit, mr =
er = 0 for T → T +

c and mr = er = 1 for T → T −
c .

The correlation length related to the exponential decay
of the two-point function in the limit T → T +

c (after the

thermodynamic limit) is exactly known [40,41]. It decreases
with increasing q, e.g., ξ+ = 2.6955 . . . for q = 20 and ξ+ =
10.5595 . . . for q = 10. Numerical results [42,43] support the
hypothesis that the correlation length ξ− for T → T −

c equals
ξ+.

B. Off-equilibrium protocol across the transition

The protocol that we consider for the off-equilibrium
simulations across Tc is similar to that leading to the KZ
mechanism [2,4] at continuous transitions. We vary the
temperature across the transition point and study the resulting
off-equilibrium behavior in the limit of slow time variations.
More precisely, we vary the inverse temperature β = 1/T so
that

δ(t) ≡ β(t)/βc − 1 = ±t/ts, (8)

where t ∈ [ti < 0,tf > 0] is a time variable varying from a
negative to a positive final value. The value t = 0 corresponds
to δ(t) = 0, i.e., T (t) = Tc. The parameter ts provides the time
scale of the temperature variation. We start our simulations
from equilibrium configurations at β = βc[1 + δ(ti)]. Then we
make the system evolve under a purely relaxational dynamics
(also known as model A in the context of critical dynamics
[44]), which can be realized by standard Metropolis or heat
bath updatings in MC simulations; see Appendix A. The
± sign in Eq. (8) corresponds to crossing Tc starting from
the high-T phase (sign +) or from the low-T phase (sign
−). The unit time for t corresponds to a complete sweep
of the whole lattice by heat bath or Metropolis upgradings.
The temperature is changed according to Eq. (8) every sweep,
incrementing t by one. We stop the off-equilibrium relaxational
dynamics when t = tf . We repeat this procedure several times
averaging the observables at fixed time t , thus the average is
performed on the equilibrium Gibbs ensemble of the initial
inverse temperature β = βc[1 + δ(ti)].

III. OFF-EQUILIBRIUM SCALING THEORY AT
FIRST-ORDER TRANSITIONS

Analogously to the case of off-equilibrium slow dynamics
at continuous transitions [2,4], we construct an off-equilibrium
scaling theory in terms of the effective length-scale exponent
ν describing the finite-size scaling (FSS) at equilibrium, and
the dynamic exponent z associated with the equilibrium relax-
ational dynamics corresponding to the heat-bath or Metropolis
updating algorithm. In the following we mainly focus on the
FOTs of 2D Potts models, but most scaling arguments can be
straightforwardly extended to other FOTs.

A. Equilibrium exponents

Before discussing the off-equilibrium behavior when vary-
ing the temperature across the FOT, we consider the equilib-
rium behavior of finite systems at FOTs and determine the
equilibrium exponents describing the asymptotic behaviors
in the large-size limit. These exponents will then enter the
scaling ansatzes for the off-equilibrium behavior induced by
slow changes of the temperature, as discussed in Sec. III B.

062107-2



OFF-EQUILIBRIUM SCALING BEHAVIORS ACROSS . . . PHYSICAL REVIEW E 92, 062107 (2015)

1. The length-scale exponent ν

In the case of FOTs the effective length-scale exponent
ν controlling the FSS at Tc generally depends on the ge-
ometry of the lattice [45–48], i.e., whether it is square L2

or slablike L⊥ × L‖ with L‖ 	 L⊥, and on the boundary
conditions [47–49].

In the case of square L2 systems, the FSS around Tc

is generally described by the effective length-scale expo-
nent ν = 1/d = 1/2 [45,50–54]. This length-scale exponent
may be associated with a discontinuity fixed point in the
renormalization-group framework [50]. It represents the lim-
iting case of continuous transitions, leading to the energy
discontinuity at Tc in the thermodynamic limit [51].

In the case of slablike geometries, the length-scale exponent
controlling the FSS at Tc with respect to the finite size L⊥ may
significantly change [45,47,48]. This is essentially due to the
anisotropic behavior of the longitudinal length scale ξ‖, which
may show a nontrivial power-law (or exponential) dependence
on L⊥, such as ξ‖ ∼ Lε

⊥. This may give rise to a change of the
effective dimensions of the FSS in a slab at the FOT. Indeed,
assuming that the free-energy density scales as the inverse of
the relevant critical volume Vc ∼ L⊥ × ξ‖ ∼ L1+ε

⊥ , we obtain
the effective dimension deff = 1 + ε. Thus, in this anisotropic
setting, the effective length-scale exponent controlling the FSS
with respect to L⊥ turns out to be

ν = 1

deff
= 1

1 + ε
. (9)

This value allows for the discontinuity of the energy density
at Tc after taking the L⊥ → ∞ limit. Equation (9) can be also
obtained from the FSS of the corresponding one-dimensional
quantum model at the first-order quantum transition [47,48],
exploiting the quantum-to-classical mapping [55] which re-
lates the gap 	 (energy difference of the lowest levels) of the
quantum model to the inverse longitudinal correlation length
ξ‖ of the 2D classical model in a slab geometry.

In a slab geometry with symmetric boundary conditions,
such as PBC, the relevant configurations involve domain walls
which divide the system into successive regions of high-T
and low-T phases, whose length scale ξ‖ is expected to
diverge exponentially with the transverse size L⊥. This length
scale is related to the interfacial tension σ , i.e., ξ‖ ∼ eσL⊥ .
An analogous scenario applies to 2D Ising models in a slab
geometry, at their FOTs driven by the magnetic field in their
low-T phase [45]. As a consequence, Eq. (9) leads to the
extreme value ν → 0.

The situation changes in the case of MBC, for which ξ‖
increases as a power law of L⊥. In particular, in the case of the
FOTs of 2D Potts models we have ξ‖ ∼ L⊥, i.e., ε = 1. This
can be inferred from the behavior of the gap, 	 ∼ 1/L, of the
one-dimensional quantum Potts model at the transition point,
of size L with the corresponding MBC [48].

Note that ε = 1 is not a general feature of MBC. For
example, at the low-T coexistence line of 2D Ising models,
where FOTs are driven by an external magnetic field coupled
to the order parameter, we have ξ‖ ∼ L2

⊥ (thus ε = 2) in
the case of MBC favoring the two different magnetized
phases (i.e., fixed and opposite boundary conditions for the
order-parameter field) [47].

In conclusion, 2D Potts models in square geometries
and slab geometries with MBC share the same length-scale
exponent

ν = 1/2. (10)

2. The equilibrium dynamic exponent z of the purely
relaxational dynamics

The equilibrium dynamic exponent z of the relaxational
dynamics is related to the equilibrium large-L behavior of the
autocorrelation time τ of observables at Tc, i.e., τ ∼ Lz. Again
we expect that it depends on the boundary conditions at FOTs.

In the case of symmetric boundary conditions, such as PBC,
the autocorrelation time at Tc is expected to exponentially
increase with increasing lattice size, corresponding to z → ∞.
This is related to the exponential increase of the tunneling
time between the coexisting phases at FOTs; indeed [56],
τ ∼ eσL (neglecting powers of L in the prefactor) where σ

is the interfacial free energy per unit length. To overcome
this exponential slow down at FOTs, multicanonical updating
algorithms have been developed [56].

The behavior of the autocorrelation time drastically
changes in the case of MBC. In this case the dynamics at Tc

is essentially related to the interface enforced by MBC, which
moves within the slab. Indeed, this gives rise to a power-law
behavior: τ ∼ Lz.

We numerically estimate z by equilibrium MC simulations
of the q = 20 Potts model at Tc for slablike geometries (in
particular for anisotropic L⊥ × L‖ with L⊥ = 2L + 1 and
L‖ 	 L), with MBC. Some details on the calculation of
the autocorrelation time of the magnetization and energy are
reported in Appendix B.

In Fig. 1 we show data for the integrated autocorrelation
time τ of the magnetization (3), from L = 12 to 32 and L‖ =
8L (as already discussed above, L‖ ∼ L is the correct scaling

2.5 3.0 3.5
lnL

6

8

10

ln
τ

q=20

FIG. 1. (Color online) Log-log plot of the integrated autocor-
relation time τ of the magnetization at Tc vs L, computed by
equilibrium heat-bath MC simulations. The dotted and dashed lines
show fits of the data for the lattice sizes L � 16, to the ansatzes
τ = aL3 + bL2, corresponding to z = 3 with the expected O(1/L)
corrections, and to τ = aLz. These fits are practically equivalent;
indeed, the corresponding lines are hardly distinguishable (both of
them give an acceptable χ 2/d.o.f. ≈ 1).
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of the longitudinal size since ξ‖ ∼ L). These results strongly
support a power-law behavior, i.e., τ ∼ Lz. In order to estimate
z, we fit the data to the ansatzes τ = aLz [fitting tha data
for L � 16, it gives z = 3.08(2) and a = 0.33(2)] and τ =
aL3 + bL2 corresponding to z = 3 with the expected O(1/L)
corrections [it gives a ≈ 0.46(1) and b = −0.7(2)]. These fits
work equally well as shown in Fig. 1. We consider

z = 3.0(1) (11)

as our final estimate (the central estimate z = 3 is also
supported by the off-equilibrium simulations; see below). The
integrated autocorrelation time of the energy density gives
substantially equivalent results. The value of the dynamic
exponent is expected to be independent of the aspect ratio
of the lattice, i.e., of the ratio L‖/L⊥, including the limit
L‖/L⊥ → ∞ (this is a standard FSS hypothesis).

Although this estimate of z is obtained for heat-bath MC
simulations at q = 20, we expect that it holds for any q > 4.
Indeed, the value of z should be intrinsically related to the
interface dynamics, which is expected to be shared by all q > 4
at their FOTs. Moreover, it should extend to the whole class
of purely relaxational dynamics, including also the Metropolis
upgrading. Different classes of dynamics may lead to other
values of the dynamic exponent z.

As already mentioned we argue (see also later) that the
dynamic exponent z in the case of MBC is essentially related
to the interface enforced by MBC, which fluctuates within the
slab. This simple scenario may lead to the conjecture that z is
a simple integer number, thus z = 3 exactly. However, we do
not have a proof.

B. Off-equilibrium scaling ansatzes

A scaling theory for the off-equilibrium dynamics across
Tc can be heuristically derived by scaling arguments, similar
to those commonly used at continuous transitions.

Assuming the existence of a nontrivial scaling behavior
around t = 0 corresponding to Tc, we may expect that it is
controlled by two scaling variables, such as

r1 = (t/ts)
−ν/L, r2 = t/Lz. (12)

r1 may be interpreted as the ratio between the equilibrium
finite-size correlation length at the given β(t) and L, while r2

is the standard scaling variable of the equilibrium dynamics
with the appropriate value of z. Equivalently we may consider
the scaling variables

u ≡ tκs /L, κ = ν/(1 + zν), (13)

w ≡ t/tκt

s , κt = zκ, (14)

which are combinations of r1 and r2. The off-equilibrium
scaling behavior arising from the protocol (8) is meant to
describe the deviations of the statistical correlations from
the equilibrium scaling behavior, when they cannot adapt
themselves to the changes of the temperature across Tc.
It is defined in the limit of large ts and L keeping the
scaling variables u and w fixed. An important feature of the
off-equilibrium ansatz is that the expected equilibrium static
finite-size scaling should be recovered in the appropriate limit,
which is obtained when u → ∞ keeping r1 fixed.

We already note that the case of symmetric boundary
conditions, such as PBC, appears problematic, due to the
divergence of the dynamic exponent z. In particular, taking the
z → ∞ limit of the exponents κ and κt in the case of a square
geometry, one would naively obtain κ = 0 and κt = 1. This
may hint at the absence of a nontrivial scaling behavior around
Tc; i.e., we may not observe a nontrivial off-equilibrium scaling
behavior around t = 0 in the off-equilibrium protocol (8).
Alternatively, this may indicate a logarithmic scaling behavior,
for example, with scaling variables u ≈ ln(ts)/L and w ≈ t/ts .
As we shall see, numerical simulations favor a regular behavior
around t = 0 extending to t/ts > 0, which may be somehow
related to a metastability phenomenon.

Systems with MBC appear more promising to realize an
off-equilibrium scaling behavior. Indeed, the corresponding
values of the equilibrium exponents ν and z provide well-
defined exponents κ and κt in Eqs. (13) and (14). In the
case of the FOT of the 2D Potts model, for which ν = 1/2
and z = 3.0(1), we obtain κ = 0.200(4) and κt = 0.600(8),
which lead to a nontrivial power-law dependence of the scaling
variables. Therefore, observing an off-equilibrium scaling
behavior around t = 0 is to be expected in this case.

Our main working hypothesis is that the slow dynamics
across Tc presents a double scaling behavior in the large-L
limit, in terms of the scaling variables u and w, i.e.,

mr (t,ts,L) ≈ fm(u,w), (15)

er (t,ts,L) ≈ fe(u,w). (16)

We also expect that, if we start from the high-T phase [sign +
in Eq. (8)], the following asymptotic limits apply:

lim
w→−∞ f#(u,w) = 0, lim

w→∞ f#(u,w) = 1, (17)

corresponding to the large-L equilibrium values at the two
phases (the subscript # corresponds to both m and e). The
limits are reversed if we start from the low-T phase [minus
sign in Eq. (8)].

Summarizing, in the cases where an off-equilibrium scaling
behavior is driven by slow variations across Tc, around t = 0
corresponding to T (t) = Tc, Eqs. (15) and (16) with the scaling
variables (13) and (14) are expected to provide the asymptotic
scaling behaviors, when L is much larger than any other length
scale, thus when L 	 ξ± (see the end of Sec. II A). These
asymptotic behaviors should be approached with power-law
O(L−ω) suppressed corrections, presumably ω = 1. Note that
for observables depending on the spatial coordinates one may
add the spatial scaling dependence on x/L.

In the case of MBC the off-equilibrium behavior is expected
to be related to the dynamics of the interface enforced by
the MBC. This scenario implies a close relation between the
scaling functions fm and fe of the magnetization and energy
density. Let us assume that the slowest modes, determining
the off-equilibrium dynamics of the magnetization and energy
density, are associated with the interface separating the spatial
regions corresponding to the two different phases. If we define
x(t) as the location of the interface along the x1 axis, separating
the low-T from the high-T region, we expect that mr = er = 1
for x1 < x(t) and mr = er = 0 for x1 > x(t). Figure 2 shows
a sketch of the space dependence of the time-dependent local
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X

m0

interface

low−T

high−T

−1 1 X w(t)

FIG. 2. (Color online) Sketch of the space dependence of the
local magnetization at fixed time during the slow dynamics induced
by the temperature variation in the case of MBC. The system shows
both phases extending from the corresponding low-T and high-T
boundaries, which are separated by an interface. The dynamics during
the slow variation of the temperature across the FOT is essentially
related to the movement of the interface from the low-T boundary to
the high-T one, or vice versa.

magnetization within the slab at a fixed time t , as a function
of X = x1/L (note that assuming translation invariance along
x2, for example choosing periodic boundary conditions along
x2 and then sending L‖ → ∞, the local magnetization must
be independent of x2). Thus, when the width of the domain
wall becomes negligible, thus asymptotically for large L, we
expect that

mr (t) ≈ er (t) ≈ 1
2 [1 + Xw(t)], (18)

where Xw(t) = x(t)/L with −1 � Xw(t) � 1. As a trivial
consequence, we would have

fe(u,w) = fm(u,w). (19)

Therefore,Xw(u,w) ≡ 2fm(u,w) − 1 may be considered as an
estimator of the average position of the interface in the large-L
limit.

The off-equilibrium scaling behaviors (13)–(16) at FOTs
are analogous to those expected at continuous transitions when
slowly crossing the critical temperature, usually related to
the KZ mechanism [2,4]. The main difference is related to
the fact that at continuous transitions the critical exponents,
such as ν and z, do not depend on the boundary conditions
(only the scaling functions do). For example, in the case
of the 2D Ising model corresponding to the q = 2 Potts
model, the off-equilibrium dynamics of the magnetization (3)
across the continuous transition is expected to be

m(t,ts,L) = L−η/2fm(u,w), (20)

where η = 1/4 and the scaling variables have the same form as
those in Eqs. (13) and (14). The exponents κ and κt are obtained
using the Ising exponents ν = 1 and z ≈ 2.167 associated
with the purely relaxational dynamics (model A of the critical
dynamics; see, e.g., Refs. [57–59] and references therein),
i.e., κ ≈ 0.316 and κt ≈ 0.684. At the Ising critical point,
different geometries and boundary conditions can change only
the scaling function fm.

We finally mention that similar scaling arguments have been
also employed to study the effects of smooth spatial inhomo-
geneities at FOTs [60–62], for example, when we assume a
spatially dependent temperature and look at the behavior of the
system around the spatial region where the temperature takes
the value at the transition point of the homogenous system.
However, the off-equilibrium behaviors we study in this paper
have not been investigated.

IV. MONTE CARLO SIMULATIONS

In order to check the predictions of the previous section, we
present a numerical analysis of MC simulations following the
off-equilibrium protocol (8), for various geometries, boundary
conditions, lattice sizes, and time scales. We use the heat-
bath upgrading (see Appendix A), varying the temperature
according to Eq. (8), after each sweep which corresponds to a
unit time.

A. Square systems with PBC

To begin, we present results for the square L2 lattice with
PBC, and the off-equilibrium protocol (8) starting from the
high-T phase. In this case the magnetization vanishes by
symmetry, as a consequence of the average on the initial
Gibbs ensemble at β(ti) < βc. Therefore we look at the
behavior of the energy density. Figure 3 shows some results
for the renormalized energy density [cf. Eq. (7)] obtained
by heat-bath MC simulations of the q = 20 Potts model for
various L and time scales ts .

When increasing ts and L, the data approach the corre-
sponding L → ∞ equilibrium values up to t = 0, where er

vanishes within errors (we recall that er = 0 is the T →
T +

c limit of the equilibrium value in the thermodynamic
limit). Then they increase slowly up to t/ts = τ ∗ > 0 with
τ ∗ ≈ 0.005, corresponding to T (t) ≈ 0.995 Tc, remaining well
below the equilibrium values of the low-T phase. Then the
data show a sharp crossover to the values corresponding to the
low-T phase. Note also that the lower panel of Fig. 3 reports
data with ln(ts)/L ≈ const, which do not support scaling with
respect to the scaling variables u ≈ ln(ts)/L and w ≈ t/ts . Of
course, we cannot exclude that an eventual logarithmic scaling
behavior may set in for larger L and ts .

The numerical results for medium-size L = O(102) lattices
and time scales ts = O(106) suggest a smooth nonsingular
behavior around t/ts = 0, without hinting at nontrivial off-
equilibrium scaling behaviors around t = 0. This scenario was
somehow anticipated in the previous section, as a consequence
of the trivial values of the exponents κ and κt obtained using the
scaling ansatzes (13) and (14). It may be related to some form
of metastability developing in this slow cooling procedure,
which likely requires another theoretical framework. This issue
calls for further investigation.

We expect that analogous scenarios occur at the FOTs of
any q > 4.

B. Results for slablike systems with MBC

We now present results for the 2D Potts models with q = 10
and q = 20, in anisotropic L⊥ × L‖ lattices (we set L⊥ =
2L + 1) with MBC, starting from the high-T and low-T phase.
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FIG. 3. (Color online) Data of er (t) for the 2D q = 20 Potts
model in square L2 lattices with PBC, starting from the high-T
phase. We show two sets of data: (a) data for large lattices with
ts = O(106); and (b) data for smaller lattices, for which the ratio
ln(ts/16)/L ≈ 0.2558 is kept fixed (to check the possibility of a
logarithmic scaling around t = 0). Both of them indicate a smooth
behavior up to t/ts ≈ 0.005 and then a sharp relaxation toward the
low-T values, without showing nontrivial scaling behaviors around
t = 0.

We consider the slab limit L‖ 	 L⊥, for which numerical
results can be straightforwardly obtained by increasing the
longitudinal size up to the point where the data appear stable
within the errors. We checked that L‖ = 8L turns out to
be sufficiently large to effectively provide infinite-L‖ results
within the errors (the linear scaling of L‖ with L takes into
account that ξ‖ ∼ L⊥ for MBC). This is clearly shown by the
numerical results for the time-dependent magnetization m(t)
reported in Fig. 4, where we compare data for L‖/L = 8 and
L‖/L = 16 at the same L = 24 and time scale ts with MBC.
Analogous results are obtained for other values of L and ts .

In our numerical simulations we choose |δ(ti)| = |δ(tf )| =
1/32. However, as we shall see, the emerging scaling behavior
does not depend on these particular values, because it is essen-
tially related to the behavior around t = 0 where T (t) = Tc.

In Fig. 5 we report some raw data during a slow variation
of the temperature across Tc for the slab geometry with
MBC. They are obtained starting from the high-T phase
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FIG. 4. (Color online) We check the effective L‖ → ∞ limit of
the numerical results by comparing data of the magnetization m(t) of
systems with MBC, for L‖/L = 8 and L‖/L = 16 at the same L =
24 (corresponding to L⊥ = 49) and ts . The two sets of data appear
practically indistinguishable within the accuracy of the data, showing
that L‖/L = 8 is sufficiently large to provide accurate estimates of
the L‖ → ∞ limit.
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FIG. 5. (Color online) Data of er (t) (a) and mr (t) (b) for the 2D
q = 20 Potts model with MBC, in anisotropic L⊥ × L‖ lattices with
L⊥ = 2L + 1 and L‖ = 8L, for L = 16 and L = 32, and various
values of ts .
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FIG. 6. (Color online) Data of mr (t = 0) for q = 20, starting
from high-T (hc) and low-T (ch) phases and for various values of
u ≡ t0.2

s /L (which is kept fixed when varying ts and L) vs 1/L.
They appear to approach a constant value with increasing L, with
corrections which approximately decay as O(L−1), supporting the
general scaling ansatz (15) with κ = 0.2. The dotted lines show linear
fits to a + b/L of the data for the largest available lattice sizes.

and show the behavior of the energy and the magnetization
when the transition is crossed with different time scales ts and
lattice sizes L. The data show that the effective passage from
one phase to the other occurs around t/ts = 0. As we shall
see, the dependence of the various curves on L and ts can be
cast in the off-equilibrium scaling behavior put forward in the
previous section; cf. Eqs. (13)–(16).

In order to check the scaling in the variable u = tκs /L, we
first note that Eqs. (15) and (16) imply that at t = 0

mr (0,ts,L) ≈ gm(u), er (0,ts,L) ≈ ge(u). (21)

Therefore, we expect that data at t = 0 and fixed u = tκs /L

must converge to nontrivial u-dependent values with increas-
ing L. Figure 6 shows data at some fixed values of u (using
κ = 0.2 obtained taking the central value z = 3), for q = 20
and q = 10. They appear to converge to nontrivial values,
supporting the above asymptotic behavior, with corrections
which approximately decay as O(L−1). Note that O(1/L)
corrections are generally expected due to fact that boundary
conditions such as MBC break translation invariance. The data
indicate that they are the leading corrections. We also note
that with increasing u the L → ∞ extrapolated values of mr

approach the value 1/2, which is the expected equilibrium
limit for u → ∞.

Analogous results are obtained by slightly changing the
value of z, according to the equilibrium estimate z = 3.0(1),
corresponding to κ = 0.200(4). Actually, one may assume
the off-equilibrium scaling (21) to independently estimate z

from the off-equilibrium data. For example, by allowing for
deviations from z = 3, i.e., z = 3 + δz, and interpreting the
scaling corrections of the data of Fig. 6 as due to δz, we find
again that the optimal value is z = 3 with a few percent of
uncertainty (corrections to scaling have different sign in some
cases, which cannot be explained by a unique shift of z, thus
z ≈ 3 appears as the optimal value).
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FIG. 7. (Color online) Data of mr (t) and er (t) for q = 20 starting
from the high-T phase, i.e., T > Tc, for two values of u = tκ

s /L with
κ = 0.2, i.e., u ≈ 0.7578 (a) and u ≈ 0.5743 (b). With increasing L,
they approach asymptotic curves when plotted versus w = t/tκt

s with
κt = 0.6, supporting the scaling ansatzes (15) and (16). Moreover,
the data are consistent with the relation (19) predicting the same
asymptotic curve for mr and er .

Note also that, since the equilibrium average position of
the interface at Tc is expected at equal distances from the
boundaries in the large-L limit, leading to the asymptotic
equilibrium values mr (Tc) = er (Tc) = 1/2, we expect that
limu→∞ g#(u) = 1/2.

The scaling with respect to w at fixed values of u is
supported by the plots in Figs. 7, 8, and 9, respectively, for
q = 20 with hot and cold starting point and q = 10 with hot
start. In all cases the data approach an asymptotic function of
the scaling variable w, as predicted by the scaling theory of
Sec. III. Moreover, the data of mr (t) and er (t) shown in Figs. 7
and 8 approach the same scaling curve, in agreement with the
asymptotic relation (19), thus fully supporting the hypothesis
that the off-equilibrium behavior is essentially controlled by
the time-dependent position of the interface.

Finally, we check the universality of the off-equilibrium
scaling behavior with respect to changes of the relaxational
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FIG. 8. (Color online) Data for mr (t) and er (t) starting from the
cold phase, i.e., T < Tc, keeping the scaling variable u ≈ 0.5743
fixed. They approach a unique asymptotic curve with increasing L,
when plotted vs w = t/tκt

s , supporting the scaling ansatzes (15) and
(16), and the interface relation (19).

dynamics. This is important to assess the degree of generality
of the off-equilibrium scaling. In Fig. 10 we compare results
obtained using the heat-bath algorithm with those obtained by
a standard Metropolis algorithm with only one trial per site; see
Appendix A. The curves match after a trivial rescaling of the
scaling variables u and w, supporting the expected universality
with respect to the type of relaxational dynamics.

We conclude that our numerical analysis for slab geometries
with MBC supports the off-equilibrium scaling behaviors of
the magnetization and energy density put forward in Sec. III B;
cf. Eqs. (13)–(19).

V. CONCLUSIONS

We investigate off-equilibrium behaviors at FOTs driven
by a time dependence of the temperature across the
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FIG. 9. (Color online) Data of mr (t) for q = 10 vs w = t/tκt
s at

a fixed value of u = tκ
s /L ≈ 0.3789 (with κt = 0.6 and κ = 0.2),

starting from the high-T phase. They approach an asymptotic scaling
curve, in agreement with Eq. (15).
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FIG. 10. (Color online) Check of universality between the heat-
bath and Metropolis dynamics. The scaling curves coincide after a
rescaling of the scaling variables u and w of the Metropolis data.
In particular, the rescaling of the variable u can be fixed by looking
for data with equal mr (0) (we obtain that u ≈ 0.5743 of the heat-
bath dynamics approximately corresponds to u = 1 of the Metropolis
dynamics).

transition point Tc, for example, linearly as T (t)/Tc ≈ 1 −
t/ts . Usually, off-equilibrium behaviors at FOTs are associated
with phenomena of metastability and hysteresis [53]. We
focus on the possibility of nontrivial off-equilibrium scaling
behaviors driven by slow changes of the temperature, similar to
those arising at continuous transitions [2–4], leading to the KZ
mechanism. We show that off-equilibrium scaling phenomena
emerge also at FOTs with appropriate boundary conditions
inducing the presence of an interface.

We consider the 2D Potts models, which provide an ideal
testing ground to investigate issues related to FOTs. In our
discussion we consider a purely relaxational dynamics such
as that obtained by heat-bath and Metropolis upgrading in
MC simulations. We study the off-equilibrium behavior in
the case of a time-dependent temperature crossing the FOT.
In particular, we consider a linear dependence of the inverse
temperature β(t) = βc(1 ± t/ts), starting from the high-T or
low-T phase.

We point out that off-equilibrium behaviors at FOTs are
extremely sensitive to the geometry and boundary conditions
of the system. This peculiar dependence is essentially related
to the equilibrium relaxational dynamics at Tc. For symmetric
boundary conditions, such as PBC, we expect an exponentially
slow dynamics due to an exponentially large tunneling time
τ ∼ eσL. On the other hand, a power-law slowing down τ ∼ Lz

with z ≈ 3 is found when considering MBC, i.e., when the
boundary conditions at two opposite sides of the system are
related to the different high-T and low-T phases, effectively
generating an interface separating the coexisting phases. We
argue that an off-equilibrium scaling behavior around t = 0
(i.e., the time corresponding to Tc) is realized for MBC. This
is controlled by the corresponding equilibrium length-scale
and dynamic exponents. We argue that this scaling behavior is
essentially related to the dynamics of the interface enforced by
MBC.
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In the case of slablike geometries with MBC, the numerical
results for the q = 10 and q = 20 Potts model support the
emergence of an off-equilibrium scaling picture characterized
by power-law behaviors, analogous to those observed at
continuous transitions.

On the other hand, symmetric boundary conditions do
not apparently lead to nonanalytic scaling behaviors at t =
0, but rather to a delayed sharp relaxation to the other
phase at t/ts � τ ∗ with τ ∗ > 0, which may be related to a
metastability phenomenon arising from the slow dynamics
across the FOT. This point deserves further investigation
to physically understand it. Further checks of the observed
asymptotic behavior may also be called for. Indeed, we cannot
exclude the possibility that a different (logarithmic) asymptotic
behavior sets in for sizes and time scales larger than those
considered in our numerical analysis, which are L = O(102)
and ts = O(106).

Our scaling arguments are quite general, therefore they
should also apply to higher-dimensional systems, such as
the 3D Potts models that undergo FOTs. Such an extension
may generally depend on the geometry of the system, e.g.,
cubiclike L3, slablike L⊥ × L2

‖ and tubelike L2
⊥ × L‖ (with

L‖ 	 L⊥) geometries, as well as on the boundary conditions.
In particular, we again expect that geometries and boundary
conditions favoring the emergence of an interface should
give rise to off-critical scaling behaviors. This issue calls for
further investigation.

Off-equilibrium scaling behaviors may also appear at FOTs
driven by magnetic fields. For example, one may consider
O(N )-symmetric spin models in the low-T ordered phase,
where FOTs are driven by an external magnetic field coupled to
the spin variables. Then, one may consider the off-equilibrium
dynamics driven by a time-dependent magnetic field h(t) =
t/ts across the transition point h = 0. We expect that in
the case of Ising models (N = 1) an off-equilibrium scaling
behavior may emerge in systems with boundary conditions
enforcing the presence of an interface, analogously to what
is observed at the thermal FOTs of the 2D Potts models. In
the case of a continuous symmetry (N > 2), off-equilibrium
scaling behavior may emerge from the spin-wave dynamics
[Goldstone modes related to the broken O(N ) symmetry]
[46]. We believe that these issues are worth being further
investigated.

Off-equilibrium behaviors at FOTs are quite general, they
should be observable in many physical contexts where the
FOTs are approached by varying the system parameters. The
off-equilibrium protocol investigated in this paper may be
exploited to probe the main features of systems at the FOT.
Moreover, our results may turn out useful in understanding
more complicated off-equilibrium phenomena at FOTs. For
example, as a case of physical interest we mention the
effects of the intrinsic space-time inhomogeneity of the quark-
gluon plasma formation in heavy-ion collisions [63], whose
equilibrium T -μ (μ is the chemical potential) phase diagram
is expected to have a FOT line [64] which may be crossed
during heavy-ion collisions. Another interesting context is that
of the universe cosmology, which was the original ground
of the Kibble proposal [1] to understand the effects of an
expanding universe through a continuous transition. From
analogous studies of off-equilibrium behaviors at FOTs we

may learn the effects of an expanding and cooling universe
that passes through a FOT.

Analogous off-equilibrium phenomena should be also
observable in quantum many-body systems, at first-order
quantum transitions. Some issues arising from slow (quasi-
adiabatic) passages through quantum FOTs have been recently
discussed, in particular for some one-dimensional quantum
chains [49,65,66], including issues related to adiabatic evolu-
tions in quantum computations [49,67–69].
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APPENDIX A: METROPOLIS AND HEAT-BATH
UPDATINGS OF THE POTTS MODELS

A heat-bath updating of a single site variable consists in
the change sx → s ′

x with probability ∼e−H (s ′
x)/T independent

of the original spin sx.
The Metropolis updating of a single spin sx is performed by

(i) proposing a new spin s ′
x �= sx by taking one of the other q −

1 states with equal probability and (ii) accepting the change
with probability Min[e[H (sx)−H (s ′

x)]/T ,1].
The heat-bath updating is generally more effective than a

single Metropolis updating, because the new variable is not
correlated with the previous one. The Metropolis updating
tends to be equivalent to the heat-bath one when a large number
of trials are performed.

Both updating procedures give rise to a purely relaxational
dynamics, usually named model A [44] in the context of
critical dynamics, whose class also includes configuration
updatings by Langevin equations with white noise. The time
unit during the relaxational dynamics is generally associated
with a complete sweep of the lattice variables.

APPENDIX B: COMPUTATION OF THE EQUILIBRIUM
AUTOCORRELATION TIME

The integrated autocorrelation time of a given quantity Q

is defined as

τ ≡ 1

2

t=+∞∑

t=−∞

C(t)

C(0)
, (B1)

where C(t) = 〈(Q(t) − 〈Q〉)(Q(0) − 〈Q〉)〉 is the autocorre-
lation function of Q (t is the discrete Monte Carlo time, where
a time unit is given by a sweep, i.e., a heat-bath update of all
lattice variables). Averages are taken at equilibrium. Estimates
of the corresponding integrated autocorrelation time τ can be
obtained by the binning method (see, e.g., Refs. [70,71] for
discussions of this method and its systematic errors), using the
estimator

τ = E2

2E2
0

, (B2)

where E0 is the naive error calculated without taking into
account the autocorrelations, and E is the correct error found
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after binning, i.e., when the error estimate becomes stable with
respect to increasing of the block size b. The statistical error
	τ is just given by 	τ/τ = √

2/nb where nb is the number
of blocks corresponding to the estimate of E. As discussed in
Ref. [70] this procedure leads to a systematic error of O(τ/b).
In our cases the ratio τ/b will always be much smaller than
the statistical error, so we will neglect it. Equation (B2) can

be easily extended to the case the quantity Q is measured
every nm sweeps, i.e., τ = nmE2/(2E2

0), which is of course
meaningful only if nm � τ .

Of course, τ depends on the quantity Q consid-
ered. However, barring unlikely exceptions, all quanti-
ties lead to the same asymptotic power-law behavior
τ ∼ Lz.
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