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Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem
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We study the effect of restart, and retry, on the mean completion time of a generic process. The need to do so
arises in various branches of the sciences and we show that it can naturally be addressed by taking advantage
of the classical reaction scheme of Michaelis and Menten. Stopping a process in its midst—only to start it all
over again—may prolong, leave unchanged, or even shorten the time taken for its completion. Here we are
interested in the optimal restart problem, i.e., in finding a restart rate which brings the mean completion time of
a process to a minimum. We derive the governing equation for this problem and show that it is exactly solvable
in cases of particular interest. We then continue to discover regimes at which solutions to the problem take on
universal, details independent forms which further give rise to optimal scaling laws. The formalism we develop,
and the results obtained, can be utilized when optimizing stochastic search processes and randomized computer
algorithms. An immediate connection with kinetic proofreading is also noted and discussed.
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Introduction. When engaged in a specific task for a time
period that extends beyond our initial expectations, we are
constantly faced with two alternatives—either keep on going
or stop everything and start anew. Every now and then we
opt for the latter, hoping that a fresh start will break off an
unproductive course of action and expedite the completion
of the task at hand. This decision could, however, turn out to
be counterproductive—nipping an awaited, but unforeseen,
finale in the bud. To restart, or not to restart, that is therefore
the question.

Not at all unique to our everyday lives, a “dilemma”
similar to the one described above is relevant to virtually any
physical, chemical, or biological process that can be restarted.
Most notably, restart (or unbinding) is an integral part of
the renown Michaelis-Menten reaction scheme (MMRS)
illustrated in Fig. 1 [1]. Originally devised to describe
enzymatic catalysis, the MMRS has attracted considerable
scientific interest for more than a century [2]. Indeed, nature
is full with an astonishing variety of Michaelian processes.
DNA-DNA hybridization, antigen-antibody binding, and
various other molecular processes can all be described by the
MMRS [3]. That and more, the simplicity and generality of
the scheme have rendered it widely applicable and it is now
used to describe anything from heterogeneous catalysis [4–6]
to in vivo target search kinetics [7]. As a matter of fact, one
can easily convince himself that any first passage time (FPT)
process [8]—be it the time to target of a simple Brownian
particle, or that of more sophisticated stochastic processes
[9–12] and random searchers [13–15]—can become subject
to restart [16–22] and is then naturally accommodated by
the MMRS. Wishing to acquire a unified view on restart
phenomena we identify the MMRS as an ideal object of study.

Central to our understanding of the MMRS is the
Michaelis-Menten (MM) equation [1]. This equation provides
a hundred-year-old prediction by which any increase in
the rate of unbinding (restart) will inevitably slow down
the rate of enzymatic turnover or, equivalently, prolong the
completion time of any process that falls into the MMRS
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category. Surprisingly, this prediction was never tested
experimentally, but rapid advancements in single-molecule
techniques [23–25] have recently motivated us to question it
from a theoretical perspective [26]. Contrary to the classical
result, we have found that unbinding may also facilitate
the successful completion of a reaction. In the emerging
picture, a nontrivial solution to the restart dilemma is given
by an optimal unbinding rate which strikes the right balance
between the need to abort prolonged reaction cycles and the
need to avoid premature termination of ongoing ones. Similar
observations were made in the context of search processes [17]
and, in particular, in the context of DNA search [16] where the
authors analyzed facilitated diffusion [27] from a very general
perspective.The optimal restart rate depends, however, on the
full distribution of the underlying FPT process (catalysis in
the case of enzymatic reactions) [26], and the question of
what can be said about it in the general case remained open.

In this Rapid Communication, we address the optimal
restart problem within the framework of the MMRS. First,
the governing equation for this problem, Eq. (3) below, is
derived and solved exactly in several cases that are of particular
interest. We then show that, in the general case, there are two
regimes at which solutions to the problem are universal. These
solutions are given in Eqs. (4) and (5). The applicability of our
approach is widespread as it allows one to incorporate restart
into an existing, generic, FPT problem in an almost plug and
play manner.

The optimal restart problem. In formulating the optimal
restart problem we adopt the terminology of enzymatic reac-
tions (Fig. 1) and consider a scenario in which the processes of
binding, unbinding, and catalysis are all stochastic [28]. This
probabilistic viewpoint, whose origins can be traced back to the
work of Ninio [29], has found one of its prime applications in
the analysis of single molecule experiments [23,30–32], and
is now well established theoretically [33–35]. Defining the
turnover rate kturn as the reciprocal of the turnover time—the
mean FPT required to complete the reaction cycle—we will
be interested in the turnover-unbinding interplay.

When binding, unbinding, and catalysis times are exponen-
tially distributed with rates kon[S] ([S] being the concentration
of the substrate), koff, and kcat, respectively, the single molecule
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FIG. 1. (Color online) The Michaelis-Menten reaction scheme.
An enzyme E can reversibly bind a substrate S to form a complex
ES. The substrate can then be converted by the enzyme to form a
product P or, alternatively, unbind. The conversion of the substrate
to a product is manifested via the process of enzymatic catalysis.
Following either catalysis or unbinding, the enzyme is free to act on
additional substrate molecules.

MM equation is attained [33]:

kturn = kcat[S]

[S] + KM

, (1)

with KM = (koff + kcat)/kon (note that, in contrast to other
rates in the MM equation, the turnover “rate” is not a rate in
the “exponential sense”). In this case, the memoryless property
of the exponential distribution asserts that the time remaining
until the completion of an ongoing catalytic step, given its
age, is exponential and statistically identical to that of a newly
started catalytic step. It is therefore clear (see KM above) that
kturn is a monotonically decreasing function of the rate koff.

Nonexponential time distributions are, however, quite
common in a variety of complex systems [36–40], and it has
recently been recognized that enzymes are no exception in
that regard [23,32,41,42]. This result is perhaps not surprising
as catalysis is intrinsically coupled to the enzyme’s internal
degrees of freedom via a complex energy landscape [43] which
can give rise to strong deviations from exponentiality and other
anomalies [44–48]. Renewal theory can then be invoked to
provide a generalized mathematical treatment of the MMRS
[26]. A completely general analysis of the turnover-unbinding
interplay is then very hard, but progress can be made if

one narrows down to the case of exponentially distributed
unbinding times [26,33]. Letting koff denote the unbinding
rate (assumed to be independent of the catalytic process),
and fcat(t) the probability density function of a generally
distributed catalysis time Tcat, it is possible to show that [26,33]

kturn = f̂cat(koff)

〈Ton〉 + k−1
off [1 − f̂cat(koff)]

, (2)

where f̂cat(k) = ∫ ∞
0 fcat(t)e−ktdt is the Laplace transform of

fcat(t), and 〈Ton〉 is the mean of a generally distributed binding
time. Equation (2) extends the classical result of Michaelis
and Menten and brings new physics. Indeed, an interesting
corollary of Eq. (2) is the possibility of restart-facilitated
turnover, i.e., a regime in which unproductive unbinding events
lead to accelerated turnover [26]. This type of counterin-
tuitive behavior is categorically precluded by the classical
MM equation and is therefore considered “nonclassical” or
“anomalous.”

In Fig. 2(a) we use Eq. (2) to plot kturn as a function
of koff for different catalysis time distributions (CTDs). An
asymptotic decay of kturn to zero at large koff directly follows
from Eq. (2), is common to all plots, and is therefore not
shown. At intermediate koff, however, unbinding can be either
inhibitory (∂kturn/∂koff < 0) or excitatory (∂kturn/∂koff > 0)
and the surprise comes from the fact that the latter implies
the breaking of the classical limit for maximal turnover rates:
kturn(0) = (〈Ton〉 + 〈Tcat〉)−1. Maximal turnover rates, and the
unbinding rates at which they are attained, can however vary
considerably. What therefore determines if unbinding will
enhance turnover, and what sets the maximizing unbinding
rate kmax

off ?
The fundamental equation of optimal restart. In order

to address the questions presented above we first derive a
governing equation for the optimal restart problem. Namely,
we show [49] that the stationary points of the turnover rate are

FIG. 2. (Color online) (a) Turnover rate vs unbinding (restart) rate for different catalysis time distributions [(1) log normal, (2) double
exponential, (3) Weibul, (4) double Erlang, (5) double exponential, (6) exponential] [49]. Contrary to classical theory, nonmonotonic
dependencies are possible and the classical upper limit on turnover rates (dashed) can be broken. Heterogeneity is observed despite the
fact that 〈Ton〉 = 0.1 in all instances, all underlying time distributions share a mean of 〈Tcat〉 = 1, and some even share the same variance
[σ 2(Tcat) = 2 for distributions Nos. 1–3)]. Maxima in turnover rates are denoted by full circles. (b) A graphical illustration of the fundamental
equation of optimal restart [Eq. (3)]. Extrema of the turnover rate are obtained at points where �(koff) intersects the mean binding time 〈Ton〉.
Maxima from panel (a) are once again denoted by full circles. Lines for distributions Nos. 5–6, where �(k) � 0, are not drawn. Note that line
No. 4 intersects 〈Ton〉 twice, first with a positive slope (minimum of kturn) and then with a negative slope (maximum of kturn). Inset (b): kmax

off vs
�max/〈Ton〉. When 〈Ton〉 > �max, kmax

off = 0. As 〈Ton〉 drops �max, a maxima may develop gradually (lines Nos. 1–3) or abruptly (line No. 4). As
〈Ton〉 approaches zero, kmax can either diverge (lines No. 2 and 3) or asymptotically converge to a plateau (lines No. 1 and 4).
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the solutions of

�(k) ≡ f̂cat(k)[f̂cat(k) − 1]

k2df̂cat(k)/dk
− 1

k
= 〈Ton〉, (3)

where the function �(k) is uniquely determined by the CTD.
Moreover, we show that �(k) has the following property:
∂kturn/∂koff > 0 ⇐⇒ �(k) > 〈Ton〉 and vice versa. Conse-
quently, a local maximum of the turnover rate is attained at
an unbinding rate, kmax

off , which satisfies �(kmax
off ) = 〈Ton〉 and

� ′(kmax
off ) < 0.

Equation (3) clarifies the role of binding in our problem.
Restart and the initiation of a new turnover attempt, inevitably
involve a “penalty”—the necessity to go through the binding
process all over again. Taking the perspective of turnover rate
maximization, lengthy binding times are hence a deterrent
against restart and rapid binding an incentive to it. In perfect
accord with this intuition, we note that a maximum in kturn

will develop if and only if 〈Ton〉 drops below the critical
value of �max ≡ maxk>0{�(k)}. Indeed, since kturn is positive
and asymptotically decays to zero as koff → ∞, �(k) will
eventually intersect any level in the range �max > 〈Ton〉 > 0
with a negative slope (provided �max > 0) [50]. In particular,
a maximum in kturn will develop whenever 〈Ton〉 drops below
�0 ≡ �(0)—an observation that will come in handy later on.
These properties of �(k) are graphically illustrated in Fig. 2(b).

A classical example and a family of exactly solvable cases.
The importance of Eq. (3) cannot be overstated as it allows
one to find optimal restart rates for generic FPT processes.
In order to demonstrate the power of this formalism, we will
now reanalyze a problem studied by Evans and Majumdar in
[17]. Consider a particle searching for a stationary target via
one-dimensional diffusion. Setting the initial distance between
the particle and target to L and the diffusion coefficient to D, it
has long been known that the mean FPT to the target diverges.
What happens, however, if the particle is returned (restarted)
to its initial position with some given rate koff (assume
〈Ton〉 = 0)? Well, since the FPT distribution of the original

problem is known to be given by f̂cat(k) = e−
√

kL2/D (Laplace
space representation of the Lévy-Smirnov distribution), it
immediately follows that the mean FPT of the restarted
problem is given by k−1

turn in Eq. (2)—and we further note
that it is finite for any positive restart rate. In fact, this is true
for any f̂cat(k), and as long as 〈Ton〉 is finite, but is particularly
striking when the underlying FPT process is equipped with an
infinite mean.Moreover, by solving Eq. (3) one can see that
kmax

off = (z∗)2D/L2, where z∗ � 1.593 62 . . . is the solution to
z/2 = 1 − e−z. Clearly, the same modus operandi can also
be used to study the effect of restart on many other FPT
classics [8]. In particular, one could readily generalize the
above example for the one sided Lévy distribution f̂cat(k) =
e−(τk)α (0 < α < 1) to obtain kmax

off = (z∗)1/α/τ , where z∗ is the
solution to αz = 1 − e−z.

Analytical solutions to Eq. (3) are hard to find. It is thus
interesting to note that whenever the Laplace transform of the
CTD has the following form: f̂cat(k) = (1 + ak)/(1 + bk +
ck2) (for some constants a, b, and c), Eq. (3) reduces to a
quadratic and is hence exactly solvable. A particular example
in this category is the exponential distribution, fcat(t) =
λe−λt (λ > 0), for which a = c = 0, b = 1

λ
, and �(k) = 0.

As another example, think of the double-exponential distribu-
tion, fcat(t) = pλ1e

−λ1t + (1 − p)λ2e
−λ2t (0 < p < 1,λ1 >

0,λ2 > 0), for which a = 1
λ1

+ p( 1
λ2

− 1
λ1

), b = 1
λ2

+ 1
λ1

,

c = 1
λ1λ2

, and �(k) = ( pλ1+(1−p)λ2

(1−p)p(λ1−λ2)2 k
2 + 2(λ1λ2)

(1−p)p(λ1−λ2)2 k +
λ1λ2[(1−p)λ1+pλ2]

(1−p)p(λ1−λ2)2 )−1. Finally, and perhaps most importantly,
consider the class of distributions which do not fall into
the above-mentioned form, but can rather be asymptotically
approximated by it. As we hereby show, the basin of attraction
for this class is wide, rendering asymptotic solutions to the
optimal restart problem (almost) universal.

Universal behavior at 〈Ton〉 ≈ �0. When 〈Ton〉 approaches
�0, “small k” solutions to Eq. (3) are anticipated provided
�0 > 0 [see Fig. 2(b)]. One can then try and approximate
�(k), at small k, considering that in this limit f̂cat(k) � 1 +∑m

n=1
Mn(−k)n

n! , where Mn ≡ 〈T n
cat〉 is the nth moment of the

CTD. It can then be verified, utilizing the definition of �(k),
that this expansion must be carried out to third order in k

(m = 3), if it were to correctly capture �(k) to first order.
However, under direct substitution of such an expansion into
�(k), Eq. (3) becomes a fourth order equation and further
analytical advancement becomes extremely cumbersome.

To circumvent this difficulty, we make use of the widely
applied Padé approximation scheme [51] and try f̂cat(k) �
(1 + ak)/(1 + bk + ck2). Doing so, we note that this approx-
imation (i) can be made exact to third order in k by proper
choice of the constants a, b, and c [49]; (ii) decays to zero as
k → ∞, as required from a Laplace transform, and in sharp
contrast to the divergences of any power series expansion;
and (iii) renders the solution to Eq. (3) immediate as it
gives for k � 1 [49]: �(k) � �0

1+2R0(�0k)+R0(1+R0)(�0k)2 , where

�0 = (M2 − 2M2
1 )/2M1 and R0 = 2M1M3−3M2

2

3(M2−2M2
1 )

2 . We now see

that in this limit solutions to the optimal unbinding problem
are insensitive to fine details of the CTD as they are governed
by �0 and R0 only.

As we have previously observed, the introduction of un-
binding is asserted to speed up turnover whenever 〈Ton〉 < �0

since this implies ∂kturn
∂koff

|koff=0 > 0. The newly derived expres-
sion for �0 allows us to interpret this result probabilistically.
Indeed, setting koff to zero, it is easy to see that 〈Ton〉 < �0, if
and only if, the mean duration, 〈Ton〉 + 〈Tcat〉, of a new turnover
cycle drops below the mean residual duration, 1

2 〈T 2
cat〉/〈Tcat〉,

of an ongoing catalytic step [52]. Unbinding will then have an
excitatory effect but two distinct scenarios should nevertheless
be told apart.

When R0 > 0, � ′(0) < 0 [e.g., lines No. 1–3 in Fig. 2(b)]
and, as 〈Ton〉 approaches �0 from above and crosses over to its
other side, a maximum of the turnover rate gradually develops
at

kmax
off � 1

(1 + R0)�0

(√(
1 + 1

R0

)
�0

〈Ton〉 − 1

R0
− 1

)
. (4)

In particular, setting � = 〈Ton〉−1 − �−1
0 , we observe that

to first order kmax
off � �

2R0
. This characteristic dependence is

further discussed in Fig. S1 [49].
On the other hand, when R0 < 0 [e.g., line No. 4 in

Fig. 2(b)], � ′(0) > 0, and �(k) has a local maxima at some
k∗ > 0. Then, as 〈Ton〉 first hits �(k∗) from above, both a
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FIG. 3. (Color online) Asymptotics of the optimal restart prob-
lem, at fast binding times, is governed by the behavior of the catalysis
time distribution near the origin.

minimum and a maximum of kturn abruptly appear [see “jump”
in kmax

off , inset of Fig. 2(b)]. As 〈Ton〉 continues to decrease,
these two extrema drift apart and it is important to observe
that the small k solution to Eq. (3) is then a minimum, rather
than a maximum. As 〈Ton〉 drops below �0, this minimum
necessarily disappears, leaving behind a maximum of kturn at
a point kmax

off which is strictly separated from zero. Before
moving forward, we note in passing that R0 < 0 if and only

if the residual duration of an ongoing catalytic step has a
coefficient of variation that is smaller than unity.

We end this section by noting that when the catalysis time
distribution is “heavy tailed”, as happens in a wide variety
of FPT problems, either one of its first two moments can
diverge. An abrupt phase transition is then observed, �(k →
0) = ∞, and the introduction of unbinding is asserted to speed
up turnover regardless of 〈Ton〉. The asymptotic behavior of
kmax

off at high values of 〈Ton〉 then depends on the tail of the
catalysis time distribution (t → ∞), and it can be shown [49]
that for f (t) ∼ t−(1+α) with 0 < α < 1 (1 < α < 2), kmax

off ∼
〈Ton〉−1 (kmax

off ∼ 〈Ton〉−1/(2−α)). One example for this type of
behavior is the above-mentioned case of diffusion mediated
search for which α = 1/2.

Universal behavior at fast binding times. When 〈Ton〉
approaches zero, “large k” solutions to Eq. (3) are anticipated
provided �(k) is asymptotically positive [see Fig. 2(b)]. The
behavior of �(k) in this limit is governed by the behavior
of fcat(t) at short times and we progress by assuming that
fcat(t) ∼ tα (t � 1). Three different regimes, illustrated in
Fig. 3, are then noteworthy [49]. When −1 < α < 0, �(k)
approaches zero from above as ∼k−1, and kmax

off ∼ 〈Ton〉−1.
On the other hand, when α > 0, �(k) approaches zero from
below as ∼−k−1, there are no “large k” solutions to Eq. (3),
and kmax

off |〈Ton〉=0 is finite (can be zero).
The case α = 0 is a bit more delicate. Assuming fcat(t)

has a Taylor expansion near the origin we denote ωn =
n![(− ∂

∂t
)n−1fcat(t)]|t=0

and note that by construction ω1 =
fcat(0) > 0. Implementing a treatment similar to the one
given in the previous section we find for k � 1 [49]:

FIG. 4. (Color online) Optimal unbinding (restart) rate vs mean binding time for different catalysis time distributions. The solid (black),
dashed (blue), and dotted (red) curves correspond to kmax

off , and to asymptotic approximations of kmax
off in the 〈Ton〉 → �0, and 〈Ton〉 → 0, limits

respectively. Distributions [(a) double exponential, (b) triple exponential, (c) gamma, and (d) Lévy-Smirnov] are drawn at the bottom left
corner of each panel [49]. Dashed (blue) lines in panels (a)–(c) are drawn according to Eq. (4). A phase transition occurs in panel (d) where
〈Tcat〉 = ∞ and asymptotics is governed by a ∼〈Ton〉−1 scaling law. Dotted (red) lines in panels (a) and (b) are drawn according to Eq. (5). A
different behavior is found in panels (c) and (d), in accord with the t → 0 asymptotics of fcat(t) and the scaling laws that are summarized in
Fig. 3. Note how in panel (a) the exact solution coincides with the asymptotic approximations as expected.
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�(k) � χ∞/k2

1+2R∞(χ∞/k)+R∞(1+R∞)(χ∞/k)2 , where R∞ = 2ω1ω3−3ω2
2

3(ω2−2ω2
1)2

and χ∞ = (ω2 − 2ω2
1)/2ω1 [compare with �(k) for k � 1

above]. A large k solution to Eq. (2) is then found only when
fcat(t) decreases steeply enough near the origin, i.e., when
f ′

cat(0) < −f 2
cat(0) ⇐⇒ χ∞ > 0, and is given by

kmax
off = χ∞

(√
1

〈Ton〉χ∞
− R∞ − R∞

)
. (5)

In particular, note that in this case kmax
off ∼ 〈Ton〉−1/2. On the

other hand, when χ∞ < 0, we once again find that kmax
off |〈Ton〉=0

is a constant.
Conclusions. In this Rapid Communication we took ad-

vantage of the Michaelis-Menten reaction scheme to pro-
vide a unified analysis of the optimal restart problem. The
incorporation of restart into an existing first passage time
problem modifies its behavior. The mean first passage time
then becomes a function of the restart rate and the question
of optimality naturally arises. Here, we have developed a
formalism which can be used in order to study the effect
of restart on generic first passage time problems. A prime
corollary of our study is the identification of two regimes
at which the optimal restart rate displays universal behavior
in the sense that it is solely governed by a handful of key
parameters (see Fig. 4 for illustration). The results we have
obtained are applicable to many fields. In particular, we note
that randomized computer algorithms [53,54] often exhibit
heavy tailed run time distributions [55,56] and restart could
hence drastically improve performance in these cases and
others [57,58].

The optimal restart problem is intimately related with
the idea of kinetic proofreading. Independently proposed by
Hopfield [59] and Ninio [29], and studied by multiple authors

since [60–68], the kinetic proofreading scheme suggests a
way in which an enzyme can amplify small differences in
the unbinding rates of two substrates—one right, the other
one wrong, such that k

wrong
off > k

right
off —in order to discriminate

them with high fidelity. The basic idea is that by molding
the catalysis time distribution,for example into something that
resembles a sharp delay, the ratio between the right and wrong
turnover rates can be made arbitrarily large. Consider now a
case in which one is provided with a desired profile of the
turnover rate as a function of the unbinding (restart) rate, and
is then asked to conjure a catalysis (i.e., first passage) time
distribution that would yield this profile. For example, think
of a scenario in which an enzyme wishes to select only the
substrates whose unbinding rates fall within a small range
(bandpass filter), or above (below) some cutoff [high (low)
pass filter]. How could this be done? Quite surprisingly, a
formal solution to this highly nontrivial problem can be readily
obtained by solving Eq. (2) for f̂cat(koff) given kturn(koff) [69].
This observation paves the way towards intelligent design of
“Michaelian filters,” a concept which we will further develop
elsewhere.
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