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Dynamics of Brownian particles in three-dimensional ordered porous media subject
to an oscillatory force
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Brownian dynamics simulation has been employed to study the dynamic behavior of particles in three-
dimensional ordered porous media subject to a sinusoidal force field. The media comprises interconnected
spherical cavities arranged in a simple cubic lattice. The thermal noise assists the particles to undergo cavity
hopping, leading to a displacement behavior analogous to stochastic resonance, when the imposed field is strong
enough but not aligned with the aperture lines, and the oscillation frequency is not too high. The periodic mean
trajectory depends on the strength, frequency, and orientation of the imposed field. At sufficiently large field
strength, the periodic particle displacement can become nonsinusoidal due to the strong hindrance and pinning
effect of the cavity wall.
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I. INTRODUCTION

Stochastic resonance (SR), a phenomenon where an input
signal is amplified due to thermal noise in the system, has
been observed in different disciplines, and found applications
in optical, electronic, magnetic, and neuronal systems [1]. It
arises from synchronization between noise-induced hopping
and an external periodic driving force, allowing the system to
circumvent a barrier that can be either energetic, entropic,
or purely geometric. The entropic or geometric barrier is
often encountered in soft matter and biological systems,
where particles migrate in a constrained environment such
as porous media, gels, ion channels, etc. [2–6]. In this paper,
we investigate the dynamic behavior of Brownian particles in
three-dimensional (3D) ordered porous media subject to an
imposed sinusoidal force field.

Transport of particles or molecules in porous media is
involved in many applications, such as chromatography,
catalysis, gel electrophoresis, etc. Their behavior depends
largely on the media porosity and microstructure and their
nonbonded interaction with the media. As such, particles,
when made fluorescent for example, can serve as tracers
to explore and measure the properties of porous media.
To understand the relation between particle transport and
dynamics and porous media structure, it is preferable to use
ordered porous media because of a well-defined pore shape
and arrangement periodicity. Such media have been realized
via bottom-up self-assembly and microfluidic techniques to
fabricate colloidal crystals or their inverted counterparts [7–9].
For orderly connected cavities, particle diffusion [10–13]
and migration under a constant external field [14–19] have
been investigated. These media are regarded as open systems
because of the structural periodicity.

For oscillatory external fields, closed cavity systems are
often considered in most of the studies focusing on SR.
Burada et al. [4] investigated entropic SR using the dynamics
of a Brownian particle confined in a closed 2D structure
(two connected cavities) subjected to a sinusoidal force along
the structure axis and a constant force in the transversal
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direction, which can break symmetry to push the particle
to one side of the cavities. The structure, which is defined
by a quartic double-well function, has a smoothly varying
width and is symmetric about the central narrow neck with
a finite length. The dynamics is governed by the overdamped
Langevin equation and the reflecting boundary condition at the
structure wall. They found that the entropic effect originating
from the confinement and the boundary irregularity leads to an
effective bistable potential and hence the entropic SR, showing
an optimal noise level for arrival at the greatest spectral
amplification at a given frequency. The effective bistable
potential, however, is not found in the case of sharp confining
geometries [5], for example, compartments or cavities in
septate channels separated by zero-thickness partition walls,
where holes are pierced at the center. Ghosh et al. [5] studied
such cases by examining the dynamics of Brownian particles
in a 2D rectangular box divided by a zero-thickness partition
wall with a small central hole. The sinusoidal external force
is applied in the direction parallel to the main channel axis.
They called the attained amplification geometric SR, which
is distinct from the entropic SR and can occur at low enough
frequency and large enough field strength. The investigation
was later extended to cases with other directions of the imposed
field [6]. In all these studies, particles are confined in 2D closed
cavity systems.

In view of the practicality of 3D continuous ordered porous
media (open systems), we are motivated to investigate the
dynamics of Brownian particles in such media subject to an
oscillatory external field (e.g., an electric field) and explore
the possibility of observing an analogy of SR. In the present
work, Brownian dynamics (BD) simulation will be conducted
to calculate the mean particle trajectory at varied field strength,
orientation, and frequency.

II. METHOD

We consider 3D ordered porous media constructed by
interconnected spherical cavities arranged in a simple cubic
(sc) lattice as shown in Fig. 1. The radius of each cavity is a, and
the diameter of aperture between two adjacent cavities is 2b.
Due to the periodicity of the ordered structure, only one cavity
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FIG. 1. (Color online) Schematic of connected spherical cavities
with radius a arranged in SC lattice.

needs to be placed in a cubic simulation box with side length
equal to L. Periodic boundary conditions are implemented in
the simulation as usual. In this study, we consider cases with
b � a, so L is nearly equal to the cavity diameter 2a.

In the present study, the particle is assumed to be much
smaller in size than the aperture and can hence be approxi-
mated as a point. The dynamics of the particle is described by
the overdamped Langevin equation [20]:

ζ
dr
dt

= F + R (1)

where ζ is the friction coefficient, r is the particle position
vector, F = F0 cos(2πωt) is the imposed oscillatory force with
ω being the frequency, and R is the random force due to the
incessant collision of the solvent molecules with the particle.
We apply Euler’s method to numerically integrate Eq. (1) to
arrive at the location change [13,18–20]

�r = F
ζ

�t +
(

2kBT

ζ

)1/2

�W, (2)

where � t is the time step, and W is a Wiener process with the
increment being

�Wi = (12�t)1/2

(
ξi − 1

2

)
(3)

The distribution of the random number ξi is uniform in [0,1]
with i = x, y, or z. We handle the impermeability of the
solid mass by implementing the reflecting boundary condition
[13,18,19].

Hereafter, we normalize all lengths by L and time by
L2/D0, where D0 = kBT /ζ is the self-diffusion coefficient
of the particle in pure solvent. As such, Eq. (2) becomes
dimensionless as

�r = LF0

kBT
cos(2πωt)�te + (24�t)1/2s, (4)

where e is the unit vector describing the direction of the
external force, and the vector s has components given by

si =
(

ξi − 1

2

)
.

In this study, we consider the imposed field to be parallel
to the xy plane and form an angle θ from the x direction, i.e.,
e · ex = cos θ and e · ez = 0. New coordinates x ′ and y ′ are
defined via rotating the x and y axes by the angle θ in the

counterclockwise direction such that e is in the x ′ direction.
The dimensionless parameter LF0/kBT is designated as
Pe′, which measures the relative importance of the external
field to thermal noise. The time step �t = 10−6 is used to
compute the particle trajectory. For each run, we placed 50000
noninterfering particles in order to take the ensemble average
for a better accuracy. Their initial locations are fixed at the
cavity center. The mean displacement along the direction of
F0 can be calculated as a function of time by

C = 〈[r(t) − r(0)] · e〉, (5)

where 〈·〉 denotes an ensemble average over the 50000
particles. Larger numbers of particles, such as 100000 and
200000, have also been tried, and we observe only negligible
change in results (see the Appendix). For non-Brownian
particles, we set the second term on the right side of Eq. (4) to
zero, and treat Pe′ as a nominal parameter representing the field
strength. To map to a realistic aqueous system, we consider
particles with radius of 10 nm in cavities with diameter of
1 μm under an electric field F0 = 10 V/cm at 10 Hz. Using the
typical surface charge density 15 μC/cm2, we find Pe′ = 45.8
and ω = 0.46 at room temperature.

III. RESULTS AND DISCUSSION

The arrangement of cavities in sc lattices as shown in
Fig. 1 features three principal directions x, y, and z as regards
the nearest neighbor. These are also the directions for the
so-called aperture lines designated in this study. The length
ratio S = b/a is fixed at 0.1, for which a = 0.502. For all
cases investigated in the present study, the average particle
trajectories are observed to be always periodic, although the
baseline may slightly deviate from zero. The periodicity has
been checked and confirmed for t � ω−1 by simulations up to
100 periods for ω = 10. As such, we will present each average
trajectory only in the second and third periods for illustration.
Error analysis of the amplitude data obtained is presented in
the Appendix.

A. External field parallel to aperture lines

We first consider the case with θ = 0, where the imposed
field is parallel to a group of aperture lines. For a non-Brownian
particle in pure solvent under the same oscillatory field, the
displacement can be determined analytically by integrating
Eq. (1) without the second term on the right side, to yield
C = (Pe′/2πω) sin(2πωt). Note that this analytic expression
is also the mean trajectory of Brownian particles in pure
solvent without any constrictions. In the porous media, our
simulation results find that the mean displacement C always
shows sinusoidal time dependence, although the baseline,
which is found to be independent of time, may shift very
slightly away from zero. As such, the amplitude is determined
by A = (Cmax − Cmin)/2. Figure 2(a) presents the variation
of the normalized amplitude A/A0 with Pe′ for ω = 0.1,
1, and 10, where A0 = Pe′/2πω is the amplitude for the
corresponding non-Brownian particles, which move along
the aperture lines and will never hit the wall in this case.
Brownian particles, to the contrary, may diffuse away from
the aperture line and possibly encounter the cavity wall. The
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FIG. 2. (Color online) (a) Normalized amplitude and (b) phase
shift as a function of Pe′ for θ = 0.

hindrance effect of solid mass renders A always smaller than
A0 as clearly seen in the figure, and is expected to approach
A0 as Pe′ → ∞. As mentioned earlier, SR features signal
amplification as compared to the counterpart system in the
absence of any thermal motion whatsoever (non-Brownian
particles). Therefore we conclude that nothing similar to SR
occurs when the imposed field is in any of the three principal
directions. We have also examined the corresponding cases
where the particles initially are randomly located in the cavity,
and found that the results hardly change.

At ω = 0.1 and 1, A/A0 is found to increase with Pe′.
At ω = 10, however, A/A0 first decreases, reaches a very
weak minimum, and then increases. It should be noted that,
unlike A/A0, A always increases with Pe′. The interesting
difference in the behavior of A/A0 for small enough Pe′

at ω = 10 can be explained by the fast field oscillation
with time scale ω−1 � Pe′−1, where each reversal of field
direction takes place before significant wall-reflecting effect
can result. For large Pe′ (�ω), the particles can go through
the hit-rebound-escape process several times prior to each
field reversal. The movement behavior is hence similar to
that subject to an external field with constant strength and

direction, which was investigated in our prior study [18] via
computation of effective velocity and mean first-passage time.
That study showed that for large Pe′ V/V0 depends on Pe′

logarithmically, where V is the average velocity and V0 is the
corresponding velocity in pure solvent. One can see a similar
behavior for A/A0 from the inset of Fig. 2(a), where the fitting
line is A/A0 = 0.103 + 0.251 log10 Pe′.

In addition to the result A/A0 < 1, there could be a phase
shift φ for the periodic displacement displaying the time
dependence in terms of sin(2πωt + ϕ), and the φ result is
shown in Fig. 2(b). At large Pe′, most of the particles are driven
into and then moving along an obstacle-free cylindrical zone
with radius ∼b along the aperture line [18,19] because they
can hardly drift away via the very weak random motion. The
situation is somewhat analogous to the case in pure solvent,
and therefore the phase shift becomes very small towards zero.
At small Pe′, however, the phase shift could be significant, e.g.,
∼37◦ at Pe′ = 1 and ω = 1. For ω = 0.1 and 10, the phase
shift reduces to ∼6◦ and ∼15◦, respectively, at this Pe′.

To check whether the phase shift arises from the reflecting
boundary condition adopted, we also try the other commonly
used boundary condition—the rejection condition whereby
a move leading to particle penetration into the solid mass
is unacceptable, and the preceding position is retained.
Quantitatively similar results are obtained. To understand this
interesting phase shift phenomenon, we examine two related
cases: (1) the mean trajectory of Brownian particles at the
same Pe′ in pure solvent, and (2) the mean trajectory of
non-Brownian particles with random initial positions in porous
media. No phase shift is observed for either case, indicating
the necessity of both random force and cavity surface for the
occurrence of this phenomenon.

We propose the following explanation for the observed
phase shift. For O(1) Pe′, the migration and diffusion rates are
comparable in principle. However, due to the sinusoidal nature
of the imposed field, there exist short time intervals around
t = (2n + 1)/4ω, with n an integer, during which the imposed
field is vanishing and becomes weaker than the random force.
As such, the obstruction effect of the cavity wall along with
the dominating Brownian motion can facilitate the reverse
movement of the particles and hence a biased distribution
before the imposed field changes its direction, thereby leading
to the positive phase shift.

B. External field not along aperture lines

Now we consider cases with sin−1S < θ � 45◦, where the
imposed field does not align with any aperture lines, and
hence the obstruction effect of the cavity wall is expected
to be significant. In fact, the no-penetration condition at the
cavity surface will cause non-Brownian particles to eventually
oscillate along the diameter path parallel to F0, thereby leading
to permanent particle entrapment inside the cavity. This is
illustrated in Fig. 3 which plots the mean trajectories for ω = 1
and nominal Pe′ = 10, 30, and 80. One can see that with
increasing Pe′, the time spans during which the particles are
pinned to the wall (i.e., C = ±0.502) are longer. The trajectory
indeed will approach a square wave as Pe′ → ∞.

For Brownian particles, random motion is the mechanism
allowing them to deviate from this trapping trajectory and
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FIG. 3. (Color online) Trajectory of non-Brownian particles for
Pe′ = 10 (solid line), 30 (dotted line), and 80 (dashed line) at ω = 1
and sin−1S < θ � 45◦.

escape from one cavity to another. Figures 4(a)–4(c) plot C for
θ = 45◦, ω = 0.1, 1 and 10, respectively. One can see that at
Pe′ = 10, the mean displacement is sinusoidal. In contrast,
when the imposed field becomes strong enough, the mean
displacement, despite remaining periodic, is no longer sinu-
soidal. For θ = 20◦ and 30◦; representative results are shown
in Fig. 8 (in the Appendix) for comparison. The deviation can
become substantial at large Pe′. In view of the different, large
deviations for various cases, we chose to present A/A0 with
A = (Cmax − Cmin)/2 and A0 = min(Pe′/2πω,a), instead of
examining the amplitude of the first harmonic of the Fourier
expansion of the trajectory in a spectral signal analysis [4–6].
A brief discussion on this matter is given in the Appendix.
Figures 5(a)–5(c) show the variation of A/A0 with Pe′ for
different θ at ω = 0.1, 1, and 10, respectively. One can see
that stochastic resonance (A/A0 > 1) can take place for low
enough frequency and high enough field strength, similarly
to the finding for geometric SR [5,6]. The prominence of
these phenomena both decrease with increasing ω and θ . Since
A/A0 → 1 as Pe′ → ∞ (no thermal noise), there should exist
a local maximum of A/A0 at large enough Pe′ for those
cases where such an expected behavior is not yet seen in
Fig. 5. However, further increase in Pe′ would require the
use of smaller �t and hence render the simulation more time
consuming.

A subtle issue arises for θ �= 0◦ or 45◦. Our prior study [18]
on the force-driven migration of Brownian particles subject to
a steady external field found that the mean trajectory does not
necessarily align with the imposed field. The mean trajectory
orientation θV can be written as θV = θ + �θ , where �θ is
found to be negative, and |�θ | increases with Pe′ (see Fig. 5
of Ref. [18]). For the oscillatory field in the present work, the
orientation behavior is expected to become more complicated.
We calculate �θ = tan−1(〈y ′〉/〈x ′〉) at each time point and plot
the case of Pe′ = 80 in Figs. 6(a) and 6(b) for ω = 0.1 and 1,
respectively. The sharp peaks and valleys are due to vanishing
〈x ′〉 (i.e., C ≈ 0) in the periodic trajectory [cf. Figs. 4(a)

FIG. 4. (Color online) Mean trajectory of Brownian particles for
θ = 45◦ and ω = (a) 0.1, (b) 1, and (c) 10.

and 4(b) for θ = 45◦], and thus do not deserve special
attention. For θ = 20◦ and 30◦, negative �θ is shown by the
part showing more gradual variation, whereas �θ vanishes
for θ = 45◦. To make comparison, we also performed the
simulation for the case of a steady imposed field at Pe′ = 80
and found that �θ is a constant equal to −19.4◦, −26◦, and
nearly zero for θ = 20◦, 30◦, and 45◦, respectively. In view
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FIG. 5. (Color online) Normalized amplitude as a function of Pe′

for ω = (a) 0.1, (b) 1, and (c) 10.

of the complex �θ in the oscillatory field, we have chosen to
examine A/A0 based on the displacement projection on e, i.e.,
Eq. (5) for simplicity.

When ω > Pe′/2πa, the imposed field oscillates too rapidly
to drive the particles to impact the wall and experience its
effect for a sufficient time before each direction reversal of the

FIG. 6. (Color online) Angle deviation as a function of time for
Pe′ = 80 and ω = (a) 0.1 and (b) 1.

imposed field. As seen in Fig. 5(c), the decreasing trend of
A/A0 with Pe′ for Pe′ < 30 at ω = 10 somewhat resembles
that for θ = 0◦ at the same frequency shown in Fig. 2(a).
Moreover, the trajectory remains sinusoidal for Pe′ = 10 and
nearly sinusoidal for Pe′ = 40 or even 80 when θ = 45◦ [see
Fig. 4(c)]. From these findings and comparison, we conclude
that under a fast oscillatory field, the solid mass merely
causes hindrance and perturbation to the particle movement
as compared with the case in pure solvent, and hence A < A0

can be accounted for.
For ω � Pe′/2πa, on the other hand, slow oscillation

allows the particles a sufficient time to impinge on the wall
and undergo the hit-rebound process a number of times.
Therefore they may have a chance to escape the cavity via
the aperture. This wall effect is most pronounced for θ = 45◦
because particles have to travel a longer distance to reach the
aperture than for other values of θ . Figure 4(a) has clearly
revealed the aforementioned process, in particular for the case
of Pe′ = 80 and ω = 0.1: particles are pinned to the cavity
wall for considerable time spans (C = ±0.502), and each
peak and valley in between indicates escape and the following
movement reversal. When ω is increased to 1, the likelihood
of escape is lessened due to the reduction in time allowed
for this process, and hence |C| can exceed 0.502 only slightly.
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Stochastic resonance cannot even occur for lower Pe′ or greater
ω as shown in Figs. 4(b) and 4(c).

For smaller θ , the required travel distance to the nearest
aperture for escape becomes shorter, thereby increasing the
fleeing ease and possibility. A/A0 can get as large as 50 for
θ = 20◦, Pe′ = 100, and ω = 0.1. In our prior study [18], the
mean passage time of particles which are randomly located
initially in a spherical cavity with one single aperture subject
to a constant imposed field was computed from BD simulation
to investigate the time required for escape. One can see from
Fig. 8 of Ref. [18] that, for S = 0.3, the mean first-passage
time decreases and then increases with Pe′ when θ � 30◦, and
this behavior is more pronounced for larger θ . The time ratio
of θ = 45◦ to θ = 30◦ was found to increase with Pe′ and
reach about 150 already at Pe′ = 60. The strong θ dependence
of the escape time can explain why the stochastic resonance is
considerably stronger for θ = 20◦ than for θ = 30◦ and 45◦ as
shown in Fig. 5. The prolonged stay of particles in the cavity
is associated with the wall-pinning effect. When the particles
are pushed to the cavity wall by a strong field, they rebound
in such a way as to migrate towards the location to which the
field points from the cavity center [18,19]. The imposed field
hence restrains the effective lateral Brownian motion, which
is required for the particle escape as mentioned earlier.

To verify this thought, we calculate two components of
the mean square displacement (relative to the migration)
perpendicular to the imposed field:

d1 = 〈y ′2(t)〉 − 〈y ′(t)〉2,

d2 = 〈z2(t)〉 − 〈z(t)〉2.

The results for ω = 0.1 and Pe′ = 80 are presented in
Fig. 7(a). It can be seen that d1 is much greater than d2

(inset) in these cases, indicating that the particle escape is
primarily via the random motion in the y ′ direction. For
each curve, the local slope can be viewed as the effective
diffusivity at the corresponding time point. For d2, there exist
time spans in which the slope is nearly zero, indicative of
very weak diffusion. In between, a more pronounced change
in d2 is observed. This behavior is also found for d1 when
θ = 45◦. The sharper increase takes place around the time
points of field reversal [t = (2n + 1)/4ω], where the random
motion becomes stronger than the migration driven by the
diminishing field, and thus the wall-pinning effect is weakened
considerably. This phenomenon, however, does not to happen
to d1 for θ = 20◦ and 30◦, where the slope variation appears
rather smooth in contrast.

To gain a better understanding, we calculate d1 and d2 for the
corresponding cases with a steady imposed field (Pe′ = 80),
and the results are shown in Fig. 10 (in the Appendix). We find
that although d1 continues to dominate over d2, both are linear
functions of time, as opposed to the behavior in the oscillatory
field. The slope of d1 is found to be very small (∼0.0074) for
θ = 45◦, which is comparable to 0.012 for the nearly horizon-
tal parts in Fig. 7(a). For the steady field with θ = 20◦ and 30◦,
the slope increases substantially to 0.88 and 0.41, respectively.
Moreover, one can see from Fig. 5(a) that, while A/A0 = 2.4
for θ = 45◦ (Pe′ = 80), it increases to about 12 and 47 for θ =
30◦ and θ = 20◦. This stark difference is also evident from the
trajectory plots for Pe′ = 80 in Figs. 4(a) and 8. It means that

FIG. 7. (Color online) Components of mean square displacement
of Brownian particles for Pe′ = 80 and ω = (a) 0.1 and (b) 1. Curves
from top to bottom are for θ = 20◦, 30◦, and 45◦.

for θ = 45◦, the particles on average move merely from one
cavity to the other shortly prior to each field reversal, whereas
they can travel through many cavities in contrast for θ = 30◦
and θ = 20◦. For these two angle values, the escape time be-
comes too short to manifest itself in Figs. 7(a) and 8. To assess
the hindrance in diffusion, we calculate �d1/�t and �d2/�t

over the two periods to find the values 0.708 and 0.0289 for
θ = 20◦; 0.557 and 0.0255 for θ = 30◦; 0.221 and 0.0231 for
θ = 45◦. These values are all smaller than 2, which is the slope
of the straight line for corresponding diffusion in pure solvent.

Figure 7(b) plots d1 and d2 against time at ω = 1
and Pe′ = 80 to show the difference in behavior at higher
frequency. Interesting complications arising from the faster
field oscillation can be observed. Despite remaining small,
d2 shows a stronger wavy characteristic. For d1, there are
kinks in each curve shortly behind the time points of field
reversal. The values of �d1/�t and �d2/�t are 0.7 and
0.0395 for θ = 20◦; 0.557 and 0.0347 for θ = 30◦; 0.231 and
0.0333 for θ = 45◦. In comparison with those for ω = 0.1,
�d2/�t is found to become larger, while �d1/�t remains
nearly unchanged.

062105-6



DYNAMICS OF BROWNIAN PARTICLES IN THREE- . . . PHYSICAL REVIEW E 92, 062105 (2015)

TABLE I. Normalized amplitude for θ = 20◦ and ω = 10.

Pe′ A/A0

1 0.872 ± 0.032
10 0.831 ± 0.005
50 0.890 ± 0.002
100 1.207 ± 0.002

IV. CONCLUSION

BD simulation has been employed to investigate the
dynamic behavior of Brownian particles in 3D ordered porous
media (open system) subject to a sinusoidal external force.
The amplitude of mean displacement can be enhanced and
attain a maximum when the imposed field does not align with
any aperture lines, as well as at sufficiently low frequency
and large enough field strength. This phenomenon arises
from the thermal noise that assists the particles to hop from
one cavity to another through an aperture, leading to an
increased displacement as compared to the entrapment of the

FIG. 8. (Color online) Mean trajectory at ω = 0.1 for (a) θ =
20◦ and (b) θ = 30◦.

FIG. 9. (Color online) Amplitude of first harmonic of Fourier
expansion of trajectory for ω = 0.1.

non-Brownian counterparts in one cavity. Such enhancement
resembles SR in closed system. The prominence of this
behavior depends on the frequency, field strength, and field
orientation relative to the aperture lines.
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APPENDIX: DATA ERROR ANALYSIS AND
SUPPLEMENTARY RESULTS

Error analysis of the simulation data is demonstrated for the
case of θ = 20◦ and ω = 10. We carry out five independent
runs to determine the mean normalized amplitude and the

FIG. 10. (Color online) Components of mean square displace-
ment vs time for a constant external field (Pe′ = 80). Curves from top
to bottom are for θ = 20◦, 30◦, and 45◦.
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corresponding standard deviation, with the results shown in
Table I. Since the error bars are generally smaller than the
symbol size, they are not shown in the figures. For Pe′ =
10, we also use different particle numbers 50000, 100000,
and 200000 to find that the trajectories hardly changes with
A/A0 = 0.831, 0.827, and 0.829, respectively.

The mean trajectories at ω = 0.1 for θ = 20◦ and 30◦ are
shown in Figs. 8(a) and 8(b), respectively, in comparison with
Fig. 4(a) for θ = 45◦.

In spectral signal analysis, the trajectory is fitted by a
Fourier series to give the amplitudes for different harmonics.
Usually, the amplitude of the first harmonic (Afh) was exam-
ined in the prior SR studies for closed systems [4–6]. We follow

suit and plot the result for ω = 0.1 in Fig. 9 for demonstration
and comparison. Note that, when Pe′ → ∞, the trajectory
becomes a square wave with Afh = 4a/π = 0.64. One can see
a similar trend to that in Fig. 5(a). However, when the trajectory
deviates strongly from a sinusoidal wave, the amplitudes of
higher harmonics may become more important. Therefore, we
choose to examine A = (Cmax − Cmin)/2 and normalize it by
A0, the value for the corresponding non-Brownian particles. In
this way, one can easily judge the occurrence of an enhance-
ment phenomenon similar to SR by checking if A/A0 > 1.

For a constant external field (Pe′ = 80), we calculate d1 and
d2, and plot them against time in Fig. 10. Apart from the result
d1 � d2, a linear dependence on time is observed.
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