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A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to
accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type
lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by
using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order
Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type
low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves
generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations
in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching
between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique
used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability
of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the
filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of
the proposed solution procedure based on the compact finite-difference LBM are examined by solving different
two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an
equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid
droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation
in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve
and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and
also the numerical results reported in the literature. The study shows that the present solution methodology is
robust, efficient, and accurate for solving two-phase liquid-vapor flow problems even at high density ratios.
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I. INTRODUCTION

Multiphase and multicomponent fluid flows are ubiquitous
in nature, industry, and daily practices and therefore much
attention has been given for years to study these flows.
Existence of interfacial dynamics with high gradients is the
main difficulty for studying of multiphase flows from both
the physical and numerical viewpoints. Any phase interface
boundary is mesoscopic by nature [1] and the segregation
of two fluids is due to interparticle forces. In the past two
decades, the lattice Boltzmann method (LBM), because of
its mesoscopic and kinetic nature, has become a promising
numerically robust technique for the simulation of multiphase
flows and interfacial dynamics with the underlying micro-
scopic physics. From a computational point of view, the lattice
Boltzmann (LB) equation is hyperbolic, which can be solved
locally and efficiently on parallel computers. Simplicity of
programming and ease of considering microscopic interactions
for modeling of additional physical phenomenon are the
other advantages of the LBM. For these reasons, the LBM
has been an attractive alternative computational technique to
the traditional Navier-Stokes solvers, especially for modeling
multiphase flows.

From the macroscopic point of view, the multiphase
models for the LBM can be considered as diffuse interface
methods [2,3]. In the diffuse interface methods, it is not
required to track or capture the interface position. This
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feature is a great advantage for the multiphase LB methods
compared to the traditional computational fluid dynamic
models based on the discretization of macroscopic continuum
(Navier-Stokes) equations. In the multiphase LB methods, the
phase separation occurs automatically by the incorporation of
interparticle interactions directly and the interface sharpening
mechanisms are provided by the momentum forcing term.
The diffuse interface of phase is spread on grid points and
the surface tension is transformed into a volumetric force.
This mesoscopic kinetic nature and no need to track the
interface can provide many of advantages for the simulation of
multiphase or multicomponent fluid flows by the multiphase
LB methods compared to the macroscopic interface capturing
methods [e.g., the volume-of-fluid (VOF) [4] and the level
set [5] methods] or to the macroscopic front tracking methods
(e.g., the boundary-fitted grid method [6]). The multiphase
LB methods with diffuse interface characteristics are easier
computational methods for simulating complicated topolog-
ical interface changes in three-dimensional flows and there
are particularly appropriate for phase change problems [7].
The computational cost of the multiphase LB methods is
also lower than the interface capturing or interface tracking
methods in Navier-Stokes based solvers [8]. Furthermore,
the multiphase LB methods as diffuse interface methods are
especially appropriate for modeling the problems that are
tough for sharp interface methods, such as the coalescence
of droplets.

Several popular models in the LBM have been pro-
posed for simulating multiphase and multicomponent fluid
flows. These models divide into four categories: the
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color-gradient- [9,10], pseudopotential- [11–14], free-energy-
[15–19], and kinetic-theory- [20–23] based models. The
models in the first three categories have an origin in the kinetic
theory so they can be derived by discretizing the continu-
ous Boltzmann equation with certain approximations. These
approximations sometimes may be unphysical and lead to the
spurious current in the interfacial region or the lack of Galilean
invariance. He et al. [20], proposed an improved multiphase
LBM that is derived by systematically removing the unphysical
approximations. The He-Shan-Doolen (HSD) model is linked
to the kinetic theory of dense gases and the attractive forces
between the molecules are considered in two terms for the
description of the real fluids in the Boltzmann kinetic equation.
The first term is the influence of a particle in the short-range
around itself, which is described by considering the Enskog
volume exclusion effect. The second one is the long-range
attractions which are described by the effects of the nonideality
of the fluid involved. Consequently, the implementation of the
thermodynamical concept is more flexible in the HSD model
compared to the previous LB based models introduced. In
this model, the Maxwell equal-area reconstruction procedure
is admitted correctly with the consistent temperature concept.
Using the HSD approach also allows flexibility in the variation
of the surface tension for simulating a wide range of multiphase
flows. However, the numerically instability associated with the
stiffness of the collision operator is a serious limitation of the
original HSD model for simulating complex multiphase flows
with moderate to high density ratios. The stability problem is
partially improved in the modified HSD formulations proposed
by He and coworkers [21–23]. Applying the stable and
efficient numerical schemes for the advection and collision
operators may also eliminate the instability problem of this
model [3,24,25]. Several efficient multiphase LB models have
been developed based on the HSD approach because this
model has a solid physical foundation [7,21,25–28]. This
confirmation is the reason why this model is selected in this
study.

Undesirable feature of the multiphase LB methods is
the existence of interfacial spurious velocities because of
imbalance between stresses in the interfacial region which
causes a parasitic current in the interface of phases. Several
attempts have been made to identify the origin of such spurious
velocities and to reduce their level [13,17,27,29–32]. These
spurious currents can also be reduced with large viscous
dissipation [33]; however, they never entirely disappear in the
most cases. Another drawback of the LBM-based multiphase
models is their limitation due to the numerical instability
for simulating fluid flows with high density ratios. The
density ratio of liquid-gas systems is usually larger than 100,
and even the density ratio of water to air is about 1000.
Several attempts performed in the literature to overcome this
difficulty in the different multiphase LB models. Yuan and
Schafer [13] demonstrated that the Shan-Chen model can
achieve smaller spurious currents and thus higher density
ratios by using more realistic equations of state. Inamuro
et al. [34] proposed an interesting approach based on the
free-energy-based model to solve high density ratios by using
the projection method. Zheng et al. [35] also used a modified
multiphase LBM to improve the efficiency of the free-energy
model for simulating two-phase flows with a density ratio

of 1000. The efforts to improve the stability of the HSD
model at high density ratios are performed by using the stable
numerical discretization methods [24,25,36]. Cheng et al. [24]
discretized the LBM with the HSD model using a stable
finite-difference scheme with the artificial dissipation and
showed that the LB formulation is able to simulate two-phase
flows at a density ratio 1000. Lee and Lin [36] and later Lee
and Fischer [26] used alternative numerical schemes for the
discretization of the spatial derivatives of the equation of LBM
based on the two-phase HSD model. The results obtained
by them show that the stability of the HSD-based LBM is
improved for large density ratios up to 1000 and very small
spurious currents are observed.

These studies have shown that the numerical schemes used
for the discretization of the microscopic velocity space and the
advection term in the LBM and also for the approximation of
the density derivatives of the two-phase model implemented
can affect the stability of the solution algorithm, particularly
for the problem with high density ratios. Recently, Mattila
et al. [37] showed that a discretization scheme with an
appropriate order is necessary to avoid inconsistent mixing
of multiphase model dynamics with the numerical errors
in the LBM. They have simply explained that the root of
spurious currents at the interface is the numerical errors due
to the significant density gradients. These errors arise from
the discretization scheme used in the LBM and the application
of high-order LB stencils can reduce the spurious currents
more effectively. Consequently, the numerical stability of the
scheme can be improved by reducing the effect of numerical
errors in the calculation of the molecular interactions.

Using the finite-difference based schemes is one of ex-
tensive efforts to eliminate or reduce the numerical errors
and thus improve the stability of the LBM for simulating
practical multiphase fluid flows. Teng and coworkers [24,25]
showed that the stability problem of the HSD model for
simulating two-phase flows with high density ratios can
be alleviated by applying a robust numerical scheme for
the advection and collision operator. They could stabilize
unstable LB formulation with the use of the total variation
diminishing (TVD) scheme based on the finite-difference
discretization for simulating two-phase flows with moderate
to high density ratios in the range of 100–1000. Cristea and
coworkers [28,30] used a finite-difference discretization with
flux limiter to stabilize the HSD-based LBM for simulating
two-phase flows with high density ratios with small parasitic
currents. Using the finite-difference lattice Boltzmann method
(FDLBM) can also remove the obvious drawback of the
standard LBM. Note that the solution methodology based on
the standard LBM is restricted to use uniform Cartesian grids
with equal spacing at unit CFL (Courant-Friedrich-Lewy)
number [38]. As described above, the inherent instability
at high density ratios in multiphase flows is also another
limitation of this solution methodology. These two limitations
in the standard LBM greatly limit its applications to solve
engineering practical problems. The FDLBM is widely used to
overcome these shortcomings of the standard LBM [39–44],
because it is easy to implement and it has better numerical
stability characteristics.

The previous FDLBM developed in the literature for
simulating multiphase flows are based on traditional
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second-order finite-difference schemes and they still have
the stability problems due to the existence of the numerical
errors. The simulation results of the HSD-based FDLBM
studies [25,28] deviate from the analytical solution based
on the theory of Maxwell construction at low temperature
values. An accurate and practical numerical method based
on the finite-difference LBM is therefore interested that does
not contain these deficiencies. In FDLBM, one can apply
high-order accurate numerical methods for improving the
accuracy and performance of the solution. Recently, we have
proposed and applied a high-order compact finite-difference
lattice Boltzmann method to solve incompressible flows in
Cartesian and curvilinear coordinates [45,46]. Compared with
a great variety of numerical methods, compact finite-difference
methods are indicated to be considerably more accurate
with benefit of having good resolution characteristics and
smaller computational stencil size required. It is expected that
the high-order compact finite-difference schemes that have
sufficient stencil in the interfacial region of multiphase flows
with applying an appropriate filtering procedure can reduce
the numerical errors and also the parasitic currents to improve
the stability and robustness of the LBM for the problems with
high density ratios.

The main objective of the present paper is therefore to
extend and apply an accurate and robust finite-difference
LBM-based solver for simulating two-phase flows with high
density ratios. Herein, the spatial derivatives in the LB equation
with the HSD model and also in the intermolecular interaction
force term are discretized by using the fourth-order compact
finite-difference scheme and the temporal term is discretized
by the fourth-order Runge-Kutta scheme to provide an accurate
and efficient multiphase flow solver. A high-order spectral-
type low-pass compact nonlinear filter is used to ensure the
numerical stability. A sensitivity study is performed to examine
the effects of the numerical parameters on the accuracy and
performance of the solution. The accuracy and performance of
the high-order CFDLBM applied are examined by computing
different two-dimensional (2D) two-phase flows. The results
obtained are compared with the analytical solutions and
also the available numerical results. It is shown that the
solution procedure adopted here for simulating two-phase
flows reduces the interfacial spurious velocities and therefore
improves the accuracy and numerical stability of the solution
of large-density-ratio problems.

The rest of the present paper is organized as follows:
In Section II, the lattice Boltzmann method is presented in
relation to the multiphase flows. In Section III, the high-order
compact finite-difference discretization and the Runge-Kutta
time-stepping scheme for the LB equation with the HSD model
is given. The filtering scheme used is presented in Section IV.
Section V is devoted to present the numerical results for
the different two-phase flows to examine the accuracy and
robustness of the solution of the compact finite-difference
LBM applied. Finally, the some conclusions are drawn.

II. GOVERNING EQUATIONS

It has been shown that the high-order CFDLBM devel-
oped [45] provides more accurate solutions compared to
the current LB methods. The main goal of this paper is

FIG. 1. The D2Q9 lattice and the microscopic velocities.

to extend the fourth-order CFDLBM for an accurate and
efficient solution of the two-phase liquid-vapor flows. The
dimensionless LB equation governed the particle distribution
function f (t,c,x) for isothermal nonideal gases is used [20]
with the collision term in the Bhatnagar-Gross-Krook (BGK)
approximation [47]

∂f

∂t
+ e · ∇f + F∇ef = − 1

τ
(f − f eq), (1)

where τ is the dimensionless collision relaxation time, e is
the microscopic velocity of the particle, F is an external
body force to which the molecules are exposed, and f eq

is the equilibrium distribution function. Since the derivative
∂f

∂e cannot be calculated directly, the equilibrium distribution
function f eq is taken as the leading part of the distribution
function f to approximate this derivative as [20,48]:

∇ef ≈ ∇ef
eq = − e − u

c2
s

f eq . (2)

In this approximation, it is assumed that the system is not
too far from the equilibrium state. Here, cs = c

√
χ is the sound

speed of the LB model, c = √
T/χ is the propagation speed

of particles moving between a lattice node and its nearest
neighbors, and χ is a characteristic of the LB model with a
constant value. For the D2Q9 model, the value of χ is set to be
χ = 1/3 [14]. Also, T is the dimensionless system temperature
which is normalized by the temperature of fluid in the critical
point Tc [27,49].

A two-dimensional square lattice model with nine velocity
directions (D2Q9) is employed to discretize Eq. (1) in the
lattice configuration. Figure 1 indicates a rectangular solution
domain for the LB equation with the particle distribution
function fα in the direction of the microscopic velocity eα . For
the D2Q9 computational domain, the discrete LB equation for
multiphase flows can be derived as [24]

∂fα

∂t
+ eα · ∇fα = − 1

τ

(
fα − f eq

α

) + (eα − u)F
c2
s

f eq
α ,

α = 0,1,..., 8, (3)

where the subscript α denotes the direction of the particle
speed. In the D2Q9 discrete Boltzmann model, the microscopic
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velocities are given as

eα = (eαx,eαy) =

⎧⎪⎨
⎪⎩

(0,0) α = 0[
cos

(
α−1

2 π
)
, sin

(
α−1

2 π
)]

c α = 1,2,3,4[
cos

(
α−5

2 π+ 1
4π

)
, sin

(
α−5

2 π+ 1
4π

)]√
2 c α=5,6,7,8

. (4)

The equilibrium distribution function f eq is chosen to
satisfy the Navier-Stokes equations through a Chapman-
Enskog expansion procedure. Accordingly, the equation of
the equilibrium distribution function is expressed as [50,51]

f eq
α = ρwα

[
1 + eα · u

c2
s

+ 1

2

(eα · u)2

c4
s

− 1

2

|u|2
c2
s

]
, (5)

where u = (u,v) is the velocity vector and the weight coeffi-
cient wα for the D2Q9 model is given by

wα =

⎧⎪⎨
⎪⎩

4
9 α = 0
1
9 α = 1,2,3,4
1

36 α = 5,6,7,8

. (6)

The macroscopic fluid density ρ and the macroscopic
velocity u are obtained from the following equations:

ρ =
∑

α

fα, ρ u =
∑

α

eα fα. (7)

The interparticle interaction force accounts for the phase
separation in the two-phase flows. As mentioned in the intro-
duction, there are different schemes for modeling this force in
the LB based methods. For the simulation of liquid-vapor sys-
tems subjected to the gravitational acceleration a in this study,
the force term F in Eq. (3) is given by [14,19,20,21,30,52]

F = − 1

ρ
∇[pi − pw] + 3κ∇(∇2ρ) + a, (8)

where the pi is the nondimensional ideal equation of state
(EOS)

pi = ρT (9)

and the thermodynamic pressure pw can be determined from
the nondimensional van der Waals EOS for the nonideal fluid

pw = ρT

1 − bρ
− aρ2. (10)

This model was developed by He et al. [20] and it is
known as the HSD model. They selected F by considering
the intermolecular attraction and the effects of the exclusion
volume of the molecules on the equilibrium properties of dense
gases [3]. In the HSD model, the mean-field theory is used
for approximation of the incorporating molecular interaction
forces which are used to model the phase segregation and the
surface tension. The surface tension is modeled by the second
term of F, which is associated to the interfacial stress. This
term should balance the thermodynamic pressure gradient in
the interface profile to maintain in the equilibrium. In Eq. (8),
the parameter κ controls the surface tension σ which allowing
the flexibility for studying the capillary effects by variation of
this parameter [3].

Note that in the HSD model, the phase separation is
induced by mechanical instability in the supernodal curve of

the phase diagram. As a result, the HSD approach is more
flexible for the implementation of the thermodynamical model,
with the consistent temperature concept, admitting the correct
Maxwell’s equal area reconstruction procedure. The theory of
Maxwell construction for nonideal equations of state (e.g., the
van der Waals EOS) is used to obtain the vapor and liquid
densities at an equilibrium state from a given p − v line,
called the phase coexistence curve [53]. Figure 2 is a sketch
indicating the p − v curve of a pure fluid with isothermal lines
from the van der Waals EOS given by Eq. (10). If the fluid is
supercritical, T > Tc, the isothermal p − v curve is monotonic
in which it cannot be distinguished the liquid and vapor phases.
For the subcritical situation, T < Tc, the p − v curve for the
EOS is no longer monotonic. This allows the coexistence of
different densities for the fluid at a single pressure (three
values for the density in the points A, B, and C) and there
exists a mechanically unstable region when ( dp

dv
)T > 0. This

condition indicates that for T < Tc, the liquid-vapor phase
separation can occur; however, the van der Waals EOS fails to
describe the fluid behavior in this region. To fix this problem,
Maxwell [53] replaced the isothermal curve between A and
C with a horizontal line positioned so the areas of the two
hatched regions are equal (the Maxwell construction). This
flat line corresponds to a liquid-vapor equilibrium condition
and the value of liquid and vapor densities can be determined
in the points A and C, respectively.

By considering the critical density ρc and the critical
temperature Tc as the reference quantities of the liquid-vapor
system, the constants a and b for the dimensionless van der
Waals EOS, Eq. (10), can be given by [27]

a = 9

8

Tc

ρc

, b = 1

3ρc

. (11)

FIG. 2. (Color online) The Maxwell construction on the isother-
mal p − v diagram.
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The particle critical density is considered ρc = 1 at the
critical temperature Tc = 1 [27]. Thus, the dimensionless van
der Waals EOS can be rewritten as

pw = 3ρT

3 − ρ
− 9

8
ρ2. (12)

With the van der Waals EOS in the form of Eq. (12), the
critical point on the supernodal curve (Fig. 2) is located at the
nondimensional temperature T = 1 and the non-dimensional
density ρ = 1. Thus, ρ > 1 denotes the saturated liquid phase
and ρ < 1 denotes the saturated vapor phase.

The numerical instability of the HSD model for the
simulation of the complex fluids is a serious limitation of
this approach. The instability is related to the stiffness of
the collision operator, when the effects of complex fluids are
introduced through the forcing term. This stability problem
can be alleviated by providing robust numerical schemes
particularly for the advection and collision operators [3,25].
A Chapman-Enskog expansion procedure up to second order
shows that the Navier-Stokes equations can be derived from
Eq. (3) [3,54],

∂ρ

∂t
+ ∇ · (ρu) = 0, (13)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇pw + κρ∇(∇2ρ) + ρa

+∇ · [ρν(∇u + u∇)], (14)

where the term −∇pw + κρ∇(∇2ρ) at the right-hand side of
the momentum equation is related to the free-energy functional
of the van der Waals fluid [55], ρν(∇u + u∇) is the viscous
stress tensor, and ν is the physical value of the kinematic
viscosity of the fluid. The relaxation time τ for the finite-
difference LB model is defined by [42]

τ = ν

c2
s

. (15)

This expression of the kinematic viscosity and the relax-
ation parameter relation shows that the behavior of the fluid is
independent of the discretization of the velocity space in the
finite-difference based LB methods.

III. COMPACT FINITE-DIFFERENCE SCHEME
FOR TWO-PHASE LBM

In this paper, the multiphase form of the LB equation,
Eq. (3), is solved by a high-order compact finite-difference
scheme. The main advantage of the finite-difference based
schemes for the solution of the LB equation over the streaming-
collision procedure in the standard LBM formulation is that
they give more freedom to choose the discretization procedure
in space and time, since the space steps �x,�y and the time
step �t are no more related via the lattice speed. Another
drawback of the standard streaming-collision formulation is
that this procedure is limited to the second-order accuracy
and it may not be suitable for studying complex flow physics
that need to apply more accurate numerical schemes. Most
of the finite-difference LB models developed in literature to
solve two-phase fluid flows are also limited to second-order
accuracy. In this study, the spatial derivatives in the two-
phase LB equation are discretized by a fourth-order compact

finite-difference scheme to obtain high-accuracy solutions.
The LB equation (3) can be written in the following form
by considering the spatial derivatives in the two-dimensional
Cartesian coordinates:

∂fα

∂t
= R(fα), (16)

where

R(fα) = −
(

eαx

∂fα

∂x
+ eαy

∂fα

∂y

)
− 1

τ

(
fα − f eq

α

)

+ (eαx − u)Fx + (eαy − v)Fy

c2
s

f eq
α . (17)

An explicit multistage time-stepping method is used to
discretize the temporal term in Eq. (16). Here the solution is
advanced in the time t using a four-stage Runge-Kutta scheme.
By integrating Eq. (16) with respect to the time t with the
explicit fourth-order Runge-Kutta scheme, one can obtain

f 0
α = f t

α

f k
α = f 0

α + ζk �t Rk−1(fα), k = 1,2,3,4, (18)

f t+�t
α = f 4

α

where �t is the time step size and the parameters ζk (k = 1,2,3
and 4) are taken as 1

4 , 1
3 , 1

2 , and 1, respectively. The fourth-
order Runge-Kutta time integration scheme is appropriate for
an accurate calculation of unsteady flows [45,56].

Now the first derivative of the distribution function fα in
the x direction (denoted by f ′

α = ∂fα/∂x) is computed with
the fourth-order compact finite-difference scheme as [57,58]

f ′
α,i−1 + 4f ′

α,i + f ′
α,i+1 = 3

�x
(fα,i+1 − fα,i−1) + O(�x4),

(19)

where �x is the lattice length unit. Equation (19) is applied in
the computational domain for the grid points i = 2,...,Imax−1

for each j . To form the tridiagonal system of equations during
the i sweep, appropriate boundary conditions are to be applied
for the terms f ′

α,1 and f ′
α,Imax

.
For the periodic boundary conditions considered in the

liquid-vapor systems studied in this paper, the terms f ′
α,1 and

f ′
α,Imax

at the boundary points can be calculated with the same
procedure for the grid points in the computational domain
mentioned in Eq. (19),

f ′
α,Imax−1

+ 4f ′
α,1 + f ′

α,2

= 3

�x

(
fα,2 − fα,Imax−1

) + O(�x4), (20)

f ′
α,Imax−2

+ 4f ′
α,Imax−1

+ f ′
α,1

= 3

�x

(
fα,1 − fα,Imax−2

) + O(�x4). (21)

For the wall boundary points, these terms can be calculated
with appropriate one-sided compact relations. In the present
calculations, the following third-order one-sided boundary
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condition formulas are used [59]

f ′
α,1 + 2f ′

α,2 = 1

2�x
(−5fα,1 + 4fα,2 + fα,3) + O(�x3),

(22)

f ′
α,Imax

+ 2f ′
α,Imax−1

= 1

2�x

(
5fα,Imax

− 4fα,Imax−1
− fα,Imax−2

) + O(�x3).

(23)

The above fourth-order compact formulas together with
the Eq. (19) are used to compute ∂fα/∂x implicitly for i =
1,...,Imax for each j . The first derivative of the distribution
function fα in the y direction (denoted by f ′

α = ∂fα/∂y) in
Eq. (17) is computed for j = 1,...,Jmax for each i in the same
manner.

Note that the calculation of the macroscopic parameters in
the force term F implies first- and third-order spatial derivatives
to be computed by the fourth-order compact finite-difference
method employed. The gradient of the pressure term in
the force term F, ∇[pi − pw] = ∂

∂xj
(pi − pw), involves the

first-order spatial derivatives and they are calculated with
the same procedure described above. For calculating the
gradient of the Laplacian of the density in the force term
F, ∇(∇2ρ) = ∂

∂xj
( ∂2ρ

∂xi∂xi
), that involves the third-order spatial

derivatives the tridiagonal compact finite-difference scheme is
applied 3 times.

IV. FILTERING SCHEME

The centered high-order compact finite-difference schemes
are nondissipative and are therefore sensitive to numerical
instabilities due to the growth of high-frequency modes. These
difficulties originate usually from grid nonuniformity, bound-
ary conditions, and nonlinear flow features [60]. Spurious
oscillations may be occurred when simulating multiphase
flows and thus lead to instabilities. These instabilities may
be observed when applying the high-order compact finite-
difference scheme for solving the two-phase LB equation. The
mentioned difficulties can be overcome by applying a spatial
filtering to the solution of the distribution function fα or to
add an appropriate dissipation term to the LB equation (16).
Recently, some works have been performed to link the LB
method with filtering. Ricot et al. [61] proposed a stabilization
procedure for LBM via the linear explicit filtering and they
studied the behavior of several spatial filters in different LBM
algorithms. Brownlee et al. [62] explained some classes of
techniques to improve regularization of LBMs by modifying
dissipation. We used a high-order implicit filtering technique
based on the works of Visbal and Gaitonde [63] to damp high-
frequency oscillations associated with the central differencing
of the spatial derivatives in the LB equation [45,46].

All the above noncompact (explicit) and high-order com-
pact (implicit) filters mentioned are designed to eliminate the
high-frequency waves and they are linear, because they are
independent of the function to be filtered. It is generally recog-
nized that the linear filters have desirable properties for smooth
flows; however, they encounter serious problems for flows
containing the regions of strong gradients or discontinuities

such as shock. In fact, the low-dissipation schemes indeed
results in spurious Gibbs oscillations near the discontinuities
due to spectral truncation in the wave-number space. Thus, it
is expected to observe some oscillations by implementing of
the high-order compact finite-difference scheme with linear
filters for the numerical solution of the two-phase flows, due
to existing noticeable density gradients in the interface region.
In order to prevent the appearance of Gibbs oscillations in
the simulation of such flows, the nonlinear filters are to be
applied [64–68]. The nonlinear filters are designed to detect
the region of discontinuity by the implementation of a switch to
active a suitable filtering procedure in the discontinuity regions
of the computational domain and in the everywhere else.

There are good reasons that the second-order linear filter is
suitable for discontinuity regions which are not the case for the
higher-order linear filters. Some nonlinear filtering schemes
designed based on this idea which have effective treatment
near the discontinuity by switching to a second-order filter, but
behave as a high-order linear filter in smooth regions [66–68].
Thus, the second-order filter has had negligible influence in
the smooth region where the high-order linear filters have
desirable properties. In this regard, a weighted essentially
nonoscillatory (WENO)-type smoothness criterion is used
by Visbal and Gaitonde [66] to define buffer zones for
activating the second-order filter. Bogey et al. [67] utilized
a sensor based on the high-frequency content of the pressure
to switch between a second-order and a higher-order filter in
discontinuity regions of the domain and in the everywhere else,
respectively. Recently, Mahmoodi Darian et al. [68] proposed
a sensor based on an order analysis and a suitable smoothness
measurement to properly switch between a second-order and
a higher-order filter.

In the present study, the high-order finite difference LB
method by the implementation of nonlinear filters based on the
works of Refs. [66–68] are used to solve the two-phase liquid-
vapor systems with high-density ratios. In this regard, the
filtered distribution function f̂α is calculated as a combination
of the second- and a higher-order filtered distribution function:

f̂α = ω1f̂
(1)
α + ωmf̂ (m)

α , m > 1, (24)

where ω1 and ωm are the nonlinear weights controlling the
amount of the second- and 2mth-order filters. These weights
are designed to preserve high accuracy of the filtered variable
in smooth regions and to obtain a nonoscillatory sharp interface

ω1 ≈ 1, ωm ≈ 0 near interface regions,

ω1 ≈ 0, ωm ≈ 1 in smooth regions. (25)

According to these considerations, three different sensors
are used here to determine the weights of the nonlinear filter on
the interface and smooth regions. For a liquid-vapor system,
there are several choices for the sensor variable, i.e., the
density. However, for two reasons it is preferred to select
the distribution function fα as the sensor variable. First, the
distribution function is the main variable involved in the
numerical solution, and, second, the filter is directly applied
to fα .

Based on the WENO-type sensor of Visbal and
Gaitonde [66], a central stencil of the fifth-order WENO
scheme along with the distribution function is used to detect
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the interface region

�j = [
13
12 (fα,j+1 − 2fα,j + fα,j−1)2 + 1

4 (fα,j+1 − fα,j−1)2]2
.

(26)

Using this sensor, named the SW sensor for the simplicity,
the interface region is defined by

�j =
{

1, �j > �th

0, else , (27)

where �th is a specified threshold parameter which has been
suggested to be set between 10−4 and 10−6. In this study, the
threshold parameter �th = 10−6 is used for all the simulations.
The points where �j = 1 correspond to the interface region.
Thus, the weights of the second- and high-order filters in
Eq. (24) are defined as

ω1 = max(�j,�j+1), ωm = 1 − ω1. (28)

Another sensor is used based on the work of Bogey
et al. [67], called the SB sensor, to determine the interface
region. This sensor is applied in three steps. At first, we
calculate

Dfα,j = 1
4 (−fα,j+1 + 2fα,j − fα,j−1). (29)

The magnitude of the high-pass filtered distribution func-
tion is then calculated as

Df
magn
α,j = 1

2 [(Dfα,j − Dfα,j−1)2+(Dfα,j − Dfα,j+1)2]

(30)

and the interface sensor is defined as the ratio r expressed as

rj = Df
magn
α,j

f 2
α,j

+ ε, (31)

where ε = 10−16 is introduced to avoid division by zero in the
following expression:

σj = 1

2

(
1 − rth

rj

+
∣∣∣∣1 − rth

rj

∣∣∣∣
)

. (32)

For rj � rth, the filtering magnitude is σj = 0 and for
rj > rth, it gets 0 < σj < 1. In this way, the second-order
filter is only switched on when the gradients of the distribution
function is strong enough. The threshold parameter rth has
been suggested to be set between 10−4 and 10−6. The lower
value of this parameter leads to smoother solution in the
interface region. In this study, the threshold parameter rth =
10−6 is used for all the simulations. The value of σj is used
to define the weights of the second- and high-order filters in
Eq. (24) as

ω1 = max(σj ,σj+1), ωm = 1 − ω1. (33)

The last sensor considered in this paper is the interpolation-
based sensor (the IB sensor) according to the work of Mah-
moodi Darian et al. [68]. They have proposed the following
weights for switching between the second- and high-order
filters in Eq. (24):

ω1 = 1 − ωm, ωm = exp
(−cee

2
j+1/2

)
, (34)

where ce is a positive constant number between 0 and ∞.
For ce = 0, the nonlinear filter is reduced to the high-order

linear filter and ce → ∞ corresponds to the second-order
linear filter. Note that using a larger value of ce removes the
oscillations appeared near the high gradient regions; however,
it may cause unwanted damping in the numerical solution.
They have used this constant in the range of ce = 200 to
ce = 4000 for a less dissipative solution and to remove strong
oscillations, respectively. The smoothness measurement term
ej+1/2 is defined as

ej+1/2 = max(ej ,ej+1), (35)

where

ej = |F̂α,j − Fα,j |
Dj

(36)

and F̂α,j − Fα,j is the difference between the interpolated and
computed values of the sensor variable defined as

F̂α,j − Fα,j = −(−1)m
′ (m′)!(m′)!

(2m′)!
(�∇)m

′
Fα,j (37)

and 2m′ is the order of interpolation error. In this study, a
second-order interpolation (m′ = 1) is used to compute the
term F̂α,j − Fα,j in Eq. (36), based on the distribution function
as the sensor variable

F̂α,j − Fα,j = 1
2 (fα,j+1 − 2fα,j + fα,j−1). (38)

The denominator Dj is a scaling value which is described
as

Dj = csSg + (1 − cs)Sl
(39)

Sg = Ug
max − Ug

min, Sl = Ul
max − Ul

min,

where Sg and Sl are the global and local scales, respectively,
where their maximum and minimum terms are defined as

Ug
max = maxk(Uk), Ug

min = mink(Uk) 1 � k � jmax

Ul
max = maxk(Uk), U l

min =mink(Uk) j−m′ � k � j+m′.

(40)

The parameter cs is the scaling constant with a positive
value smaller than unity. This constant has been suggested to
be set between 0.1 and 0.01. Using very small values for cs

is reasonable only for fine grids [68]. In the present study, the
constants ce and cs are taken to be 200 and 0.1, respectively.
If different values are used, the values are given explicitly.

Furthermore, in order to define the second- and high-order
filters in Eq. (24), the implicit filters obtain the filtered variables
f̂α from the unfiltered values fα by solving the following
tridiagonal system of equations:

af f̂α,i−1 + f̂α,i + af f̂α,i+1 =
N∑

n=0

an,i

2
(fα,i+n + fα,i−n),

(41)

where 2N is the order of filter with a 2N + 1 point stencil. The
N + 1 coefficients, an,n = 0,1,...,N , are derived in terms of
af with Taylor and Fourier-series analyses [58,60,63,69]. The
high-order filter is typically selected to be at least two orders of
accuracy higher than the difference scheme of the LB equation.
In the present study, the sixth-order filter is utilized for the
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TABLE I. Second- and sixth-order filter coefficients at interior
points.

Order a0 a1 a2 a3

f [O(�x2)]
1+2αf

2
1+2αf

2 0 0

f [O(�x6)]
11+10αf

16
15+34αf

32
−3+6αf

16
1−2αf

32

calculations in the smooth regions. Table I presents the filtering
coefficients for the tridiogonal second- and sixth-order filters.
The parameter af satisfies the inequality −0.5 < af < 0.5, in
which a higher value of af indicates a less dissipative filter.
For the problems with the periodic boundary conditions, the
filtering procedure mentioned in Eq. (41) can be used at the
boundary points. For the problems with the wall boundary
conditions special relations are needed at near wall boundary
points due to the relatively large stencil of the filter. Note that
the distribution function fα at the wall boundary points, i.e.,
i = 1,Imax, are not filtered. At near boundary points i, where
Eq. (41) cannot be used, as proposed in Ref. [69], one can
employ following higher order one-sided filter formulas

af f̂α,i−1 + f̂α,i + af f̂α,i+1 =
7∑

n=1

an,ifα,n i ∈ (2,3),

(42)

af f̂α,i−1 + f̂α,i + af f̂α,i+1

=
7∑

n=1

aImax−n,i
fα, Imax−n

i ∈ (Imax−2, Imax−1).

(43)

This boundary filter retains the tridiagonal form of the filter
scheme and af remains as the only free parameter. In Table II,
the coefficients for the sixth-order one-sided left-boundary
filter formulas used in the present computations at the points 2
and 3 are given. The right-boundary formulas can be obtained
by considering aImax−n,i

= an+1,Imax−n+1 for i ∈ (Imax−2,Imax−1).
In the present calculations, the filtering procedure is applied

sequentially in the x- and y-coordinate directions and the
solution is filtered once after each time step of the algorithm.
In the numerical results section, the accuracy and performance
of the solution of the high-order compact finite-difference
LB scheme by implementing the nonlinear filter with the
SW, SB, and IB sensors are investigated for capturing
the interface region of the two-phase flow problems studied.
The stability and robustness of the numerical solution pro-
cedure implemented for the simulation of liquid-vapor flows
with different values of density ratio are also examined for the
different sensors in the nonlinear filtering procedure used.

V. IMPLEMENTATION OF BOUNDARY CONDITIONS

All the two-phase problems simulated here have either
periodic or wall boundary conditions. The implementation of
boundary conditions for the two-phase flows is nearly similar
to that given in Refs. [45,46] for the incompressible flows.
Note that the distribution function fα is not given directly at
the boundaries and a particular treatment should be applied
to determine its value. The implementation of the periodic
boundary conditions for calculating the distribution function
fα is straightforward, as given by Eqs. (20) and (21). For
the wall boundaries, the boundary conditions of macroscopic
variables are implemented at first and the distribution function
fα is then calculated based on them. Herein, the Dirichlet-
or Neumann-type boundary conditions are used to define or
update the macroscopic variables after each time step on
the wall boundaries; the no-slip conditions for the velocity
components (u = v = 0) are imposed and the density can
be updated by considering ∂ρ/∂yn = 0 (yn is the distance
in the wall-normal direction) using the one-sided fourth-order
finite-difference approximation as follows:

ρ1 = 1
125 (240ρ2 − 180ρ3 + 80ρ4 − 15ρ5). (44)

Now, Eqs. (16) and (17) are numerically solved at each
wall boundary using the same algorithm employed for the
interior points to determine the distribution function fα at
new time step on the wall boundary points. Note that the
equilibrium part of the distribution function f

eq
α required in

the LB equation (17) is determined by Eq. (5) with the use of
the specified or updated macroscopic variables at the desired
wall boundary. The terms ∂fα

∂x
and ∂fα

∂y
in LB equation (17)

are also known from the compact differencing simultaneously
at the interior and wall boundary points. The procedure given
above can be applied to determine the distribution function fα

at each wall boundary. More details on the boundary conditions
implementation have been presented in Refs. [45,46].

VI. NUMERICAL RESULTS

The accuracy and performance of the high-order accurate
numerical scheme implemented to solve the multiphase LB
equation are demonstrated for different two-phase liquid-vapor
flow problems. Five test cases are considered for verifying the
computations and assessing the solution methodology, namely
the equilibrium state of a planar interface in a liquid-vapor
system, a droplet suspended in the gaseous phase, a liquid
droplet located between two parallel wettable surfaces, the
coalescence of two droplets, and the phase separation in a
liquid-vapor system at different conditions. Results obtained
for these two-phase test cases by applying the CFDLBM
are thoroughly compared and verified with those of the
analytical solutions and the available numerical results. A
sensitivity study is also performed to evaluate the effects of

TABLE II. Sixth-order filter coefficients at points 2 and 3.

Order a1 a2 a3 a4 α5 α6 α7

f2[O(�x6)]
1+62αf

64
29+6αf

32
15+34αf

64
−5+10αf

16
15−30αf

64
−3+6αf

32
1−2αf

64

f3[O(�x6)]
−1+2αf

64
3+26αf

32
49+30αf

64
5+6αf

16
−15+30αf

64
3−6αf

32
−1+2αf

64
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grid size and filtering schemes implemented on the accuracy
and performance of the solution of the two-phase compact
finite-difference LBM applied.

A. The equilibrium state of a planar interface
in a liquid-vapor system

When the temperature of a liquid-vapor system reaches
below its critical value (T < Tc), phase separation occurs in
the system. Thus, two different phases, a liquid phase with
higher density and a gas phase with lower density, arise and
the system get to equilibrium state in the new temperature.
The 2D isothermal liquid-vapor system with a flat interface
is a simple example of this type of two-phase flow with a
phase separation. As a preliminary study, before addressing
more complex problems, the simulation of the 2D plane
interface is investigated to examine the efficiency of the
fourth-order CFDLBM implemented by using three different
sensors introduced for the filtering scheme. Cristea et al. [28]
have used this test case to investigate the performance of the
two different finite-difference schemes for the discretization of
the LBM. They have implemented a first-order upwind (UP)
scheme and also the second-order total variation diminishing
(TVD) scheme with the monitorized central difference (MCD)
flux limiter in their study. Their results obtained by the
finite-difference LBM (FDLBM) show significant deviations
from the theoretical densities of the two coexisting phases,
particularly at low temperatures. The theoretical curve of the
two coexisting phases is calculated according the Maxwell
equal area construction [55]. The lowest temperatures in which
the numerical schemes used by Cristea et al. remain stable for
solving the phase separation are T = 0.73 and T = 0.82 for
the UP and the MCD schemes, respectively. Teng et al. [25]
have employed three second-order FDLBM schemes: the
MacCormack scheme, the TVD scheme, and a new TVD with
the artificial compression (TVD/AC) scheme to solve the 2D
liquid-vapor system with flat interface. As in Cristea et al.,
their results using the MacCormack and TVD schemes are not
in agreement with the theoretical coexisting curve at the low
temperatures. The MacCormack and TVD schemes used by
them are numerically unstable for the temperatures below T =
0.8 and T = 0.6, respectively. However, the TVD/AC scheme
remains stable for the lower temperatures until T = 0.51 in
which the density ratio reaches 100 and the results obtained are
in good agreement with the theoretical ones. The liquid-vapor
system with the flat interface is also used by Wagner [70]
to investigate the accuracy and performance of a LBM that
implements a high-order scheme to discretize the fourth-order
spatial derivatives in the nonideal terms of the LB equation. He
imposed the nonideal terms through either forcing or pressure
terms for the simulation of two-phase flows. He concluded
that using a second-order discretization for the high-order
spatial derivative terms in the nonideal LBM leads to a lack
of thermodynamic consistency that prevents to obtain a true
equilibrium solution for the liquid-vapor two-phase flows.
Using the high-order discretization scheme for the nonideal
fourth-order derivative terms in his proposed LBM leads to
more accurate results for the liquid-vapor system with the
flat interface compared with the theoretical coexisting curve.
However, his proposed LBM with the high-order discretization
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(b)

1
0

0.5
RHO: 0.60 0.80 1.00 1.20 1.40 1.60 1.80
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0.5

1

1.5

2

FIG. 3. (Color online) Initial condition (a) density contours and
(b) sharp density profile at midplane for a 2D isothermal liquid-vapor
system with a flat interface.

scheme is unstable for the temperatures below T = 0.87
(corresponds to the density ratio about 5) using both the forcing
and pressure methods.

In the present study, the size of system is 1.0 × 0.5 with
a 121 × 61 uniform computational grid. Periodic boundary
conditions are applied to the all open boundaries at the four
sides of the computational domain. The time step, relaxation
factor, surface tension coefficient, and filtering coefficient are
set to be δt = 10−4, τ = 10−4, κ = 10−4, and af = 0.49,
respectively, except for special declarations. The initial density
distribution contours and its sharp profile at the midplane of
the 2D domain are shown in Fig. 3. In the middle of the
domain, the density is initialized to be ρ = 2 and its value is
set up ρ = 0.4 in the other parts. For the temperatures near
the critical temperature value (T � 0.6), it takes about 15
dimensionless time for the liquid-vapor system established to
reach the equilibrium state of the system using the two-phase
compact finite-difference LBM applied. However, it needs
to perform 25 dimensionless time to ensure the equilibrium
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FIG. 4. (Color online) Computed (a) density field and (b) density
profiles at midplane for a 2D isothermal liquid-vapor system with a
flat interface using SW, SB, and IB sensors at temperatures T = 0.8
and T = 0.7.

state for lower temperatures (T < 0.6). Figure 4 shows the
density contours and its profiles at the midplane of the 2D
equilibrated liquid-vapor system with a flat interface for the
SW, SB, and IB filtering sensors at the temperatures T = 0.8
and T = 0.7. As observed in this figure, the value of liquid
and gas densities calculated are not significantly affected by
the three different sensors used in the filtering scheme. Note
that the IB sensor provides a slightly sharper interface in the
density profile compared with the results of the SW and SB
sensors at the temperature T = 0.8. The smoothness of the flat

x
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FIG. 5. (Color online) Comparison of velocity profiles at mid-
plane for a 2D isothermal liquid-vapor system with a flat interface
using SW, SB, and IB sensors at temperatures (a) T = 0.8 and
(b) T = 0.7.

interfaces computed by the three sensors used are almost the
same at the temperature T = 0.7.

The density profile of the liquid-vapor systems must
be monotonic with respect to the position. Hence, zero
velocities at the equilibrium state of the liquid-vapor systems
are expected according to the mass conservation equation
[Eq. (13)]. However, the existence of the spurious numerical
terms in the momentum conservation equation causes an
unbalance between the gradients of the pressure and the
interfacial stress, which may produce nonzero velocities in
the interface region [3,25]. The existence of the spurious
velocities in the numerical simulations of the liquid-vapor
systems using the standard LBM and FDLBM are previously
reported by many researchers (e.g., see Refs. [25,27,71–73]).
Figure 5 shows the velocity profiles in the midplane of the
2D equilibrated liquid-vapor system using the fourth-order
compact finite-difference LBM implemented with the SW, SB,
and IB sensors at the temperatures T = 0.8 and T = 0.7. By
using the SW sensor, the maximum values of existing spurious
velocities in the interface region are higher than those predicted
by using the SB and IB sensors. The spurious velocities are
found to be smaller when the IB sensor is applied in the
filtering scheme compared to the SW and SB sensors. As seen
in Figs. 4 and 5, with decreasing the temperature, the difference
between the density of liquid and gas phases is increased and
the magnitude of the spurious velocities becomes larger in the
interface. Increasing the magnitude of the spurious velocities
at the lower temperatures is the main reason of the instability of
the numerical schemes based on the LBM to solve two-phase
systems with high density ratios.
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FIG. 6. (Color online) Effect of value of filter coefficient af on (a) density profile at mid-plane and (b) convergence rate of solution using
SW sensor (top row), SB sensor (middle row), and IB sensor (bottom row) for a 2D isothermal liquid-vapor system with a flat interface at
temperature T = 0.8.

A sensitivity study is conducted to investigate the effects of
the value of the filtering coefficient αf in the SW, SB, and IB
sensors on the accuracy and convergence rate of the solution at
T = 0.8. Figure 6 shows the density profiles at the midplane
of the 2D domain for different values of filtering coefficient.
It is indicated that the accuracy of the solution of the two-
phase flow with the plane interface computed based on the
compact finite-difference LBM is not affected by the value of
the filtering coefficient. In this figure, the convergence history

of the solution is also shown for the error of the u-velocity
profile in the flow field at T = 0.8. The error is defined as the
L∞ norm of the u velocity in the flow field calculated by:

L∞ = max
(∣∣un+1

i,j − un
i,j

∣∣), (i,j ) = (1,1),...,(Imax,Jmax)
(45)

at the time steps n and n + 1. The study indicates that the
convergence rate of the solution is not also very sensitive to
the value of the filtering parameter.

053305-11



KAZEM HEJRANFAR AND ESLAM EZZATNESHAN PHYSICAL REVIEW E 92, 053305 (2015)

x

ρ

0 0.5 1

0

0.6

1.2

1.8

Teng et al. (TVD/AC)
Present solution (CFDLBM - SB sensor)
Present solution (CFDLBM - IB sensor)

x

u

0 0.5 1
-8.0x10-05

-6.0x10-05

-4.0x10-05

-2.0x10-05

0.0x10+00

2.0x10-05

4.0x10-05

6.0x10-05

8.0x10-05

Teng et al. (TVD/AC)
Present solution (CFDLBM - SB sensor)
Present solution (CFDLBM - IB sensor)

x
(a) (b)

ρ

0 0.5 1

0

0.6

1.2

1.8

Cristea et al. (TVD)
Present solution (CFDLBM - SB sensor)
Present solution (CFDLBM - IB sensor)

x

u

0 0.5 1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Cristea et al. (UP)
Cristea et al. (TVD)
Present solution (CFDLBM - SB sensor)
Present solution (CFDLBM - IB sensor)

FIG. 7. (Color online) Comparison of (a) density and (b) velocity profiles at midplane for a 2D isothermal liquid-vapor system with a flat
interface at T = 0.9, κ = 2.5 × 10−5 (top row) and T = 0.85, κ = 10−5 (bottom row).

Figure 7 shows the comparison of the density and velocity
profiles at the midplane of the 2D liquid-vapor system
computed by the present solution procedure with the results
reported by Teng et al. [25] and Cristea et al. [28] in two
different conditions. The results obtained for the density
profiles are in good agreement with the available numerical
results. As shown in this figure, the present solution procedure
reduces the numerical fluctuations of the solution in the
interface region compared to those of the previous results
reported in the literature. Such an improvement is because
of implementation of the appropriate filtering schemes in the
present solution procedure. It is found that the high-order
compact finite-difference LBM applied has good stability
characteristics for the simulation of the two-phase liquid-vapor
flows with high density ratios.

The equilibrium state of the liquid-vapor system with a
planar interface is solved in different temperatures below
the critical temperature value to demonstrate the accuracy

and performance of the present numerical scheme for the
simulation of two-phase flows. Figure 8 shows the densities
of the coexisting phases calculated in the equilibrium state
at different values of temperature by using the compact
finite-difference LBM implemented with the SW, SB, and IB
sensors in the filtering scheme. The results obtained are verified
with those of the theoretical values. As shown in this figure,
the numerical results computed using all the three filtering
procedures implemented agree very well with the theoretical
curve at a wide range of density ratios. However, the two-phase
compact finite-difference LBM implemented by using the SW
sensor in the filtering scheme becomes numerically unstable
for the temperatures below T = 0.7 which is equivalent to the
liquid to vapor density ratio of ρl/ρv = 18.4. This instability
problem is related obviously to the higher spurious velocities
in the interfacial region obtained by using this sensor at lower
temperatures, as shown in Fig. 5. By using the SB and IB
sensors, however, the present numerical scheme becomes more
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FIG. 8. (Color online) Coexistence curve for a 2D isothermal
liquid-vapor system with a flat interface at different temperatures
obtained by the present solution procedure using SW, SB, and IB
sensors compared with the theory of Maxwell construction.

stable for the simulation of lower temperatures with larger
density ratios. The two-phase compact finite-difference LBM
implemented with the SB and IB sensors is still stable for
the temperature T = 0.38, which is corresponds to the density
ratio ρl/ρv = 1141 and 1091, respectively. According to the
level of the spurious velocities predicted by using the SW, SB,
and IB sensors (see Fig. 4), it is expected that the numerical
scheme implemented be more stable by using the SB and IB
sensors for the simulation of the liquid-vapor systems with the
high density ratios. Table III compares the computed results for
the liquid-to-vapor density ratio ρl/ρv by applying the SW, SB,
and IB sensors in the filtering scheme at different temperatures.
The highest density ratio is recovered with the SB sensor
and it is significantly larger than the one obtained with the
SW sensor. These results shows that the fourth-order compact
finite-difference LBM by using the SB and IB sensors is robust

TABLE III. Comparison of density ratios of the planar interface
liquid-vapor system calculated by implementation of SW, SB, and IB
sensors at different temperatures.

ρl

ρv

T SW sensor SB sensor IB sensor

0.90 3.92 3.90 3.92
0.85 5.73 5.68 5.67
0.80 8.42 8.06 7.89
0.75 12.29 11.90 11.93
0.70 18.44 17.05 17.34
0.60 42.39 43.15
0.50 147.62 145.19
0.45 346.79 342.38
0.40 961.11 927.17
0.38 1141.73 1091.88

and suitable for solving liquid-vapor flows even at high density
ratios and provides accurate and efficient solutions. Due to the
better performance of the compact finite-difference LBM with
the SB and IB sensors, it is decided to adopt these two sensors
for further simulations. It is noted that the van der Waals EOS
used in this study for computing the pressure of nonideal fluids
is the simplest and most famous equation of state. However,
by replacing the van der Waals EOS with a more realistic
equation, like the Redlich-Kwong EOS, a better performance
can be achieved [13,74].

B. A droplet in gaseous phase

The 2D stationary droplet is an appropriate test case to
verify various models for multiphase flows. Here this problem
is solved to demonstrate the accuracy and performance of
the present numerical scheme. In the present work, a doubly
periodic domain 0 � x,y � 2 is used and the time step, the
relaxation factor, and the surface tension coefficient are set to
be δt = 10−4, τ = 10−4, and κ = 10−4, respectively, except
for special declarations. For this test case, the SB and IB
sensors are used in the filtering scheme of the fourth-order
CFDLBM implemented to ensure the stable solutions for
the simulation of the stationary droplets with high density
ratios. The filtering coefficient set to be af = 0.49. The initial
condition of a droplet suspended in the gaseous phase is
determined with the density distribution in the flow field at
which the density profile is sharp in the interface. For the
initialization of the simulations in this study, a circular region
with the radius R = 0.1 at the center of the 2D domain is
initialized with the density ρ = 1.1 and the density of the
other parts of the domain is set to be ρ = 0.2. The calculations
are performed for 30 nondimensional time to ensure the
equilibrium state.

At first, a grid refinement study is performed at the
temperature T = 0.4 to examine the sensitivity of the solution
on the grid size. The computational grids used for these flow
conditions are (101 × 101), (151 × 151), (201 × 201), and
(301 × 301). Figure 9 shows both the density and u-velocity
profiles along the midline through the center of the domain
for the different meshes. As illustrated in this figure, the
differences between the predicted density and velocity profiles
for the grid (201 × 201) and the fine grid (301 × 301) are
small and the solution seems independent of the grid size
when the number of grid points becomes larger than the
(201 × 201) one. The grid refinement study also indicates
that the magnitude of the spurious velocities is decreased by
increasing the number of grid points. This conclusion confirms
that the discretization errors of the finite difference method
employed to solve the LB equation are one of the reasons of
existing the spurious velocities. Note that the discretization
errors are as the one the reason of existing the spurious
velocities in the liquid-vapor interfaces reported for both
the standard LBM [31,32] and FDLBM [25,27]. Cristea and
Sofonea [27] have introduced a correction force term to
eliminate the discretization errors in the FDLBM with the
first-order upwind scheme for reducing the spurious velocities
in the liquid-vapor systems. In Table IV, the order of spatial
accuracy of the solution for this test case is calculated by
employing the SB sensor for T = 0.4 based on the maximum
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FIG. 9. (Color online) Grid refinement study on (a) density and
(b) u-velocity profiles along midline through center of domain for 2D
droplet suspended in gaseous phase at temperature T = 0.4.

value of the spurious velocity for all the grid points for the
meshes (101 × 101), (151 × 151), and (201 × 201) compared
with the results of the most refined one, the mesh (301 × 301).
The order of spatial accuracy is about 3.77 that verifies the
fourth-order accuracy of the numerical scheme implemented.

TABLE IV. Order of accuracy of the solution based on the
maximum value of the spurious velocity in the interfacial region
of a 2D droplet at T = 0.4.

Grid �x Log(�x) Log(error)

(101 × 101) 2/100 −1.6989 −0.3693
(151 × 151) 2/150 −1.8750 −1.0423
(201 × 201) 2/200 −2.0000 −1.5040
Order of accuracy ∼ 3.77

Figure 10 illustrates the results for the equilibrium state
of the circular droplet calculated using the present solution
procedure by using the SB and IB sensors at different
temperatures. The computed 2D liquid-vapor flow field are
depicted by the density contours for T = 0.4, 0.6, and 0.8,
recovered for κ = 10−4 using the compact finite-difference
LBM implemented. It is observed that the shape of droplets
does not depart from a circle at the equilibrium state and
their shape does not also change any longer after equilibrium
condition. It is observed that the results obtained for both
the SB and IB sensors are nearly the same. However, the
interface region is slightly smeared by using the SB sensor
for the temperature T = 0.8. To study this in detail, the
variation of the density profile across the droplet interface
at different temperatures is studied. In order to show and
to clearly compare the interfaces, the interfacial region of
the droplets at different temperatures are cut from the whole
domain, as shown in Fig. 11. Figure 12 makes a comparison
of the results obtained by using the SB and IB sensors. The
density profiles in the interface region are nearly the same for
different temperatures T = 0.4 to 0.7. However, as expected
from Fig. 10, the SB sensor smooths the interface region more
than the IB sensor, especially at the high-temperature value
T = 0.8. The spurious velocity arising in the simulation of
a circular droplet is investigated in the equilibrium state by
the present solution procedure using the SB and IB sensors
in different dimensionless temperatures. Figure 13 shows the
comparison of the maximum value of the spurious velocity
in the computational domain obtained based on the compact
finite-difference LBM employed with the results reported by
Yuan and Schaefer [13] based on the standard LBM using
the two-phase Shan-Chen model. This figure shows that the
present solution procedure reduces the magnitude of the
spurious velocities compared to an ordinary two-phase LBM.
Mattila et al. [37] also investigated the spurious currents
for an equilibrated droplet at the dimensionless temperature
T = 0.9 using the two-phase LBM with the high-order
discretization schemes with implementing the HSD model.
The magnitudes of the spurious velocity reported by Mattila
et al. where 5.84 × 10−3, 4.34 × 10−3, and 6.63 × 10−4 using
three discretization methods include a third-order backward
differentiation formula (BDF), a third-order Adams–Moulton
method (A-M), and a second-order trapezoidal LBE, respec-
tively. The maximum values of the spurious velocity for an
equilibrated droplet at the dimensionless temperature T = 0.9
obtained by the high-order compact finite-difference LBM
presented using the SB and IB sensors are 3.72 × 10−5 and
3.31 × 10−5, respectively, are at least one order of magnitude
lower than those of reported by Mattila et al. The low spurious
currents will make the simulations based on the present
numerical scheme implemented be stable for the solution of
the liquid-vapor two-phase flows even at high density ratios.

Now a sensitivity study is conducted to ensure that the
constants in the IB sensor do not affect the accuracy of the
solution at T = 0.8. Figure 14 shows the density profiles at
the interface region for different values of the ce and cs in the
IB filtering scheme compared with the result of the SB sensor.
It is indicated that the accuracy of the solution computed based
on the compact finite-difference LBM employed by using the
IB sensor is not affected by the value of the filtering constants.
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FIG. 10. (Color online) Comparison of computed density field of equilibrium state of 2-D droplet using SB sensor (top row) and IB sensor
(bottom row) at temperatures (a) T = 0.4, (b) T = 0.6, and (c) T = 0.8.

Figure 12 also shows that the interface thickness decreases with
decreasing the temperature and the density profile becomes
sharper. The thicker interface of the droplet with increasing the
temperature is also clearly observed in Fig. 10. In fact, with the
decrease of the temperature, the surface tension is increased
and, as expected, the liquid-to-vapor density ratio increases. As
in the previous study for liquid-vapor systems with the plane
interface, this study also indicates that the compact finite-
difference LBM implemented using the SB and IB sensors is
numerically stable for the solution of the two-phase flows with
the curve interface for high density ratios about ρl/ρv = 1000
which is equivalent to the temperature about T = 0.4.

x′

Liquid

gas

FIG. 11. (Color online) A schematic of cut-off zone in interfacial
region of 2D droplet.

Similarly, the density profile is also studied for different
values of surface tension coefficient κ by using the SB and IB
sensors at the same temperature T = 0.5. Figure 15 illustrates
that the value of the density calculated for the liquid and vapor
phases does not change for different values of surface tension
coefficient κ . However, the interface width becomes larger as
κ increases and the transition region between the two phases
is smooth. The results indicated in Figs. 12 and 15 verify that
the density ratio between the liquid and the vapor phase is only
determined by the temperature.

The satisfaction of the Laplace law [55] is an important
benchmark test for the validation of the droplet suspended in
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FIG. 12. (Color online) Comparison of density profiles at inter-
facial region of 2D droplet using SB and IB sensors at different
temperatures.
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FIG. 13. (Color online) Comparison of maximum value of spu-
rious velocity for equilibrium state of 2D droplet calculated by the
present solution procedure using SB and IB sensors with the standard
Shan-Chen model at different temperatures.

the gas. According to the Laplace law, the tension in the surface
makes a pressure difference �p between the inside and outside
of the droplet. Thus, the interfacial tension can be evaluated
based on the Laplace equation for the 2D droplet given by the
following expression:

�p = pin − pout = σ

R
, (46)

where R is the radius of the droplet, σ is the surface tension,
and pin and pout are the pressure inside and outside the droplet,
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FIG. 14. (Color online) Effect of value of constants ce and cs in
the IB sensor on density profiles at interfacial region of 2D droplet
compared with result of SB sensor at temperature T = 0.8.
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FIG. 15. (Color online) Effect of value of surface tension coeffi-
cient κ on density profiles at interfacial region of 2D droplet using
SB and IB sensors at temperature T = 0.5.

respectively. The pressure difference across the liquid-vapor
interface is calculated at dimensionless temperatures T = 0.4
and T = 0.5 with the values of the surface tension coefficient
κ = 10−4 and κ = 10−5 to verify the linear dependency of
�p and the inverse droplet radius 1/R. Figure 16 illustrates
�p between the inside and the outside of the droplets as a
function of the inverse droplet radius in the according con-
ditions simulated using the present compact finite-difference
LBM with the implementation of the SB and IB sensors in

1/R

Δp

0.8 1 1.2 1.4 1.6 1.8

0.06

0.08

0.1

0.12

0.14

0.16

    IB
sensor

   SB
sensor

T =0.5 ,   κ =10-5

T =0.4 ,   κ =10-4

T =0.5 ,   κ =10-4

FIG. 16. (Color online) Verification of the Laplace law for a 2D
droplet investigated by the present solution procedure using SB and
IB sensors at different values of surface tension coefficient κ and
temperature T .
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the filtering scheme. It can be seen that the Laplace law
is accurately satisfied for both the sensors and the linear
relationship between �p and 1/R confirms a constant value
of the surface tension σ , representing the slope of the lines.
From Fig. 16, it can be also concluded that there are two factors
which determine the surface tension of the droplets, the surface
tension coefficient κ , and the density gradient which is related
to the temperature T . When T = 0.5, the runs of κ = 10−4

and κ = 10−5 are corresponding to the surface tensions σ =
7.31 × 10−2 and σ = 6.18 × 10−2, respectively. It shows that
with decreasing the surface tension coefficient κ , the surface
tension is decreased because the increment of the density
gradients caused by this operation is not as large as the effect
of decreasing the value of κ (see Fig. 15). For the constant
κ = 10−4, with decreasing of the temperature from T = 0.5
to T = 0.4, the value of surface tension is increased from
σ = 7.31 × 10−2 to σ = 9.00 × 10−2, respectively, because
decreasing the value of temperature causes more density
gradients in the interface. The increment of the surface
tension with decreasing the temperature is the reason why
the density profiles become sharper at low temperatures (see
Fig. 12). The results obtained demonstrate the successful
employment and robustness of the compact finite-difference
LBM implemented for accurately simulating two-dimensional
liquid-vapor systems with the curved interface and high density
ratios.

C. Wettability

The contact between multiphase fluids and partial wetting
surfaces is ubiquitous in nature and in a large class of industrial
processes, ranging from water droplets on leaves or window
panes to lubrication, painting, and coating processes. When
a two-phase fluid flow meets a solid surface, a finite contact
angle, known as the partial wetting, can be seen between the
liquid-gas interface and the wall. Forming the wetting angle
is due to the balance of the surface tension forces and it is
driven toward an equilibrium state by the capillary forces.
The simulation of the wetting angle between the two-phase
liquid-gas fluids and the solid surfaces is an appropriate test
case to verify various models for the multiphase flows because
it involves wall boundary conditions and intermolecular forces
between the fluid and solid molecules.

Herein, a liquid droplet located between two parallel flat
plates at the equilibrium state is studied to demonstrate the
robustness and efficiency of the high-order compact finite-
difference LBM implemented for the simulation of the contact
angle and surface wettability. The HSD model used here
(proposed by He et al. [20]) does not involve the intermolecular
forces at the solid-fluid interface. Rothman and Zaleski [75],
Yiotis et al. [76], and recently Lin et al. [77] have suggested
and applied a mathematical assumption to extend the original
HSD model for the simulation of the intermolecular forces
between the fluid and solid molecules. In this way, an effective
value is assigned for the density of the solid ρs in the range
between the gas density and the liquid density, ρv < ρs < ρl .
Therefore, the attracting forces between the two-phase fluid
particles and the molecules of the solid are controlled by
the density of the solid surface ρs on the wall nodes. For a
value of ρs close to the liquid density, the molecules of the

liquid phase are attracted stronger by the solid surface, and,
in contrast, if the value of ρs be close to the gas density,
the solid surface will attract the particles of the gas phase.
Therefore, depending on the value of ρs , different wetting
angles can be formed between the liquid-gas interface and the
solid surface. Although this assumption is a crude estimate
of the true chemical constitution of the solid surface [76],
it is adopted in order to take advantage of the mean-field
approximation for the intermolecular potential by Rowlinson
and Widom [55]. Similar approaches have been used by Bekri
and Adler [78] for the Gunstensen LB model and also in
the original LB model by Shan and Chen [11] through the
solid-fluid interaction potential.

In the present study, the size of the rectangular domain
is 1.0 × 0.5 with a 121 × 61 uniform computational grid.
Periodic boundary conditions are applied to the left and
right sides of the computational domain and the no-slip
wall boundary condition is applied on the upper and lower
plates. The wall boundary conditions are applied by using the
approach described in the previous paragraph. The density
of the solid nodes is defined by the value of ρs , and the
wetting angle is investigated at different conditions depending
on different values of ρs . The IB sensor is implemented in the
filtering scheme for the numerical simulation of this test case
and the time step, the relaxation factor, the surface tension
coefficient, and the filtering parameter are set to be δt = 10−4,
τ = 10−4, κ = 10−4, and af = 0.49, respectively. A square
liquid droplet located between the two parallel solid plates is
considered at the dimensionless temperature T = 0.7 as an
initial condition in the middle of the 2D domain. Initially, the
upper and bottom sides of the droplet are in direct contact
with the solid plates and a value between the liquid and
gas densities is considered for the solid nodes, ρv < ρs < ρl .
With starting the solution, the density considered for the solid
surface enters the calculations through Eq. (8) for the external
force and affects the affinity of the solid to the fluid phases.
When the system reaches to the equilibrium state, a contact
angle is formed between the flat plates and the interface of
the liquid-vapor two-phase flow depending on the value of
ρs . The results for the equilibrium state of the square droplet
between the two parallel plates calculated using the high-order
compact finite-difference LBM implemented are depicted by
the density contours in Fig. 17 at different normalized solid
densities Dρ , defined as:

Dρ = ρs − ρv

ρl − ρv

. (47)

Figure 18 shows the wetting angle θw at the equilibrium
state for the square droplet between the two parallel plates
obtained by the present solution procedure for different values
of the normalized solid density Dρ . As shown in this figure, the
wetting angle obtained by using the present solution algorithm
has a linear dependence to the normalized solid density
that is agreement with the results reported in the previous
works [76,77]. As the value of solid density ρs increases from
ρv to ρl , the solid surface changes from the gas-wet surface
to the liquid-wet surface. Consequently, it is observed that the
equilibrium wetting angle θw decreases with increasing the
value of Dρ in Figs. 17 and 18.
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FIG. 17. (Color online) Computed density field of a square liquid droplet between two parallel flat plates at temperature T = 0.7 for
normalized solid densities (a) Dρ = 0.2, (b) Dρ = 0.5, (c) Dρ = 0.8, and (d) Dρ = 0.9.

D. Coalescence of two droplets

In many two-phase flow applications such as boiling,
emulsions, ink jets, as well as for rain in nature, the coalescence
of bubbles or droplets arises. In the boiling water reactors
(BWR), for example, the droplets in the vapor stream coalesce
with other droplets or with the liquid films on the cladding. The
study of these phenomena is a challenging task for accurately
analyzing the thermodynamic of reactors. Explicitly, there
are some difficulties for the numerical simulation of the
coalescence phenomena by existing models, even with current
CFD codes [35]. According to the efficiency of the LBM
and its advantageous over traditional Navier-Stokes for the
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FIG. 18. (Color online) Computed wetting angle obtained by the
present solution procedure for different normalized solid densities at
temperature T = 0.7.

simulation of the multiphase flows, many researchers have
been interested to solve the coalescence phenomena by using
the LB method [8,26,35,79,80].

Here the numerical solution of the coalescence of two
droplets is performed to demonstrate the accuracy and stability
of the high-order CFDLBM employed for studying relatively
complex two-phase flows with high density ratios. The flow
parameters of the two droplets used for the numerical simu-
lation of the coalescence phenomena are shown in Fig. 19. A
(L × H ) = (2.7 × 2.0) rectangular domain with the uniform
mesh (271 × 201) is used and periodic boundary conditions
are applied to all the open boundaries at the four sides of the
computational domain. The time step, the relaxation factor,
and the surface tension coefficient are set to be δt = 10−4, τ =
10−4, and κ = 10−4, respectively, and the SB sensor is used
in this study. For studying the coalescence phenomena with
a large density ratio, two identical circular droplets of radius
r = 0.42 with the density ratio ρl/ρv = 961 and the interface
thickness w = 0.064 (corresponding to the dimensionless
temperature T = 0.4) are placed close to each other in the
center of the computational domain. The distance between the

2r2r d

w

FIG. 19. (Color online) Flow parameters of two droplets used for
numerical simulation of coalescence phenomena.
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FIG. 20. (Color online) Snapshots of numerical results of droplet
shapes in coalescence phenomena at distances (a) d = 0.136,
(b) d = 0.116, and (c) d = 0.076.

two droplets d and the interface width w are the major factors
that determine whether the droplets will merge together or not.

To study the effect of distance between the two droplets in
the coalescence phenomena by using the solution methodology
developed, three different gaps, d = 0.136, 0.116, and 0.076,
are considered between the droplets. Figure 20 shows the
snapshots of the numerical results of the droplet shapes
obtained for different nondimensional times. It can be observed
that the two droplets do not merge together when the gap of
two droplets is set to be d = 0.136. This result is in agreement
with the conclusion obtained by other researchers that when
the gap of the two droplets is larger than twice the interface
width d > 2w, they do not merge [35].

For the cases where the gap of two droplets is less
than 2w (d = 0.116, 0.076), as the simulation starts, the
inter-molecular forces cause the droplets to merge together
eventually and the coalescence phenomenon occurs. It can
be seen clearly that for d = 0.116 the merging process is
much slower than in the case where d = 0.076. This study
conducted also shows that the tension forces send the surface
of the droplets into oscillation in the coalescence process
before they merge to become a single circular droplet in the
equilibrium state. It ensures that the surface tension effect is

2rb

connection bridge

FIG. 21. (Color online) A schematic for coalescence of two
droplets and connection bridge radius rb.

properly implemented in the solution algorithm. The results
shown in Fig. 20 are very similar to those obtained by
Sankaranarayanan [81], Yuan [80], Zheng et al. [35], and Reis
and Phillips [79]. The reason that the results obtained in the
present study differ qualitatively is that the density ratio as
well as the surface tension of the droplets in this study differ
from those they considered.

When the coalescence starts and the two droplets come in
contact, a connection bridge initially forms between the two
droplets [82,83]. This bridge then gets pulled out by the surface
tension force. A schematic for the coalescence of two droplets
and the connection bridge radius rb is shown in Fig. 21. The
time evolution of the connection bridge radius rb is shown in
Fig. 22 for d = 0.116 and d = 0.076. The oscillation during
the coalescence process can be observed clearly in this figure
which plots the value of rb at x = L/2 as a function of the
nondimensional time. It is important to note that the merging
process is slower for d = 0.116; however, the amplitude of
the oscillations is higher for this case compared to the case
d = 0.076. The radius of the final droplet should be equal to√

2r [79,80]. As shown in Fig. 20, this relation is satisfied for
the results obtained by using the present solution algorithm.
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FIG. 22. (Color online) Time evolution of connection bridge
radius rb for coalescence of two droplets with distances d = 0.116
and d = 0.076.
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The results obtained verify that the high-order finite difference
LBM scheme is accurate and stable to simulate the two-phase
phenomena with high-density ratio up to 1000.

E. Homogenous phase transition

When a homogenous vapor is quenched from above the
critical temperature to below the critical point where two
different phases can be coexist, the vapor phase becomes
unstable and a part of it condenses into the liquid phase.
This phase transition process is continued until the liquid
and the vapor phases coexist in the equilibrium state. From
a thermodynamic point of view, by decreasing the temperature
at a constant volume, the kinetic energy of the molecules
as well as the effect of collisions is reduced. Thus, the
intermolecular forces become dominant in the vapor phase
and small droplets begin to appear. Physically, the existence of
some nuclei is necessary for the liquid phase to be formed
in the homogenous vapor. These nuclei can be ions or
submicroscopic particles which are naturally suspended in
the vapor. The condensation of the vapor phase on the
nuclei for establishing the liquid-vapor equilibrium is also
called spinodal decomposition. Many researchers have been
interested in studying this phenomenon using the multiphase
LBM [11,30,52,84]. Here the phenomenon of the phase
transition is performed in a 2D liquid-vapor system using

FIG. 23. (Color online) Computed density field of 2D phase
separation in a liquid-vapor system using SB sensor at temperature
T = 0.7 at times t = 0.4 (first row), t = 1.2 (second row), t = 2.0
(third row), and t = 5.2 (fourth row) for surface tension coefficients
(a) κ = 10−4, (b) κ = 10−5, and (c) κ = 10−6.

the high-order compact finite-difference LBM implemented to
demonstrate the stability and robustness of the present solution
methodology for the simulation of such a complex test case.
A 1 × 1 square domain with the uniform mesh (201 × 201) is
used and periodic boundary conditions are applied to all the
open boundaries at the four sides of the computational flow
field (0 � x,y � 1). The time step and the relaxation factor are
set to be δt = 10−4 and τ = 10−4 respectively. Both the SB
and IB sensors are used for the filtering scheme and the filtering
coefficient set to be af = 0.49. The dimensionless temperature
is set as T = 0.7, where the coexisting densities are ρl = 2.146
and ρv = 0.1259, and corresponds to the density ratio 17.
The initial condition is determined with a random density
distribution in the flow field at which the local density ρ is
initialized with the small fluctuation 10% about the mean
density ρc. This statistical perturbation is necessary to induce
the phase transition in the flow field, since the random noise
of the amplitude 0.1ρc representing the nuclei in the density
field and the vapor phase begin to condense on these nuclei
when the system is quenched from the critical point to the
temperature T = 0.7. The sequence of the phase transition is
shown by the density field for three different surface-tension
coefficients κ = 10−4,10−5, and 10−6 at the consecutive times
in Figs. 23 and 24 by applying the SB and IB sensors in the
filtering scheme, respectively. The calculations are performed

FIG. 24. (Color online) Computed density field of 2D phase
separation in a liquid-vapor system using IB sensor at temperature
T = 0.7 at times t = 0.4 (first row), t = 1.2 (second row), t = 2.0
(third row), and t = 5.2 (fourth row) for surface tension coefficients
(a) κ = 10−4, (b) κ = 10−5, and (c) κ = 10−6.
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TABLE V. Computation time for different liquid-vapor two-phase flows investigated by the high-order compact finite-difference LBM
implemented.

Test case Test condition Sensor Computational time (hr)

T = 0.8
Grid (121 × 61)

SW
SB
IB

0.58
0.65
0.73

Liquid-vapor system with planar interface
T = 0.4
Grid (121 × 61)

SW
SB
IB

−
0.80
0.87

T = 0.8,κ = 10−4

Grid (201 × 201)
SB
IB

2.09
2.48

Circular stationary droplet
T = 0.4,κ = 10−4

Grid (201 × 201)
SB
IB

2.30
2.71

Coalescence of two droplets
T = 0.4
Grid (271 × 201)

SB 5.41

Homogenous phase transition
T = 0.7,κ = 10−5

Grid (201 × 201)
SB
IB

0.46
0.51

Liquid droplet located between two parallel flat plates
T = 0.7,Dρ = 0.5
Grid (121 × 61)

IB 1.25

5.2 nondimensional times. With the start of the simulation, it is
obvious that the spinodal decomposition occurs and the phases
start to separate. The small droplets are coalescing and form a
larger region filled with the liquid phase as the time evolves.
The results obtained by applying the CFDLBM verify that the
phase transition is quick in the beginning of the separation
process, because the small droplets are more unstable than
the greater ones. Thus, as the time evolves, the rate of phase
separation becomes slower due to the large amount of small
droplets competing for those particles which are still in the
vapor phase. As previously explained, the parameter κ controls
the surface tension and its value also affects the interface
thickness in the liquid-vapor flows (see Figs. 15 and 16).
As shown in Figs. 23 and 24, decreasing the surface tension
coefficient κ denotes a decrease of the surface tension σ , the
rate of coalescence of the droplets is slower. It is also clearly
indicated that the thickness of the interface becomes larger as
κ increases. The fourth-order compact finite-difference LBM
implemented shows a good stability and robustness for solving
two-phase flows and provides accurate and reliable solutions.

VII. COMPUTATIONAL COST

The computational cost required for the numerical simula-
tion of the test cases presented in the paper using the high-order
compact finite-difference LBM implemented is reported in
Table V. The present numerical simulations are performed on
a 3.2-GHz Pentium IV computer with a 64-bit operating system
and 6-GB RAM. The computational time for each numerical
simulation is measured depending on the dimensionless time
required to achieve the equilibrium state or desired solution in
the liquid-vapor systems studied. Each numerical simulation
required approximately 0.5–5 h, depending on the grid size
used and the dimensionless time required in the liquid-vapor
systems studied. As observed in Table V, the computational

time for the IB sensor is slightly larger than the other sensors
due to the additional calculations of the local and global scales
in the filtering scheme used.

VIII. CONCLUDING REMARKS

A high-order CFDLBM is extended and applied to ac-
curately simulate two-phase liquid-vapor flows with high
density ratios. The He-Shan-Doolen-type lattice Boltzmann
multiphase model is used and the discretization of the
spatial derivatives in the resulting equations is performed
by using the fourth-order compact finite-difference scheme
and the discretization of the temporal term is made with
the fourth-order Runge-Kutta scheme to provide an accurate
and efficient two-phase flow solver. A filtering procedure is
adopted and assessed for the stabilization of the solution
algorithm. The calculations are performed for different two-
phase liquid-vapor flow problems to demonstrate the accuracy
and robustness of the high-order compact LBM applied. Some
conclusions and remarks regarding the present study are as
follows:

(1) It is shown that the computed results obtained by the
CFDLBM for the two-phase flow problems simulated are in
good agreement with the analytical and the numerical results
reported in the literature. The study indicates that the solution
procedure adopted here is accurate and robust for the test cases
simulated for different conditions.

(2) A sensitivity study is performed to examine the
accuracy and performance of the solution of the CFDLBM
to the numerical parameters. The order of accuracy of the
solution algorithm is verified through a grid refinement study.
It is shown that the accuracy and the convergence rate of the
equilibrium state solution of the two-phase flows by applying
the compact finite-difference LBM implemented are not very
sensitive to the value of filtering coefficient.
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(3) A high-order spectral-type low-pass compact nonlinear
filter with different sensors is used for the stabilization of the
solution algorithm. Here three discontinuity-detecting sensors,
namely the SW, SB, and IB sensors, for properly switching
between a second-order and a higher-order filter are applied
and assessed. It is shown that the filtering technique used can
be conveniently adopted to reduce the spurious velocities and
improve the numerical stability of the CFDLBM implemented
in simulating two-phase flows with high density ratios. The
study shows that all the three sensors provide nearly the same
results, however, the performance of the SB and IB sensors
in decreasing the level of the spurious velocities is better
than the SW sensor. The results shows that the fourth-order
compact finite-difference LBM by using the SB and IB sensors
is accurate and robust for solving two-phase liquid-vapor flows
even at high density ratios.

(4) The effects of different physical parameters, such
as the surface tension and the temperature, are studied on
the treatment of liquid-vapor two-phase flows in different
conditions. The results obtained verify that the density ratio
between the liquid and the vapor phase is only determined by
the temperature.

(5) This study demonstrates that the present solution
methodology is robust and accurate for solving two-phase
liquid-vapor flow problems even at high density ratios. The
solution procedure developed here can be used to provide
benchmark solutions for the assessment of the accuracy of
the other two-phase LBM-based flow solvers.
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