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Dynamics of a polymer in an active and viscoelastic bath
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We study the dynamics of an ideal polymer chain in a viscoelastic medium and in the presence of active forces.
The motion of the center of mass and of individual monomers is calculated. On time scales that are comparable
to the persistence time of the active forces, monomers can move superdiffusively, while on larger time scales
subdiffusive behavior occurs. The difference between this subdiffusion and that in the absence of active forces
is quantified. We show that the polymer swells in response to active processes and determine how this swelling
depends on the viscoelastic properties of the environment. Our results are compared to recent experiments on the
motion of chromosomal loci in bacteria.
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I. INTRODUCTION

The dynamics of a polymer in a viscous solvent in
equilibrium is well understood [1,2]. Starting from the exactly
solvable Rouse model [1], which neglects excluded volume
and hydrodynamic interactions, it was found that the center of
mass of the polymer diffuses with a diffusion constant D that
is inversely proportional to the number of monomers N . The
time for the polymer to diffuse over its own radius of gyration
RG(∼N1/2) then introduces a typical time scale, called Rouse
time scale, τR , which scales with N as τR ∼ R2

G/D ∼ N2.
Individual monomers subdiffuse for times smaller than τR , but
follow the diffusion of the center of mass after τR [2]. Going
beyond the Rouse model, the effects of excluded volume and
hydrodynamic interactions can be incorporated using scaling
theories [3], simulations, and exactly solvable models [4].

Much less is known about the dynamics of a polymer in the
crowded [5] and nonequilibrium cellular environment. The
crowdedness introduces viscoelastic behavior [6] with a long
term memory, while the action of molecular motors and other
ATP-driven, active processes puts the cell out of equilibrium.

Recently, several experimental and theoretical studies have
investigated the role of active processes on biopolymer dynam-
ics. On a coarse grained scale, activity can be seen as an extra
source of randomness in addition to that due to thermal motion.
This is reflected in a random motion of tracer particles (and
small biopolymers such as proteins) that is much enhanced
in comparison with thermal Brownian motion [7–10]. In
other experiments, the internal dynamics of a polymer was
found to be influenced by the presence of active forces. We
mention the effect on the bending dynamics of microtubuli
[11]. More relevant for the present Rapid Communication are
studies in which it was found that the motion of chromosomal
loci in simple organisms such as bacteria and yeast are
sensitive to active forces [12,13]. For example, Weber and
collaborators [12] found that after addition of chemicals that
inhibit ATP synthesis, the diffusion constant of chromosomal
loci decreased by 49%. Also, measurements of chromatin
dynamics in eukaryotes show evidence for an important role
played by ATP-dependent processes [14].

In the theoretical description of the motion of chromosomal
loci, it came as somewhat of a surprise that again the simple
Rouse model turned out to be relevant [15]. Indeed, it was

recently argued to give a good description of this motion,
both between [16] and during chromosomal segregation [17].
The reason for this may be the action of topoisomerases
and related enzymes which cross chromosome strands and
thus make the bacterial chromosome a phantom chain [15].
However, other models have been introduced to describe the
motion of bacterial chromosomes, for example, in terms of
self-adhesion of monomers [18]. None of these models did,
however, explicitly investigate the effects of active forces.

In the present Rapid Communication, we extend recent
work on the Rouse chain in a viscoelastic medium [17,19,20]
by including active forces. The advantage of our model
is that it is exactly solvable and hence like the original
Rouse model can be used as a benchmark for studies of
more realistic models that include physical effects such as
self-avoidance, bending rigidity, and so on. Some of our results
(superdiffusion, polymer swelling) have indeed been recently
seen in simulations [21,22] of such models. However, all the
numerical work known to us is for the viscous regime. Our
work includes both effects of viscoelasticity and active forces,
two ingredients that are necessary for a proper modeling of a
cellular environment.

II. MODEL

The Rouse model [1,2] is the starting point in all discussions
of polymer dynamics. It models a long polymer chain as a set
of N beads (monomers) connected by harmonic springs. It is
important to point out that such a description of a real polymer
is only appropriate at a coarse grained level, i.e., at length
scales above the persistence length. Hence, our model will
only be relevant for long biopolymers (such as chromosomes)
and also other physical properties, such as crowdedness,
viscoelasticity, and active forces, will be described at this
coarse grained level.

We denote by �Rn(t) the position of the nth monomer (n =
0,1, . . . ,N − 1) at time t . Let us discuss the various forces
acting on this monomer (for a schematic representation of our
model, see Fig. 1).

In the Rouse model, the monomers are connected by springs
with spring constant k. In equilibrium, the average squared
distance b2 between two monomers then follows from the
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FIG. 1. (Color online) Cartoon of our model: a large polymer
(black spheres connected with springs) in a dense crowded cellular
environment (orange spheres represent other smaller biopolymers
such as proteins, RNA,...) that is brought out of equilibrium by active
processes (blue spheres with arrows represent active particles that for
a time of order τA move in a fixed direction).

equipartition theorem and equals b2 = 3kBT /k where kB is
Boltzmann’s constant and T is temperature. A Rouse chain
gives a description of a semiflexible polymer on length scales
where b corresponds to the Kuhn length [23]. We will apply
our model to the bacterial chromosome, for which the Kuhn
length is of the order of 100 nm or 300 base pairs (bp) [17].
Since the chromosome of E. coli has approximately 4.5 × 106

bp, the relevant value of N is of the order 104.
The cellular environment is a crowded material [6,24,25]

in which tracer particles’ motion (nanoparticles, mRNA,...)
was found to be subdiffusive (for a recent review, see [26]).
While originally the precise explanation of this behavior
was unclear, and various mechanisms were proposed, recent
experimental evidence shows that viscoelasticity and its
mathematical description based on a generalized fractional
Langevin equation best describes the observed behavior [27].
The friction force �Fn(t) on a monomer in a viscoelastic medium
has memory and is commonly described in terms of a power
law kernel K(t) = (2 − α)(1 − α)t−α ,

�Fn(t) = −γ

∫ t

0
dτ K(t − τ )

d �Rn(τ )

dt
. (1)

Viscous behavior is recovered for α = 1 [for which K(t) →
δ(t)] while for α = 0 we get elastic behavior. For 0 < α < 1,
we have the viscoelastic situation, intermediate between elastic
and viscous response. Estimates of α range from α ≈ 0.7 for
E. coli [16] to α ≈ 0.2 in the cytoplasm [10] of eukaryotes. An
expression for the friction like Eq. (1) breaks down on short
time scales of the order of the molecular collision time scale.
In bacterial cells, an upper limit to memory effects is put by
the cellular lifetime.

The random thermal force �ξT,n(t) acting on the nth
monomer is given by a Gaussian random variable, with average
zero and a correlation that is coupled to the kernel K(t) by the
(second) fluctuation-dissipation theorem [28]

〈�ξT,n(t) · �ξT,m(t ′)〉 = 3γ kBT K(|t − t ′|)δn,m. (2)

With the choice of the power law kernel, �ξT,n(t) becomes
fractional Gaussian noise [29].

Much less is known about the precise form of the active
forces �ξA,n(t). In fact, the precise characterization of their
statistical properties in living cells is a topic of current research
[9,30–33]. Ultimately, the activity is due to active “particles”
(molecular motors, or other active proteins) that consume
energy to generate motion and associated dissipation. In a
simple model (see [34] for a review), self-propelled particles
(SPPs) move with constant velocity in a direction �e that is
subject to rotational Brownian dynamics. This leads to a typical
motion in which the autocorrelation of �e decays exponentially.
In [22], the dynamics of a polymer in the presence of such SPPs
is studied. The polymer and SPPs interact through a truncated
Lennard-Jones potential. On a more coarse grained level, this
type of interaction leads to a random force on the monomers.
The force has an exponential correlation with a time scale τA,
which can be interpreted as the typical time during which the
SPPs move in a straight line.

The modeling of active processes through this type of
random forcing is quite common in the literature and was,
for example, used in [21] in simulations of active semiflexible
polymers. We will follow this approach since our model, as
already stressed above, is defined on a coarse grained scale.
In conclusion then, we assume that the active force on the nth
monomer, �ξA,n(t), is a Gaussian random variable with average
zero and a correlation given by

〈�ξA,n(t) · �ξA,m(t ′)〉 = 3C exp(−|t − t ′|/τA)δn,m. (3)

Here C characterizes the strength of the active noise. We do
not include possible spatial correlations in order to keep the
model soluble. Moreover, little experimental insight on such
correlations is available.

Putting everything together and neglecting inertial terms,
the equation of motion of the nth monomer is the overdamped
generalized Langevin equation

�Fn(t) − k[2 �Rn(t) − �Rn+1(t) − �Rn−1(t)]

+ �ξT,n(t) + �ξA,n(t)H (t) = 0, (4)

where H (t) is the Heaviside function. It is important to point
out that the active forces, since they are not related to the
friction kernel, put the system out of equilibrium. Starting in
equilibrium at t = 0, the solution to Eq. (4) therefore gives
the response of the polymer to, for example, the addition of
ATP at t = 0. After a long time, the polymer will evolve to a
new, nonequilibrium steady state. In the next section we will
calculate both the transient and steady state behavior of the
polymer after activation of the active forces.

III. RESULTS

The techniques to solve the set of equations (4) with
appropriate boundary conditions are standard [2]. The details
are given in the Supplemental Material to this Rapid Commu-
nication [35]. Here, we discuss only the results.

In the dynamics of the polymer two relevant time
scales occur. The first is τA, and the second is the Rouse
time τR , which in the viscoelastic medium equals [�(3 −
α)γ b2N2/3kBT π2]1/α [19,20]. Notice that for the bacterial
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FIG. 2. (Color online) Log-log plot of squared distance traveled
by the center of mass as a function of t/τR for a Rouse chain in
a viscoelastic medium (α = 0.7, kBT = γ = 1) in the presence of
active forces with C = 100 and τA/τR = 10−2,10−3,10−4 (full lines,
top to bottom) compared to that without active forces (dashed line).
The inset shows the same for the viscous case, α = 1. Results are for
N = 256.

chromosome, using the values of b, N , and α quoted above, τR

can become quite large, indeed larger than the duration of the
cell cycle. The persistence time of active processes should be
much smaller than the cellular lifetime, so that when applying
our model to the bacterial chromosome, the two time scales
are separated, τA 	 τR . Experiments on chromosomal loci
are done on time scales of 0.1 seconds to minutes, i.e., in the
regime τA ∼ t 	 τR .

We first discuss the motion of the center of mass �Rcm(t). It
was found earlier that in a viscoelastic medium, but in absence
of active forces [16], the center of mass �Rcm(t) performs a
subdiffusion

σ 2
cm(t) = 〈( �Rcm(t) − �Rcm(0))2〉 = 6kBT

γNαGα

tα, (5)

where Gα = �(α)�(3 − α). To this subdiffusion an extra term
is added when the active forces are turned on. It equals

6Cτ 2α
A

Nγ 2G2
α

∫ t/τA

0
dy eyyα−1�(α; y,t/τA), (6)

where �(α; y,x) is a difference of two incomplete gamma
functions. First, observe that as in the standard Rouse chain,
the (generalized) diffusion constant remains inversely pro-
portional to N . More interestingly, it can be shown that for
t 	 τA, (6) goes as t2α , i.e., is superdiffusive if α > 1/2. On the
other hand, for t 
 τA, (6) evolves as t2α−1, i.e., slower than
(5), so that asymptotically in time, σ 2

cm(t) ∼ tα . The resulting
behavior is shown in Fig. 2 for α = 0.7, C = 100, and various
values of τA [36]. As the figure shows (boxed region), if CτA is
large compared to γ kBT , over several orders of magnitude in
time, the center of mass subdiffuses with an exponent 2α − 1,
whereas without active forces, the exponent would be α. If this
time regime corresponds to the experimental one, not taking
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FIG. 3. (Color online) Squared end-to-end distance of the poly-
mer as a function of time. In the main figure (inset), the equilibrium
length is (not) subtracted. The straight line has slope 1.4 (τA/τR =
10−4, C = 100, α = 0.7,N = 256).

into account active forces could lead to a wrong estimate of
the exponent α, and hence to a wrong characterization of the
rheological properties of the environment. Results like that of
Fig. 2 are under the assumption that our model is realistic for
all t . When comparing with experimental data, one has to take
into account that, as already discussed in the previous section,
the model will break down on small and large time scales.
Therefore in the cellular context, it is possible that only the
superdiffusive behavior is observed.

For the viscous case, 2α − 1 = α, so that after an initial
regime of ballistic motion σ 2

cm(t) ∼ t2, the polymer performs
ordinary diffusion but with a diffusion constant that is
enhanced by a factor 1 + CτA/γ kBT (see inset of Fig. 2).

A second global quantity is the end-to-end vector �P (t) =
�R0(t) − �RN−1(t). Its averaged squared length, R2(N,t) =
〈 �P (t) · �P (t)〉, measures the size squared of the polymer and
equals in equilibrium, both in viscous and viscoelastic media,
b2N . In response to active forces, R2(N,t) gets an additional
term which equals

24C

Nγ 2�2(3 − α)

N−1∑
p=1,odd

∫ t

0
dτ

∫ t

0
dτ ′e−(|τ−τ ′|/τA)τα−1τ ′α−1

×Eα,α

[
−

(
τ

τp

)α]
Eα,α

[
−

(
τ ′

τp

)α]
. (7)

Here Eα,β(z) is the generalized Mittag-Leffler function [37],
and τp = τR/p2/α . Since (7) is positive, we conclude that
active forces swell the polymer. It can be easily shown that
initially this swelling grows proportional to t2α after which
R2(N,t) saturates. In Fig. 3, we show the results of a numerical
evaluation of (7) for a polymer with N = 256 in a medium with
α = 0.7.

The value at which R2(N,t) saturates, i.e., the squared size
of the polymer in the new, nonequilibrium steady state, has
an interesting N dependence. For the viscous case, α = 1,
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FIG. 4. (Color online) Difference between squared end-to-end
distance of the polymer in the nonequilibrium steady state and in
equilibrium as a function of N for α = 1, 0.8, and 0.4 (top to bottom).
The symbols are the result of a numerical evaluation of (7) for t → ∞.
The full line is a plot of (8), and the dashed line of (9).

the integrals in (7) can be easily calculated. In this way, it is
found that the swelling of the polymer is proportional to N so
that

R2
ne(N ) ≡ lim

t→∞ R2(N,t) =
(

1 + CτA

γ kBT

)
b2N. (8)

In fact this result is exactly what can be expected from a recent
extension of the equipartition theorem to harmonic oscillators
in viscous, active media [38]. In that reference, the average
potential energy of a harmonic oscillator in a viscous, active
bath is calculated and compared with experiments. Using
the results of that paper, and the fact that the Rouse chain
consists of N independent harmonic oscillators, one can also
derive (8).

In the viscoelastic case, the situation is more complicated.
It is possible to determine the leading behavior of the integrals
in (7) for N 
 1 (and t → ∞). In this way it is found that for
2/3 < α < 1,

R2
ne(N ) = b2N + 48CτA(4π2k)1/α−2

[γ�(3 − α)]1/α
f (α)N3−(2/α), (9)

where

f (α) = ζ (4 − 2/α,1/2)
∫ ∞

0
dx x2α−2E2

α,α(−xα)

and ζ (x,y) is the Hurwitz zeta function. In Fig. 4 we show the
results of a numerical evaluation of (7) for α = 0.8 together
with the asymptotic behavior (9) (dashed line). For α < 2/3,
numerical integration of (7) indicates that the swelling of
the polymer approaches a constant as N increases (Fig 4).
From our calculations, we see that in an active environment,
large polymers are orders of magnitude more compact in a
viscoelastic medium with small α. This observation could
be of relevance for storing a large chromosome in a small
cell.

Finally, we turn to the motion of the individual monomers.
From an experimental point of view, this quantity is the most
interesting one, since it can be determined using fluorescence
techniques [12,13,39,40]. We present results for the middle
monomer, but the behavior of other monomers is qualitatively
the same (see Supplemental Material for the general case [35]).

In the absence of active forces, one has [16]

σ 2
m(t) = 〈( �RN/2(t) − �RN/2(0))2〉 = 6kBT

γNαGα

tα

+ 4b2N

π2

N−1∑
p=2,even

1

p2

{
1 − Eα,1

[
−

(
t

τp

)α]}
. (10)

For t < τR , the monomer is found to be subdiffusive with
an exponent α/2, whereas on time scales larger than τR , the
monomer follows the motion of the center of mass, and hence
subdiffuses with an exponent α. Since for the cytoplasm of E.
coli, α equals approximately 0.7, the observed exponent of the
subdiffusion of the chromosomal loci, 0.39 ± 0.04 [13,16], is
consistent with α/2 within the experimental error.

In the presence of active forces two terms have to be added
to (10). The first one is the same as for the center of mass (6),
and the second equals 1/4 of (7) (but now with the sum over
the even modes).

Analyzing the resulting behavior, we find that as was the
case for the center of mass, the short time response of the
monomers to active forces is superdiffusive (at least when
α > 1/2). This behavior, where σ 2

m(t) ∼ t2α , holds for t � τA.
Very recently superdiffusive motion of chromosomal loci has
indeed been observed [39]. It is not clear whether these
rapid chromosomal movements are due to active processes
or to stress relaxation. Our results, however, quantify better
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FIG. 5. (Color online) Log-log plot of σ 2
m(t) as a function of time

in the presence of active forces (full lines) for α = 0.7,kBT = γ =
1,C = 104,N = 256 and τA/τR = 10−2,10−3,10−4 (top to bottom).
The dashed line is the same quantity in the absence of active forces.
The inset shows that the results for a smaller time window in the
absence and presence of active forces (C = 1, τA/τR = 10−2) run
parallel.
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the response to active forces and could therefore help in
discriminating the real origin of the observed motion.

For t 
 τR the monomers follow the tα subdiffusion of
the center of mass. The behavior in the intermediate time
regime, τA 	 t 	 τR , is more complicated and contains terms
proportional to tα/2 [coming from (10)], t2α−1 (from the center
of mass), t3α/2, and t3α/2−1. No simple power law behavior
emerges. A plot of the full expression for σ 2

m(t) (Fig. 5) for C

large shows that the initial superdiffusion is followed by a t3α/2

behavior, after which there is a large time window in which the
t2α−1 term dominates. The crossover time to the tα regime is
very large, and may not be observable for chromosomal loci.
For certain values of C and τA, there is a time regime (see
inset of Fig. 5) where, on a log-log scale, the graphs of σ 2

m(t)
in the presence and absence of active forces run parallel. This
scenario resembles, at least qualitatively, the experimental one,
where after inhibition of ATP synthesis with sodium azide and
2-deoxyglucose, the exponent of the loci’s subdiffusion hardly
changed but the diffusion coefficient decreased [12].

IV. CONCLUSIONS

In summary, we have studied the behavior of a long ideal
polymer chain in a viscoelastic and active bath. We have
formulated and solved a nonequilibrium version of the Rouse
model, a model that in equilibrium forms the starting point
of the theory of polymer dynamics. The results obtained are
interesting for nonequilibrium statistical mechanics (power
law response to active forces, equipartition theorem out of
equilibrium) and polymer physics (swelling of polymer in an

active bath). Moreover, our results show a qualitative similarity
with experimental results on bacterial chromosomes. We
mention the regime with superdiffusive motion of monomers
and the fact that in certain time frames the exponent of the
subdiffusive motion is almost independent of the presence or
absence of active forces.

While the Rouse model has been claimed to describe well
several properties of bacterial chromosomes [16,17], it is clear
that such a description cannot be valid for all time and length
scales and that effects of self-avoidance, bending rigidity,
topology, and so on have to be taken into account. This is even
more true for chromatin for which modified Rouse models have
been introduced that take into account bending rigidity [21]
or long range interactions [41]. The motion of chromosomal
loci was also investigated on the basis of scaling arguments
and computer simulations [42] in the fractal globule model,
which shares topological properties with chromatin [43]. To
investigate these issues further, we have recently developed an
algorithm that allows one to simulate particles and polymers
in a viscoelastic medium subject to correlated noises coming
both from thermal forces and active forces. With that algorithm
it becomes possible to include effects of self-avoidance and
bending rigidity and to see how the behavior found here
for an ideal chain is modified. The results will be published
elsewhere.
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