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Helicity conservation under quantum reconnection of vortex rings
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Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii
equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine
structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at
the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout
the process. Self-helicity is computed by two independent methods, and topological information is based on the
extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting
vortex rings.
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I. INTRODUCTION

A. Background

Reconnection of coherent structures plays a fundamental
role in many areas of science. Examples include vortices
in classical fluid flows [1,2], quantum vortex filaments in
superfluid helium [3,4], magnetic flux tubes in plasma physics
[5,6], phase transitions in mesoscopic physics [7], and macro-
molecules in DNA biology [8]. Here we focus on a single
reconnection event, which characterizes superfluid quantum
turbulence [9,10], by analyzing dynamical, geometric, and
topological properties that are relevant also in classical viscous
fluids [2], where similar features such as time asymmetry
[4], helicity transfers, randomization of the velocity field, and
energy cascades [11] are important.

In recent months, a number of remarkable results based
on experimental observations [12], mathematical analysis
[13], and theoretical and numerical work [14] have provided
contradictory information regarding helicity transfer through
reconnection. On the one hand, laboratory experiments on
the production and evolution of vortex knots in water show
[12] that the centerline helicity of a vortex filament remains
essentially conserved throughout the spontaneous reconnec-
tion of the interacting vortices. This result is mirrored by
the mathematical analysis of conservation of writhe and
total torsion (for definitions, see Sec. III below) under the
assumption of antiparallel reconnection of the interacting
strands [13]. On the other hand, recent numerical results
[14], based on a linearized model of interacting Burgers-type
vortices brought together by an ambient irrotational strain
field, show that the initial helicity associated with the skewed
geometry is eliminated during the process. This apparent
contradiction provided further motivation for the present study.

In this paper, we carry out a simulation of the interaction
and reconnection of a single pair of identical quantum vortex
rings. The evolution is governed by the three-dimensional
Gross-Pitaevskii equation (GPE), with the aim to reproduce
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and analyze in the GPE context the fine details of the
prototype reconnection event as studied in [14]. By resolving
the fine structure of the vortex cores, we monitor all the
relevant dynamical, geometric, and topological features of the
reconnection process. Consistently with current simulations
(see, for example, [11]), the peak in the normalized total
length of the vortex system, given by an initial stretching
process followed by its marked decay, is taken as a signature
of the reconnection event, providing a precise benchmark for
the diagnostics of the mathematical and physical properties
associated with the reconnection event.

B. Governing equations

Direct numerical simulation of the reconnecting quantum
vortex rings is done by using the 3D GPE,

∂ψ

∂t
= i

2
∇2ψ + i

2
(1 − |ψ |2)ψ, (1)

with background density ρb = 1. Through the Madelung
transformation ψ = √

ρ exp(iθ ), Eq. (1) admits decomposi-
tion into two equations that can be interpreted in classical
fluid dynamical terms, i.e., the continuity equation and the
momentum equation, given by

∂ρ

∂t
+ ∂(ρuj )

∂xj

= 0, (2)

ρ

(
∂ui

∂t
+ uj

∂ui

∂uj

)
= − ∂p

∂xi

+ ∂τij

∂xj

, (3)

where ρ = |ψ |2 denotes fluid density, u = ∇θ is the velocity,
p = ρ2

4 is the pressure, and τij = 1
4ρ

∂2 ln ρ

∂xi∂xj
denotes the so-

called quantum stress (i,j = 1,2,3). Defects in the wave
function ψ represent infinitesimally thin vortices of constant
circulation � = ∮

u ·ds = 2π of healing length ξ = 1. It is
well known that the GPE conserves mass, given by M =∫ |ψ |2 dx3, and the Hamiltonian E = K + I , where

K = 1

2

∫
∇ψ · ∇ψ∗ dx3, I = 1

4

∫
(1 − |ψ |2)2 dx3 (4)
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FIG. 1. (Color online) Time-evolution of interaction and recon-
nection of two quantum vortex rings; isosurfaces of ρ = 0.06.
(a) t = 0, (b) t = 10, (c) reconnection time t = t∗ = 11.81, and
(d) t = 14.

denote, respectively, the kinetic (K) and interaction (I ) energy
of the system (ψ∗ being the complex conjugate of ψ). The
term τij , negligible compared to the pressure term at length
scales much larger than the healing length ξ = 1, is expected
to be key to vortex reconnection [4], and at scales larger than
the vortex core, the GPE in the form of Eqs. (2) and (3) reduces
to the classical compressible Euler equations.

C. Helicity and self-linking number

A fundamental quantity of topological fluid mechanics is
kinetic helicity, defined by [15]

H =
∫

u · ω dx3, (5)

where ω = ∇ × u is the vorticity, and the integral is extended
over the vorticity volume. H is known to be an invariant of
ideal fluid flows, and in ideal conditions it admits a topological
interpretation in terms of linking number [16]. For a pair of
linked vortex rings V1 and V2, centered, respectively, on curves
C1 and C2 and of equal circulation �, Eq. (5) can be written
as [17,18]

H (V1,V2) = �2[SL(V1) + SL(V2) + 2 Lk(C1,C2)], (6)

where H (V1,V2) is the total helicity of the system, SL(Vi) is
the (Călugăreanu-White) self-linking number of Vk (k = 1,2),
and Lk(C1,C2) is the (Gauss) linking number of C1 and C2.
Note that if the pair of rings are unlinked [as in our case,
cf. Fig. 1(a)], then Lk(C1,C2) = 0, and (6) can be further
simplified to

H (V1,V2) = �2[SL(V1) + SL(V2)]. (7)

In general the self-linking number, SL, can be decomposed
into global geometric quantities, and one can show [19,20]
that SL(Vk) = Wr(Ck) + T (Ck) + N (Rk), where the writhing
number Wr(Ck), total torsion T (Ck), and intrinsic twist N (Rk)
are quantities that depend solely on the shape of the vortex
centerline Ck and ribbon Rk (for definitions, see [13,18] and
Sec. III below).

II. NUMERICS AND INITIAL CONDITIONS

The numerical code used for the simulation is described in
[4]. It is based on a second-order Strang splitting method in
time, and Fourier decomposition in space. Hence, boundary
conditions must be periodic; for nonperiodic directions, the
computational domain is doubled and “mirror” vortex rings
are introduced in the doubled domain, as was done in [21].
The method conserves mass exactly.

Initial conditions

A pair of vortex rings is set at the center of the numerical
box. While this particular setting provides a good comparative
test for the physics of vortex reconnection [22], it helps to avoid
difficulties associated with the numerical implementation of
boundary conditions and the topological complexity implied
by periodic conditions while offering a realistic match to
simulate the event studied in [14].

At time t = 0, the two rings are centered in (0; ±10; 0),
have radius R0 = 8, and are mutually inclined by an angle α =
±π/10 with respect to the horizontal plane [see Fig. 1(a)]. The
computational domain is [−20; 20] × [−30; 30] × [−20; 20].
To have fine spatial and temporal resolution of the vortex core
and of the reconnection process, we have used �x = �y =
�z = ξ/6 (i.e., the number of points is 240 × 360 × 240) and
�t = 1/80 = 0.0125.

At each point Q on the vortex ring, we place a Frenet triad
{t̂,n̂,b̂} given by the local unit tangent, normal and binormal
to the vortex centerline (no inflection points emerge during the
simulation). For each grid point P in the numerical domain,
we seek the nearest point Q on the vortex line so that

−→
QP

identifies the distance of P from the vortex. Thus,
−→
QP is

locally orthogonal to the vortex, in the plane defined by n̂ and
b̂ at Q. In this plane, P has polar coordinates (r,θ ) centered
on Q, where r = QP and θ is the angle between

−→
QP and n̂.

Each vortex contributes to the initial condition with a
density distribution ρ0k given by the Padé approximation [23]
ρ0k = ( 11

32 r2 + 11
384 r4)/(1 + 1

3 r2 + 11
384 r4), and phase distribu-

tion θ0k . The initial condition due to the presence of both rings
is thus ψ0 = √

ρ01ρ02 exp [i(θ01 + θ02)].

III. EXTRACTION OF GEOMETRIC
AND TOPOLOGICAL QUANTITIES

Normalized total length L/ξ , writhe Wr, normalized total
torsion T , and intrinsic twist N are the global geometric
quantities we want to monitor during reconnection. The total
twist is given by Tw = T + N , and together with Wr it gives
the self-linking number SL = Wr + Tw, a topological invari-
ant. These quantities are well-defined (assuming everything is
sufficiently smooth) for each individual vortex ring.

The writhe Wr = Wr(C) is analytically defined by

Wr = 1

4π

∫
C

∫
C

x − x∗

‖x − x∗‖3 · (
dx × dr∗), (8)

where C is the vortex centerline and x and x∗ denote the
position vectors of two points on C.
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The normalized total torsion T = T (C) is given by

T = 1

2π

∫
C

τ (s) ds, (9)

where (from its basic definition) the local torsion τ (s), function
of arc-length s on C, involves third-order derivatives of the
position vector x of any point on C.

Intrinsic twist N = N (R) measures the rotation around C

of a reference ribbon R (with baseline C) as we move along C.
Here R has edges given by C and C ′, a second curve obtained
by translating C a small distance ε (the width of R) along a unit
normal vector û to C. ε is chosen to be constant along C and
sufficiently small compared to the local radius of curvature.
Clearly R depends on the choice of û, and in the absence of
inflection points this is always well-defined [17,18]. If ϕ(s)
denotes the angle between û and n̂, we have

N = 1

2π

∫
C

dϕ(s)

ds
ds = [�]C

2π
, (10)

which measures the number of full rotations of the ribbon R

after one full turn along C. From the definition of total twist,
one can show [18] that indeed Tw = T + N .

IV. RESULTS

Vortex centerlines are extracted from numerical data, first
by isolating the tubes whose density ρ < 0.2, and then by
looking for minima of ρ/|ω| (minima of density correspond
to maxima of vorticity). Particular care has been taken to
extract sufficiently smooth data. Intrinsic twist is obtained from
phase information. The ribbon R is thus obtained by requiring
constant phase θ = θ̄ along C, and by setting ε = 0.3, a
good compromise is reached between visualization needs and
misleading effects. As usual, smoothing was applied to ensure
sufficient regularity.

Figure 1 shows four snapshots of the time evolution of
interaction and reconnection of the quantum vortex rings
(isosurfaces of ρ = 0.06). Before reconnection, the two vortex
rings move toward each other, bending upward in the region
near the reconnection site, with the more distant parts of
the vortices remaining almost unaffected. The change of
normalized total length L/ξ of the pair of rings against time
is used to check the reconnection process and to detect the
reconnection time. The plot is shown in Fig. 2 for t ∈ (10,14).
The marked peak at t = t∗ = 11.81, after stretching, is taken
as a signature of the reconnection time. The maximum value
Lmax ≈ 108.6 ξ corresponds to about 8% of an increase with
respect to the initial total length, given by L0 ≈ 100.5 ξ . For
t > t∗, the system relaxes at a faster rate, confirming the time
asymmetry found in earlier work [4].

As a further check, we plot the Hamiltonian (E) given
by the normalized total energy (K + I )/E and, separately,
the normalized kinetic energy K/E and interaction energy
I/E, given by (4) [see Fig. 3(a)]. Kinetic helicity is computed
according to Eq. (5). As shown in Fig. 3(b), its value remains
bounded, i.e., |H | < 10−9, which is approximately zero
throughout the reconnection process [at these length scales, the
spikes of the plot in Fig. 3(b) are essentially due to numerical
noise]. A check on vortex strength confirms the conservation
of � before and after reconnection. A closeup view of the

FIG. 2. (Color online) Normalized total length L/ξ , plotted
against time t . The peak in L/ξ is taken as signature of the
reconnection time at t = t∗ = 11.81.

vortex centerlines (in red) and reference ribbons (green and
blue) immediately before and after reconnection is shown
in the plots of Figs. 4(a) and 4(b). The reconnection event
takes place at a much faster time scale, well beyond numerical
accuracy. To monitor as closely as possible the topological
transition, the event is represented at maximum numerical
resolution by showing the diagrams of the discretized vortex
centerlines in Fig. 5(c). As we can see from the central diagram
of Fig. 5(c) (at t = t∗), the reconnecting event is numerically
triggered by a jump at the two nodal points (circles) of
closest approach, demonstrating that in the limit of numerical
resolution, reconnection involves only the mutual cancellation
of two antiparallel polygonal segments.

Finally, we examine the individual contributions to the self-
linking number by using the independent equations (8)–(10).
Plots of Wr, T , N , and SL against time are shown in Fig. 5. The
ribbon R is found to be θ = θ̄ ≈ 50◦. Writhe and twist remain
very small throughout the process. They are identically zero
only at t = 0 when the vortex rings are exactly planar tori,
whereas for t > 0 the vortex centerlines become gradually
deformed. Except for a few spikes, which are not related to
reconnection, |Wr| < 10−4 and |Tw| < 2 × 10−4. Numerical
errors associated with the computation of Tw are generally
larger than those on Wr because of the higher-order derivatives
involved in the computation of the normalized total torsion
[see Fig. 5(b)] and the additional numerical noise associated

FIG. 3. (Color online) (a) Normalized total energy (Hamiltonian)
(K + I )/E, normalized kinetic energy K/E, and normalized interac-
tion energy I/E plotted against time t . (b) Kinetic helicity H plotted
against time t . The vertical (red) line denotes the reconnection time
t = t∗ = 11.81.
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FIG. 4. (Color online) A closeup view of the vortex centerlines (red) and reference ribbons (green and blue, pale gray, and darker otherwise)
(a) immediately before reconnection at t = 11.81 and (b) immediately after reconnection at t = 11.88. The transition is shown at maximum
numerical resolution: (c) vortex centerlines just before (t < t∗, red) and after (t > t∗, black) reconnection; the state in-between (at t = t∗)
shows that reconnection is numerically triggered by a jump at just two nodal points (circles).

with the computation of N [see Fig. 5(c)]. The numerical
code has been validated by computing Wr and Tw of known
benchmarks, and we are confident that the reported spikes are

FIG. 5. (Color online) (a) Writhe (Wr), (b) normalized total
torsion (T ), (c) normalized intrinsic twist (N ) (with θ̄ ≈ 50◦), and
(d) self-linking number (SL) plotted against time t . The vertical line
(red) denotes the reconnection time t = t∗ = 11.81.

only due to an accumulation of numerical errors. Thus, we
conclude that all plots of Fig. 5 show consistently Wr = T =
N = SL = 0 throughout the reconnection process.

V. CONCLUSIONS

We have performed numerical simulations of the GPE that
resolve the fine structure of the vortex core under antiparallel
reconnection of the tube strands of two colliding quantum vor-
tex rings. This simple scenario provides a good benchmark for
comparison with earlier works on direct numerical simulation
of reconnecting vortex rings under Navier-Stokes equations
[24,25], and an ideal setup for clarifying recent contradictory
results obtained by experiments and theoretical modeling on
classical vortex dynamics.

Reconnection under Gross-Pitaevskii is clearly manifested
by the generation of a peak in total length, and this is
taken as a marker of the reconnection event. We took extra
care to monitor the behavior of several geometric quantities
during reconnection. As predicted by geometric analysis [13],
writhe and total torsion are found to remain conserved,
whereas there is no change in total intrinsic twist, all these
clearly maintaining the self-linking number invariant. Self-
helicity, computed independently by using Eq. (5), is found
consistently to remain conserved during reconnection. Since
in our experiment the (Gauss) linking number Lk is always
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zero (the rings remain unlinked throughout the process), there
is no contradiction with the fact that during reconnection
topology actually changes (as indeed happens here). The fact
that self-helicity, and hence total helicity, remains conserved
during reconnection is thus something not only new for

quantum systems, but also in good agreement with the recent
experimental observations of reconnecting vortices in water
[12]. The methods used here can certainly be extended to
study more complex topologies, and further work is indeed
underway to analyze and to extend these preliminary findings.
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