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Entropic lattice Boltzmann model for compressible flows
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We present a lattice Boltzmann model (LBM) that covers the entire range of fluid flows, from low Mach weakly
compressible to transonic and supersonic flows. One of the most restrictive limitations of the lattice Boltzmann
method, the low Mach number limit, is overcome here by three fundamental changes to the LBM scheme: use
of an appropriately chosen multispeed lattice, accurate evaluation of the equilibrium, and the entropic relaxation
for the collision. The range of applications is demonstrated through the simulation of a bow shock in front of an
airfoil and the simulation of decaying compressible turbulence with shocklets.
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Incompressible and compressible flows are stunningly
different [1], with turbulence on one end and shock waves
on the other. While the entire range is represented by the
fundamental Navier-Stokes (NS) and Fourier equations, the
different physics of the two extremes (low and high Mach
numbers) has led to the divergent paths that numerical
simulations have long followed: higher-order schemes for
direct numerical simulation (DNS) of turbulent and weakly
compressible flows, and shock-capturing schemes for highly
compressible and supersonic cases. The lack of a uniform
approach which would bridge these two limits in a natural
way is well recognized [2,3]: Compressible flows require
high dissipation (for example, near the shock front) to avoid
Gibbs oscillations while turbulence requires low dissipative
schemes to achieve accurate results. These mutually excluding
scenarios caused by the different physics create a fundamental
void in the numerical study of flows that involves both the
regimes of smooth flow (turbulence) and flows with discon-
tinuities which are an integral part of applications in high-
speed aerodynamics, astrophysics, magnetohydrodynamics,
etc. Hence, hybrid schemes are a necessity for flows with
discontinuities; however, it is believed that the “key role for
the success of hybrid methods is played by shock sensors”
[2]. Thus, high-fidelity reliable DNSs of compressible or high
Mach number flows still remain a challenge for the state-of-the
art numerical methods.

More recently, the lattice Boltzmann method (LBM) [4] has
emerged as an alternative recast of the Navier-Stokes equations
in a form of an overwhelmingly simple kinetic equation for
the populations of designer particles fi(x,t), with the simplest
rules of propagation on a space-filling lattice formed by
discrete velocities vi in discrete-time steps, and local relaxation
at the nodes x. At present, LBM has matured into a successful
method for incompressible flows [5]. Notably, the entropic
lattice Boltzmann method (ELBM) [6–8] has restored the
second law of thermodynamics (Boltzmann’s H theorem)
for the lattice kinetic theory and has enabled high Reynolds
number flow simulations. While the success of LB methods has
expanded greatly over the past two decades to porous media,
multiphase flows, and thermal incompressible flows, all these
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applications are confined to the low Mach number subdomain
of fluid dynamics. The situation is drastically different for
compressible flows where numerous attempts to derive a
genuine lattice Boltzmann model have failed, to date [9–16].
Earlier attempts were heavily reliant on tuning parameters or
artificial dissipation arising from inexact propagation, or the
introduction of correction terms and similar ad hoc techniques.
With all this, lattice Boltzmann models for compressible flows
drop short of a quantitative comparison to direct numerical
simulations, unlike in the case of low Mach numbers.

In this Rapid Communication, we show that the gap
between the incompressible and compressible flow compu-
tations is covered with an ELBM model that can simulate
both turbulence and discontinuous flows. Three fundamental
changes to the lattice Boltzmann scheme are introduced here
for the development of such a model: the use of a properly
chosen multispeed lattice, the accurate entropic equilibrium,
and the entropic relaxation for the collision. The capabilities of
this model are demonstrated by the simulation of a supersonic
bow shock in a flow around an airfoil at a high Reynolds
number, and compressible decaying turbulence. An excellent
comparison with reference data and the intrinsic simplicity of
the fully local ELBM makes it a promising candidate for a
direct numerical simulation of compressible flows.

We start by identifying a suitable discrete velocity lat-
tice. The primary guideline is to choose a lattice whose
discrete equilibria approximate the moments of the Maxwell-
Boltzmann distribution function as close as possible, which
in turn ensures the recovery of the NS equations. Using the
standard nomenclature D3Qn for the lattices with n speeds
in D = 3 space dimension, the hierarchy of lattices described
in Refs. [17,18] is constructed as the tensor products of D

copies of one-dimensional velocity sets Vk . The standard
D3Q33 lattice (V3 = {0,±1}) used in incompressible LBM
simulations is the lowest member of this hierarchy. We can now
derive the lattices D3Q53 (V5 = {0,±1,±3}), D3Q73 (V7 =
{0,±1,±2,±3}), and so forth. Figure 1 reports the deviation of
the equilibrium energy flux qeq from its Maxwell-Boltzmann
counterpart qMB = (ρ/2)u(5T0 + u2) for a few members of the
hierarchy as a function of the Mach number Ma = u/

√
γtrT0,

with γtr = 5/3 the adiabatic exponent of the ideal gas and
T0 the reference temperature specific to each lattice [17,18]
(kB/m = 1). We note that, moving up the hierarchy of the
lattices, the deviation of qeq from qMB drops dramatically. It
is also clear from Fig. 1 that the higher-order lattices have
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FIG. 1. (Color online) Deviation of the x component of the lattice
Boltzmann equilibrium energy flux qeq

x from the Maxwell-Boltzmann
value qMB

x as a function of Mach number, ε = |qeq
x − qMB

x |/|qMB
x |, is

shown for the three members of the lattice hierarchy, D3Q53,D3Q73,
and D3Q113. The shaded region indicates a deviation above 1%.
Lines are drawn to the limit of existence of the corresponding
equilibria.

a robust positivity domain of corresponding equilibria and
we can observe that the lattice D3Q73 is sufficient for the
transition from the subsonic to supersonic flow regime. It
must be noted that Fig. 1 would not be possible without
another key development introduced here, an accurate entropic
equilibrium, which is described later.

We now proceed with the construction of the compressible
entropic LBM by choosing the entropy function [6]

H (f ) =
n∑

i=1

fi ln (fi/Wi), (1)

where the weights Wi are determined by seven one-
dimensional weights, w0 = (36 − 49T + 42T 2 − 15T 3)/36,
w±1 = T (12 − 13T + 5T 2)/16, w±2 = T (−3 + 10T − 5T 2)/
40, w±3 = T (4 − 15T + 15T 2)/720, which are in turn de-
rived by matching the first four nonvanishing Maxwell-
Boltzmann moments at u = 0 [17,18]. The weight Wi of
each discrete velocity vi in the natural Cartesian reference
frame, vi = (vix,viy,viz), iα ∈ {0,±1,±2,±3}, is the algebraic
product of the corresponding one-dimensional weights, Wi =
wixwiywiz. This tensor product of the seven velocity one-
dimensional lattice is used for all the two- (D2Q72) and three-
dimensional (D3Q73) simulations presented here. The local
equilibrium is defined as the minimizer of the entropy function
(1) subject to the conserved fields of density ρ, momentum ρu,
and translational energy ρEtr = (3/2)ρT + ρu2/2,

{ρ,ρu,ρEtr} =
n∑

i=1

{
1,vi ,v

2
i /2

}
f

eq
i (ρ,u,T ). (2)

The key is to evaluate f
eq
i accurately. To that end, the

minimization problem is solved with the method of the
Lagrange multipliers (LMs), leading to

δH + δ[χρ + ζ · (ρu) + λρEtr] = 0, (3)

where χ (u,T ), ζ (u,T ), and λ(u,T ) are Lagrange multipliers
corresponding to the conservation of mass, momentum, and
translational energy, respectively. The formal solution to the
minimization problem reads

f
eq
i = ρWi exp

(
χ + ζ · vi + λv2

i

)
. (4)

This form of the equilibrium contrasts with a conventional
derivation [19] that derives the equilibrium from the con-
tinuous H function (Maxwell-Boltzmann distribution) and
then discretizes it to attain the discrete equilibrium. Such an
approach violates the entropy maximum condition (second
law) that is valid for the Boltzmann equation. In the case
of ELBM, we first discretize the continuous H function and
then obtain the equilibrium corresponding to this discrete H

function, thus guaranteeing compliance with the second law
of thermodynamics.

The function f
eq
i (ρ,u,T ) needs to be computed by applying

the conservation laws (2) on (3) and inverting the 5 × 5
nonlinear system for Lagrange multipliers in three dimensions
(3D). For the evaluation, we apply the rapidly converging
Newton-Raphson method to solve for the Lagrange multipliers
and obtain the accurate entropic equilibrium at a cost compa-
rable to the regular polynomial form. Our simulations show
convergence to an accurate solution [with an error of O(10−8)]
in five iterations on average. It is imperative to remark that
the conventional ways of deriving the equilibrium through a
Taylor series in the velocity u, which was valid in the low Mach
number limit, is inapplicable in the present case because the
errors accumulate rapidly with increasing Mach number. This
explains the failure of earlier attempts to construct a lattice
Boltzmann method for compressible flows using a polynomial
approximation to the equilibrium [19,20], and is recognized
as the major flaw in existing approaches. Moreover, the
polynomial form of equilibrium suffers from a limited range
of positivity for large deviations from T = T0 and u = 0 and
thus cannot be used in the construction of LB models that are
capable of handling large temperature and velocity gradients.
Armed with the above method of the accurate evaluation of
entropic equilibrium, the ELBM model for compressible flow
is written in the standard propagation-relaxation form as

fi(x + vi ,t + 1) − fi(x,t) = αβ1
(
f

eq
i − fi

)

+2(β1 − β2)[f ∗
i − f

eq
i ], (5)

where f ∗ is the quasiequilibrium which controls the Prandtl
number [21],

f ∗
i = f

eq
i + Wi Q : [vi ⊗ vi ⊗ vi − 3T vi I]/(6T 3), (6)

where Q = ∑n
i=1 fi(vi − u) ⊗ (vi − u) ⊗ (vi − u) is the

central heat flux tensor, and I is the unit tensor. Finally, the
ELBM entropic estimate α in (5) is the third crucial ingredient
of the model and is computed as the nontrivial root of the
entropy balance,

H (f ) = H [f + α(f eq − f )]. (7)

The entropy estimate (7) is applied in the same way as
in the previous realizations of ELBM for turbulence [22],
thermal convection [23], and recently also to multiphase
flows [24]. We shall comment later on the significance of
this key element of ELBM for compressible flows. By a
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FIG. 2. (Color online) Flow around a NACA0012 airfoil im-
mersed in a supersonic flow field at Ma = 1.4 and Re = 3 × 106

based on chord length and inflow speed. Bottom panel: Mach number
distribution. Top panel: Distribution of entropic estimate α. The
steady state was reached after 5000 lattice steps.

Chapman-Enskog analysis, we can show that the model (5)
recovers equations of compressible hydrodynamics [21], and
parameters β1 and β2 are related to the kinematic viscosity
and thermal diffusivity as ν = [1/(2β1) − 1/2]T and κ =
Cp[1/(2β2) − 1/2]T , respectively; the Prandtl number is thus
Pr = (1 − β1)β2/(1 − β2)β1. The model (5) is restricted to a
fixed value of adiabatic exponent γtr = 5/3 owing to the fact
that f

eq
i was matched to the Maxwell-Boltzmann distribution

for a monatomic gas. This restriction is removed following
the idea of Rykov’s kinetic model for diatomic molecules
[25] and introducing another set of populations gi which carry
the energy related to internal degrees of freedom (rotational
and vibrational) and thus enabling a variable γ . The kinetic
equation for g populations is written as

gi(x + vi ,t + 1) − gi(x,t) = αβ1
(
g

eq
i − gi

)

+2(β1 − β2)[g∗
i − g

eq
i ]. (8)

Equilibrium g
eq
i accounts for the conservation of the energy

stored in the internal degrees of freedom Eint = ∑n
i=1 g

eq
i =

(Cv − 3/2)ρT , where Cv is the specific heat at constant
volume. The conservation law for the total energy is now
written as

ρEtot = CvρT + ρ(u2/2) =
n∑

i=1

(v2
i /2)f eq

i +
n∑

i=1

g
eq
i , (9)

and the adiabatic exponent is now related to a variable specific
heat at constant volume Cv by γ = (Cv + 1)/Cv. Note that the
equilibrium g

eq
i does not need to be computed by another

Newton-Raphson iteration; once f
eq
i is evaluated, we set

g
eq
i = (Cv − 3/2)Tf

eq
i . The quasiequilibrium g∗

i is defined
consistently to f ∗

i as g∗
i = g

eq
i + Wiq · vi/T , where q =∑n

i=1 gi(vi − u) is the contracted centered heat flux tensor
associated with the internal degrees of freedom. With this
formulation, Eqs. (5) and (8), the Reynolds number, the Prandtl
number, and the adiabatic exponent γ can be set independently.
Below, we consider air with Pr = 0.7 and γ = 1.4.

This ELB model for thermal and compressible flows is vali-
dated in both two and three dimensions for subsonic, transonic,
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FIG. 3. (Color online) Pressure coefficient cp upstream and on
the NACA0012 airfoil surface. Symbol: ELBM. Line: Supersonic
flow solver [26]. Space reduced by chord length c. Inset: Zoom of
pressure distribution through the shock.

and supersonic regimes. First, we consider a two-dimensional
flow around an airfoil immersed in a supersonic flow at Mach
number Ma = 1.4 and Reynolds number Re = 3 × 106 and
a grid resolution of c = 200 for the chord of the airfoil.
To compare our simulation results to the solution of Euler
equations, free slip boundary conditions on the airfoil surface
were implemented according to Ref. [21]. Inlet boundary
conditions are applied by enforcing equilibrium at target inlet
quantities. An outlet boundary condition is implemented by
restoring previous time-step populations at the outlet nodes.
The top and bottom boundaries are set to guarantee periodicity.
The expected stationary bow shock is clearly visible in the
Mach distribution presented in Fig. 2. For this setup, we
compare the pressure coefficient cp = (P − P∞)/(0.5ρu2

∞)
upstream and on the airfoil surface to the specialized Euler
solver [26] in Fig. 3. The ELBM result is in excellent
agreement with the supersonic flow solver, which is considered
to be the state of the art for such flow setups.

The significance of the entropic estimate is demonstrated
in Fig. 2 by showing the distribution of α (7). Note that α

deviates significantly from the near-equilibrium value α = 2
[6] in the regions near the shock waves, thus damping the
Gibbs oscillations. This is demonstrated by the inset in Fig. 3
with a zoom into the inner structure of the bow shock: Only
small amplitude oscillations appear and they are confined in the
near-shock region. Also, the shock front is resolved with just
five to seven grid points. This provides evidence that the fully
explicit and purely local ELBM, free of any tuning parameter,
is able to stabilize the shock automatically and on demand.

To further validate the capability of ELBM as a predictive
method for subsonic and supersonic turbulent flows, we
consider here a 3D simulation of compressible decaying
turbulence following the direct numerical simulations of Ref.
[27]. Two cases were considered. Case 1 is representative of the
subsonic regime, with a starting Taylor microscale Reynolds
number Reλ = 72 and turbulent Mach number Mat = 0.1; case
2 covers the transonic and supersonic regimes with Reλ = 175
and Mat = 0.488. Simulations were performed on a uniform
cubic grid of L = 320 points and the initial turbulent velocity
field was generated by random Fourier modes according to
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FIG. 4. (Color online) Volume rendering of velocity divergence
∇ · u < 0 for decaying compressible turbulence simulation at t/τ =
1.56 (eddy turnover time τ = 107.04 in lattice units) for case 2. High
compression domains (shocklets) are seen here in red.

the energy spectrum of the form E(k) = Ak4 exp(−2k2/k2
0),

and uniform pressure and density similar to Ref. [27]. In
case 1, the local Mach number Maloc never exceeds the sonic
threshold. However, in case 2, Maloc can reach values around
Maloc = 1.5. Figure 4 shows the appearance of shocklets (high
negative values of flow divergence ∇ · u) which were also
reported in Ref. [27]. Figure 5 shows excellent agreement for
the decay of turbulent kinetic energy for cases 1 and 2, along
with the probability distribution function (pdf) of the local
Mach number for case 2.

Summarizing, it is remarkable to note that the entropic lat-
tice Boltzmann method and its formulation remain the same for
isothermal, multiphase, multicomponent, and here finally for
compressible flow simulations. The above ELBM is a physical
model which recasts the compressible flow problem into a fully
local and intrinsically simple computational framework of the
true lattice Boltzmann schemes. With one single algorithm
presented above, it is now possible to simulate a broad range
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FIG. 5. (Color online) Reduced turbulent kinetic energy K/K0

vs reduced time t/τ for the lower (τ = 223.36) and higher (τ =
85.62) turbulent Mach number. Case 1: DNS [27] (solid line) and
ELBM (circles). Case 2: DNS [27] (dashed line) and ELBM (squares).
Inset: pdf of local Mach number at t/τ = 1.56 for Case 2. Line: DNS
[27]. Symbol: ELBM.

of applications ranging from low Mach number flows to
transonic and supersonic flow regimes also in the presence
of arbitrarily complex obstacles. This is in sharp contrast
to NS solvers which require identification of different flow
regimes and employing the appropriate numerical approach
for it. This breakthrough was possible only by the accurate
evaluation of entropic equilibrium and entropic relaxation
on an appropriate lattice. In contrast to state-of-the-art fluid
solvers, all ELBM simulations are performed using Cartesian
meshes without any grid refinement, turbulence model, tuning
parameters, or tracking of the shock front. This, when viewed
in combination with the simplicity of the LB methods, could
make ELBM a competitive and viable option for compressible
flow simulations.
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