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enhanced cooling, and entanglement
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A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We
discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling
and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower
temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics
but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note
that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the
amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the
steady state. These results are of relevance to future implementations of quantum thermal machines.
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I. INTRODUCTION

Recently, the study of small self-contained quantum thermal
machines has received growing interest; see Refs. [1–4] for
recent reviews. Such machines typically consist of only a few
quantum levels, hence can be considered “small” quantum
systems (in terms of Hilbert space dimension). Moreover, these
machines are termed self-contained (or autonomous) as they
function without any source of work or external control, but
use only heat baths at different temperatures. The simplicity
of these models makes them an ideal test bed for investigating
quantum thermodynamics [3].

First works in this area go back to the study of the
thermodynamics features of lasers [5]. Since then, many
designs have been proposed and studied (see, e.g., Refs. [6–9]),
among these a quantum absorption refrigerator consisting of
three qubits [10]. The efficiency of this machine [11] and
more general performance bounds [12,13] were discussed.
The basic functioning and fundamental limits of the fridge can
be captured via the concept of virtual qubits [14]. Moreover,
quantum entanglement was shown to appear in this model and
to enhance cooling in certain regimes [15]. Possibilities for
experimental implementations [16–18] were also discussed.

So far, most works have discussed quantum absorption
refrigerators in the steady-state regime, giving a detailed
characterization of its physical properties. On the other hand,
the transient regime remains basically unexplored so far. The
latter is, however, of interest. First, from a conceptual point of
view, it is relevant to understand the approach to equilibrium.
Second, from a more applied point of view, it is natural to ask
how fast cooling can be achieved and what the timescale for
reaching equilibrium is. The study of quantum effects, such as
entanglement and coherence in the transient regime, is also an
interesting issue.

Here we investigate the physics of a quantum absorption
refrigerator in the transient regime. We focus on the three-qubit
quantum fridge model of Ref. [10], characterizing time scales,
cooling properties, and entanglement. First, the time scales for
coherent dynamics, damping, and decay to the steady state
in terms of the bath coupling and interaction strengths are
discussed. Then we observe that cooling can be enhanced in
the transient regime via the coherent dynamics of the system.

Specifically, it is possible to bring the object to be cooled
to a temperature, which is much lower than its steady-state
temperature. As discussed recently in Ref. [19], this is a
genuinely quantum feature, which highlights the advantage
offered by quantum refrigerators over purely classical ones.
Moreover, we find that neither precise timing nor accurate
control of the coupling strengths are necessary for taking ad-
vantage of this cooling enhancement. Finally, we also observe
that the amount of entanglement that can be achieved in the
model can be much larger in the transient regime compared to
the steady-state regime, which is again a consequence of the
coherent dynamics. We believe that the present results opens
novel questions for quantum thermal machines and may be of
relevance to future possible practical implementation of these
ideas.

II. MODEL AND MASTER EQUATION

We consider the model of a three-qubit quantum absorption
refrigerator discussed in Refs. [10,11] and sketched in Fig. 1.
The ground and excited state of qubit i are denoted by |0〉i
and |1〉i and the energy gap Ei . The free Hamiltonian for the
system is thus given by

H0 =
∑

i∈{C,R,H }
Ei |1〉i〈1|. (1)

We set ER = EC + EH and EC �= EH , and thus the states
|010〉 and |101〉 are degenerate in energy (we use the ordering
CRH ). Moreover we consider an interaction Hamiltonian

Hint = g(|010〉〈101| + |101〉〈010|), (2)

where g is the coupling strength. We focus on the weak
coupling regime, g � Ei , hence all transitions (apart from
|010〉 ↔ |101〉) are exponentially suppressed.

Each qubit is weakly coupled to a thermal bath. The first
qubit is connected to the coldest bath, at temperature TC . The
third qubit is connected to the hottest bath, at temperature
TH . The middle qubit is connected to a bath at intermediate
temperature TR , with TC � TR � TH . The interaction between
each qubit and its bath is modeled by a simple reset model (see,
e.g., Ref. [11]) where thermalization happens through rare but
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FIG. 1. (Color online) Three-qubit quantum thermal machine.
Three two-level quantum systems (qubits) with energy gaps EC,ER ,
and EH are coupled to separate thermal reservoirs at temperatures
TC, TR , and TH with coupling rates pC, pR , and pH . The qubits
interact collectively as described in the text, with interaction strength
g. When operating as a fridge, the machines cools qubit C, i.e., brings
it to a temperature below TC .

strong events. At every time step, each qubit i is either reset
to a thermal state τi at the temperature of its bath with a small
probability or left unchanged. The evolution of the qubit states
is thus given by the master equation

∂ρ

∂t
= −i[H0 + Hint,ρ] +

∑
i∈{C,R,H }

pi[�i(ρ) − ρ], (3)

where pi is the thermalization rate for qubit i and

�i(ρ) = τi ⊗ Tri(ρ), (4)

where Tri denotes the partial trace over qubit i and the tensor
product is to be taken at position i. The thermal states are given
by τi = ri |0〉〈0| + (1 − ri)|1〉〈1|, with

ri = 1

e−E/Ti + 1
, (5)

where Ti is the reservoir temperature for qubit i (throughout
the paper we set kB = 1). We note that the master equation
applies in the perturbative regime, where pi,g � EC,EH and
pi � 1 (see, e.g., Ref. [11]). In this case, thermalization events
between a given qubit and the heat bath associated with the
other two qubits are second-order events that can be safely
neglected.

In Ref. [10] it was shown in detail how the machine can
operate as a refrigerator, considering the steady-state regime.
Briefly, when the reduced states of each qubit are diagonal, we
can associate temperatures Tc, Tr , Th with them via Eq. (5).
This is the case in the steady state, where the cooling effect
can be simply understood in the virtual qubit picture developed
in Ref. [14]. The interaction Hint effectively puts the cold qubit
in thermal contact with a virtual qubit spanned by the levels
|01〉RH and |10〉RH of the other two qubits. In the absence of
interaction, the temperature of this virtual qubit is

TV = EC

ER/TR − EH/TH

. (6)

When 0 � TV < TC , the machine acts as a refrigerator, in
the sense that the cold qubit will be cooled below its bath
temperature, i.e., TV < Tc < TC .

III. SOLVING THE MASTER EQUATION

Previous works have discussed the steady-state solution
of the above model in great detail; see, e.g., Refs. [10,11,15].
Here our focus is different as we are interested in the transient
regime.

We start by pointing out that Eq. (3) is linear in ρ and can
thus be recast as a matrix differential equation,

∂v
∂t

= Av + u, (7)

where v is simply a rewrapping of the density matrix ρ

to a vector. The matrix A and vector u depend on the
parameters Ei, g, pi, Ti , and encode the right-hand side of
Eq. (3). The steady-state solution is given by v∞ = −A−1u.
At intermediate times, Eq. (7) is solved by v(t) = vh(t) + v∞,
where vh(t) is a general solution to the homogeneous equation
with u = 0, which can be obtained by diagonalizing A.
Denoting the eigenvalues and eigenvectors of A by λj and
ej , respectively, one has

vh(t) =
∑

j

cj e
λj tej , (8)

where the coefficients cj are determined by the initial condition
that v(0) matches the given input state. Note that the real part
of all λi must be negative such that vh(t) vanishes at long times
and the steady state v∞ is recovered.

It turns out that diagonalizing A in full generality is
challenging. Nevertheless, for fixed values of the parameters
Ei, g, pi, Ti , we can easily obtain the time-dependent solution
to Eq. (7) and hence the state ρ(t) for any given initial condition
ρ(t = 0) = ρ0. We also know the steady-state ρ∞ for given
parameters (using the method above, or from Ref. [11]).

IV. CHARACTERIZING THE TRANSIENT REGIME

We are now in a position to start discussing the physical
properties of the three-qubit fridge in the transient regime. We
will first consider the time scales involved in the approach to
the steady state and then look at cooling and entanglement in
the transient regime.

Throughout the following we will consider a fixed, natural
initial state, namely a thermal state where each qubit is at
equilibrium with its bath:

τ = τC ⊗ τR ⊗ τH . (9)

This is the equilibrium state corresponding to the free
Hamiltonian H0 that one has before the interaction is turned
on. Initially there is thus no entanglement, and each qubit is
at the temperature of its respective bath. Since the state is
diagonal in the basis of H0 the only elements of the density
affected by the unitary evolution, once the interaction is turned
on, are those in the degenerate subspace affected by Hint. In
particular, since the interaction with the baths do not generate
coherences within each individual qubit, the only off-diagonal
elements will be |010〉〈101| and |101〉〈010|. This also implies
that the reduced state of each qubit is diagonal at any time, and
we can thus associate temperatures with them.

In addition to fixing the initial state, we will focus on the
role played by the relative strengths of the couplings pi and the
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interaction g. Without loss of generality, we can set the energy
scale such that EC = 1. We also fix the other qubit energy and
the bath temperatures. For simplicity we set TC = TR (this also
analogous to a natural situation where the cold bath is at room
temperature). As long as the qubits are sufficiently far from
each other we can model their baths as independent [19,20].

A. Quantities of interest

Before moving on, we define the quantities of interest we
will use below to study the approach to the steady state, the
cooling, and the entanglement in the transient regime.

To examine the approach to equilibrium, one needs a natural
notion of distance from the steady state, and we take the trace
distance

D(ρ(t),ρ∞) = 1
2 ||ρ(t) − ρ∞||1, (10)

which measures the distinguishability between the two states
(|| · ||1 is the trace norm). Specifically, this quantity has an
operational meaning, as it is equal to the classical trace distance
between the probability distribution of the measurement out-
comes for the optimal quantum measurement distinguishing
between ρ(t) and ρ∞ [21].

For cooling, we note that starting from the product thermal
state τ , the only off-diagonal elements of ρ(t) at any time
are those in the degenerate subspace. Therefore, the reduced
state of each qubit is diagonal, and using Eq. (5) we can
associate temperatures Tc, Tr , Th with them. When operating
as a refrigerator the machine cools the cold qubit such that
Tc < TC .

Finally, for the entanglement in the three-qubit system,
there are several bipartitions and quantities one may study.
Entanglement in the steady state was discussed in Ref. [15],
and all types of three-qubit entanglement were shown to
occur in various regimes. Following this work, we evaluate
entanglement along a given bipartition (e.g., qubit 1 versus
qubits 2 and 3), or genuine tripartite entanglement, using a
class of entanglement witnesses developed in Refs. [22,23],
which allow one to fully characterize the entanglement of states
of the form ρ(t) for initial state τ . Specifically, we consider
witnesses of the form

WS [ρ(t)] = 2

⎛
⎝|ρ3,6| −

∑
j∈S

√
ρj,jρ9−j,9−j

⎞
⎠ � 0, (11)

where ρi,j denotes elements of the density matrix ρ(t) and
the set S depends on the partition and type of entanglement
one is interested in. When inequality Eq. (11) is violated,
its left-hand side gives the concurrence [24] of C|RH (S =
{2}), R|CH (S = {1}), CR|H (S = {3}) or the genuine
multipartite concurrence (see Refs. [25,26]) for S = {1,2,3}.
When inequality Eq. (11) holds, no entanglement is present on
the given bipartition, as the witness provides a necessary and
sufficient condition for biseparability [27].

B. Time scales

In Fig. 2 we show representative plots illustrating the
transient behavior of the distance to the steady state, the
entanglement, and cooling. We observe the following general
behavior. When the interaction strength g exceeds the bath

couplings pi , all of the observed quantities initially oscillate
at a frequency of approximately g/π (see Fig. 2 ). This is
intuitive since this is the time scale of the system dynamics in
the absence of dissipation (as can be seen from the interaction
Hamiltonian). Hence, for weak bath coupling, we expect to
see such oscillations until dissipation becomes dominant.

More specifically, from Eq. (8) the time scales are de-
termined by the eigenvalues λj of the matrix A. Since
starting from the initial state τ,ρ(t) always features a single
off-diagonal element, we can take A to be 9 × 9. We observe
the following general properties of the spectrum of A. Only
two of the eigenvalues are complex (conjugates of each
other) λcp, λ

∗
cp. Moreover, all eigenvalues have negative real

parts (ensuring convergence to the steady state). The largest
(numerically smallest) eigenvalue λmax is always real.

The coherent dynamics is characterized by oscillations, the
frequency of which is given by the imaginary part of λcp, while
the time scale for damping is given by the real part. When g is
small compared to the couplings pi , the real part of λcp is pC +
pR + pH , while for large g it is 3(pC + pR + pH )/4. A typical
example is shown in Fig. 3(a). The oscillations are therefore
damped out in a time that scales as the inverse of pC + pR +
pH . Thus, this is the time it takes for the dissipative processes
to suppress coherent dynamics in the system (analogous to a
T2-time for the machine in the language of spin relaxation;
the time to equilibrate to the steady state would be a T1-time).
If the sum of the bath couplings exceeds g, no oscillations are
observed, as apparent from the red curves in Fig. 2, while for
large g the imaginary part of λcp is 2g as expected.

After coherent dynamics is damped out, each quantity
approaches its steady-state value. The trace distance initially
drops fast, in the coherent regime, and then follows an
exponential decay. The rate of this approach to the steady
state at long times is given by λmax. Denoting the rewrapping
of v to a density matrix ρ(v) this can be seen easily

D(ρ(t),ρ∞) = 1

2
||ρ(vh(t) + v∞) − ρ(v∞)||1

= 1

2
||ρ(vh(t))||1 = 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣
ρ

⎛
⎝∑

j

cj e
λj tej

⎞
⎠

∣∣∣∣∣∣

∣∣∣∣∣∣
1

≈ 1

2
||ρ(cmaxe

λmaxtemax)||1

= 1

2
cmaxe

λmaxt ||ρ(emax)||1, (12)

where cmax and emax are the coefficient and eigenvector
corresponding to λmax, and we used that the wrapping is
linear and Eq. (8). In general, λmax may depend on all the
bath couplings, the interaction strength, and the temperatures.
However, we observe that if the two smaller pi are equal,
then λmax is equal to this value, λmax = min{pC,pR,pH },
independent of g and the temperatures. This is also the value
of λmax if g is small compared to the pi . For large g, we
have λmax ≈ pmin + p′

min/4, where pmin,p
′
min denote the two

smallest couplings. Typical examples illustrating this behavior
are shown in Fig. 3(b).
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FIG. 2. (Color online) Plots vs. time of [(a), (b)] the distance to the steady state D(ρ(t),ρ∞), [(c), (d)] the cold qubit temperature Tc(t),
[(e), (f)] bipartite entanglement WR|CH (t), and [(g), (h)] genuine tripartite entanglement WCRH (t). We use two sets of parameters given
by EC = 1, EH = 100, TC = TR = 1, TH = 100, pC = pH = 10−5, pR = 10−3, and g = 10−2 (blue curves), g = 10−4 (red curves), and the
system is initially in a thermal state with each qubit equilibrated to its bath. In (c) and (d) the minimal cold qubit temperature attainable by
unitary dynamics alone is indicated (dashed horizontal), and in (d) also the period of the unitary dynamics (dashed vertical). In (e)–(h) the
maximal entanglement extractable from the initial state by the unitary dynamics alone is indicated (dashed).

We note that it can be helpful to think of the machine
as analogous to a damped oscillator, with the regimes where
coherent evolution is visible or suppressed corresponding to
under- and overdamping, respectively.

C. Cooling

Both steady-state and transient cooling increases with
increasing interaction strength. When the goal is to reach a low
temperature for the cold qubit, it is always optimal to make g as
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FIG. 3. (Color online) (a) Damping rate of coherent dynamics vs.
interaction strength for EC = 1, EH = 100, TC = 1, TR = 1, TH =
100, pC = 10−4, pR = 10−3, pH = 10−4. The limiting values pC +
pR + pC and 3(pC + pR + pC)/4 for small and large g, respectively,
are indicated (dashed). (b) Asymptotic decay rate vs. interaction
strength for EC = 1, EH = 100, TC = 1, TR = 1, TH = 100, pC =
10−4, pR = 10−3, pH = 10−5 (blue) and pC = pH = 2 × 10−5 (red).
The limiting values min{pC,pR,pH } = pH and ∼ pH + pC/4 for the
case of all pi different are indicated (dashed).

large as possible. The time it takes to cool, however, depends
strongly on whether the system displays coherent dynamics
or not, i.e., on whether g exceeds the pi , and depending on
the bath couplings, it can happen that colder temperatures are
reached in the transient than in the steady-state regime, as was
also noted in Ref. [19].

The difference between evolution with and without the
coherent dynamics damped out is apparent from the examples
in Fig. 2. In Fig. 4(a) we show the coldest temperature of the
cold qubit reached within a fixed evolution time as a function
of g. We see that as g surpasses the bath couplings, there is a
sharp drop in the cold qubit temperature attained at short times.
The system cools faster when the interaction is strong such that
the initial dynamics are coherent, as might be expected.

To separate out the effect of the dissipative evolution, we
can compute the lowest cold qubit temperature, which can
be reached from the initial thermal state τ under unitary
evolution alone with the Hamiltonian H0 + Hint. The minimal
temperature is reached when the ground-state population of
the cold qubit is maximal. This population (referring to the
computational basis) is ρ1,1 + ρ2,2 + ρ3,3 + ρ4,4, and since
only ρ3,3 is affected by the evolution, that means ρ3,3 should
be maximal. The evolution shuffles population between the
states |010〉 and |101〉, corresponding to ρ3,3 and ρ6,6 and
hence the maximal value of ρ3,3 is max {τ3,3,τ6,6}. Which of
these elements is larger depends on the bath temperatures
and the energies. However, in a regime where the machine
provides steady-state cooling, the larger one is always τ6,6.
This can be seen using the virtual qubit picture [14]. Expressed

FIG. 4. (Color online) (a) Cold qubit temperature vs. interaction
strength. The lowest cold qubit temperature attained within a
fixed time of t = 500 is shown (solid) as well as the steady-
state value (dashed), for EC = 1, EH = 100, TC = TR = 1, TH =
100, pC = pH = 10−5, and pR = 10−3. (c) Cold qubit temperature
vs. time corresponding to the bath couplings of (a) and g = 5 × 10−3.
The lowest temperature attainable from the initial state by coherent
dynamics is indicated (dotted) as well as the steady-state value
(dashed). (b) and (d) are the same as (a) and (c), with pC =
10−4. Interestingly, the transient temperature of the cold qubit is
significantly lower compared to the steady-state value.

in terms of the cold and (normalized) virtual qubit ground
state populations at time zero, we have τ3,3 = rC(1 − rV )
and τ6,6 = (1 − rC)rV . Steady-state cooling requires TV <

TC [14], and hence rC < rV . Thus the minimal cold qubit
temperature is reached when the populations of |010〉 and |101〉
are completely reversed, which happens after half a period at
time t = π/2g.

Interestingly, due to the coherent dynamics, the cold
qubit temperature in the transient regime can be significantly
lower than the steady-state value. As the initial dynamics is
effectively dissipation free, the minimal temperature in this
regime is roughly independent of the bath couplings, contrary
to the steady-state value. An example of this behavior is
shown in Fig. 4. In particular, Fig. 4(d) shows how a cold
temperature is quickly reached during the coherent phase of
the evolution, while after damping out of the oscillations, the
temperature then approaches a higher steady-state value. In
this case, optimal cooling is achieved at t = π/2g.

While this optimal cooling would require a precise timing,
we note, however, that even if control on this short time scale
is not available, it may still be possible to achieve enhanced
cooling by extracting the qubit before reaching the steady
state. While coherent oscillations are damped out at a time set
by the largest bath coupling, the approach rate to the steady
state is determined by the smaller bath couplings, as discussed
above. Hence, when the couplings are different, there is an
intermediate regime between coherent dynamics and steady
state where the qubit temperature is low and precise time
control is not necessary to extract it [cf. Fig. 4(d)]. A minimum
cold qubit temperature can occur in finite time even when
coherent dynamics is not visible. This can happen, e.g., when

062101-5



JONATAN BOHR BRASK AND NICOLAS BRUNNER PHYSICAL REVIEW E 92, 062101 (2015)

FIG. 5. (Color online) A minimum cold qubit temperature is
reached in finite time for EC = 1, EH = 100, TC = TR = 1, TH =
100, pC = 10−5, pR = 10−3, pH = 10−5, g = 10−4. The steady-
state temperature is indicated (dashed) and half a period π/2g of
coherent evolution without dissipation (dotted).

the coupling to the hot bath is very weak, while the the largest
bath coupling exceeds the interaction strength, damping out
oscillations. An example is shown in Fig. 5. The optimal time in
this case scales linearly with pR and inversely with g but occurs
much later than the half-period π/2g corresponding to the first
minimum under coherent dynamics. One can understand this,
as well as the case where some initial oscillations are visible, in
the picture of an underdamped oscillator approaching critical
damping. As the damping is increased, in addition to the
amplitude of oscillations decreasing their period increases and
finally diverges as critical damping is reached.

We note that the effect of reaching a minimal temperature
in finite time is robust to small deviations in the coupling and
interaction parameters. The qualitative behavior persists as
long as the ordering of their magnitudes is preserved. Hence,
very precise control over the couplings is also not required to
achieve enhanced cooling in the transient regime.

D. Entanglement in the transient regime

We can thus characterize the dynamics of entanglement.
Here we focus on genuine tripartite entanglement, and on
entanglement on the bipartition R|CH , i.e., the bipartition
of energy in versus energy out. Examples are given in
Figs. 2(e)–2(h). It is clearly seen that in the coherent regime,
the amount of both types of entanglement can be considerably
larger than in the steady state.

In fact, it is simple to estimate how much entanglement
can be created in the transient regime. This amount will
depend on the relative sizes of the interaction strength and
the bath couplings, as well as on the initial state. However,
if the interaction strength is larger than the bath couplings,
at short times the evolution is approximately dissipation free,
as mentioned above. The system thus evolves approximately
unitarily under the Hamiltonian H0 + Hint, and the maximal
entanglement is what can be generated from the initial state τ

under this evolution. The only elements of τ that can change are
those in the degenerate subspace affected by Hint. The second
term in Eq. (11) is then invariant and the maximal entanglement
is obtained by maximizing |ρ3,6|, which occurs after a quarter
period at t = π/4g. The optimal value is |ρ3,6| = |τ3,3 − τ6,6|,

which results in a maximal bipartite entanglement of

Wmax
R|CH = N−1

∣∣e EC+EH
TR − e

EC
TC

+ EH
TH

∣∣

− 2N−1e
EC

2 ( 1
TC

+ 1
TR

)+ EH
2 ( 1

TR
+ 1

TH
)
, (13)

where N = (1 + eEC/TC )(1 + eER/TR )(1 + eEH /TH ). The max-
imum is the same across the other bipartitions; however,
we note that once the thermal dissipation is accounted for,
entanglement on R|CH appears to dominate the other two.
For genuine tripartite entanglement, Wmax

RCH , is obtained from
Eq. (13) by replacing the factor 2 with 6 in the negative term.

As an example, the maximal bipartite and genuine tripartite
entanglement extractable by the unitary dynamics is indicated
on Figs. 2(e)–2(h). It represents an upper bound on the
entanglement that can be extracted when one has control over
the system at the fast time scale set by g. As can be seen, the
maximal value is never reached exactly, due to the presence
of the bath couplings. While entanglement in the transient
regime is maximized for large interaction strength compared
to the bath couplings, this is not optimal for generation of
steady-state entanglement. Unlike for cooling, it is not optimal
to make g as large as possible. As a result, when optimizing
for steady-state entanglement, no oscillations are observed in
the transient regime, and the entanglement remains small com-
pared with the largest value obtainable from dissipation-free
evolution.

V. CONCLUSION

The dynamics of a small quantum absorption refrigerator
was investigated. We discussed the approach to equilibrium,
in particular with respect to time scales, cooling, and entangle-
ment. Notably, we observed that optimal cooling may occur
at finite times and not in the steady-state regime. Similarly,
the largest amount of entanglement is usually obtained in the
transient regime. As pointed out recently in Ref. [19], this
highlights the relevance of quantum effects in such thermal
machines.

We believe that the observation that enhanced cooling can
be achieved in the transient regime without the need for precise
timing or control of the fridge parameters may open interesting
possibilities for cooling or initializing quantum systems.

More generally, the methods discussed in the present work
could be adapted to other models of quantum refrigerators, as
well as to other quantum thermal machines, producing work
or entanglement [28].

Note added in proof. We recently became aware of a related
work by Mitchison and colleagues [19].
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We thank Géraldine Haack, Marcus Huber, Ralph Silva, and
Paul Skrzypczyk for discussions. We acknowledge financial
support from the Swiss National Science Foundation (Grant
No. PP00P2_138917, QSIT Director’s Reserve, and Starting
Grant DIAQ), and SEFRI (COST Action Grant No. MP1006).

062101-6



SMALL QUANTUM ABSORPTION REFRIGERATOR IN THE . . . PHYSICAL REVIEW E 92, 062101 (2015)

[1] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365
(2014).

[2] D. Gelbwaser-Klimovsky, W. Niedenzu, and G. Kurizki, Adv.
At. Mol. Opt. Phys. 64, 329 (2015).

[3] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk,
arXiv:1505.07835.

[4] S. Vinjanampathy and J. Anders, arXiv:1508.06099 [quant-
ph].

[5] H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2,
262 (1959).

[6] E. Geva and R. Kosloff, J. Chem. Phys. 104, 7681 (1996).
[7] J. P. Palao, R. Kosloff, and J. M. Gordon, Phys. Rev. E 64,

056130 (2001).
[8] L. A. Correa, Phys. Rev. E 89, 042128 (2014).
[9] R. Silva, P. Skrzypczyk, and N. Brunner, Phys. Rev. E 92, 012136

(2015).
[10] N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. Lett. 105,

130401 (2010).
[11] P. Skrzypczyk, N. Brunner, N. Linden, and S. Popescu, J. Phys.

A: Math. Theor. 44, 492002 (2011).
[12] L. A. Correa, J. P. Palao, G. Adesso, and D. Alonso, Phys. Rev.

E 87, 042131 (2013).
[13] M. P. Woods, N. Ng, and S. Wehner, arXiv:1506.02322

[quant-ph].
[14] N. Brunner, N. Linden, S. Popescu, and P. Skrzypczyk, Phys.

Rev. E 85, 051117 (2012).

[15] N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, and P.
Skrzypczyk, Phys. Rev. E 89, 032115 (2014).

[16] Y.-X. Chen and S.-W. Li, Europhys. Lett. 97, 40003 (2012).
[17] D. Venturelli, R. Fazio, and V. Giovannetti, Phys. Rev. Lett. 110,

256801 (2013).
[18] B. Bellomo, R. Lo Franco, S. Maniscalco, and G. Compagno,

Phys. Rev. A 78, 060302 (2008).
[19] M. T. Mitchison, M. P. Woods, J. Prior, and M. Huber,

arXiv:1504.01593 [quant-ph].
[20] G. M. Palma, K.-A. Suominen, and A. K. Ekert, Proc. Roy. Soc.

London A: Math. Phys. Eng. Sci. 452, 567 (1996).
[21] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
UK, 2007).

[22] O. Gühne and M. Seevinck, New J. Phys. 12, 053002 (2010).
[23] M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayr, Phys.

Rev. Lett. 104, 210501 (2010).
[24] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[25] Z.-H. Ma, Z.-H. Chen, J.-L. Chen, C. Spengler, A. Gabriel, and

M. Huber, Phys. Rev. A 83, 062325 (2011).
[26] J.-Y. Wu, H. Kampermann, D. Bruß, C. Klöckl, and M. Huber,
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