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Simulated quantum annealing of double-well and multiwell potentials
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We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute
minimum of various continuous models, including landscapes with only two wells and also models with many
competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo
(QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and
with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature
QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range
moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency,
while the projective QMC algorithm keeps stable performance and is finally the most effective optimization
tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic
quantum computers using stochastic simulations performed on classical computers.
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I. INTRODUCTION

Recent extraordinary developments in the technology of
superconducting flux qubits give us well-grounded hope that
adiabatic quantum computers capable to solve large-scale
optimization problems via quantum annealing will be available
in the near future [1–3]. However, the currently available
quantum annealers did not demonstrate superiority with
respect to state-of-the-art classical optimization algorithms
[4,5], and it is still under investigation whether their quantum
features play a fundamental functional role in the optimization
process [6–10]. In fact, it is not even clear if, at least under
certain circumstances, one should expect quantum annealing to
be superior to classical methods [11], in particular to simulated
(classical) annealing [12]. Some indications suggesting the
supremacy of quantum annealing were originally provided
by experiments performed on disordered magnetic materials
[13]. Unfortunately, giving a definite answer to this issue
using classical computers is not straightforward [14], since the
computational times required to exactly simulate the real-time
dynamics of the quantum annealing process (as defined in
the framework of adiabatic quantum computing [15]) increase
exponentially with the number of variables. Therefore, one has
to resort to approximate simulation methods. The most relevant
one consists in performing stochastic simulations based
on quantum Monte Carlo (QMC) algorithms while slowly
varying an annealing parameter [16,17], thus defining an
inhomogeneous Markov chain [18]. This mirrors the approach
of classical annealing (CA). As a matter of fact, early QMC
simulations of random Ising models based on the path-integral
Monte Carlo (PIMC) method with discrete imaginary-times
provided results in line with the experiment [19]. However,
QMC simulations have also provided negative indications.
This is the case of the recent PIMC simulations of the random
Ising models performed in the continuous imaginary-time limit
[20], and of those of the 3-SAT problem [21]. Furthermore, it
has been argued that in certain conditions path-integral based
algorithms might not be able to equilibrate in polynomial
times, making the evaluation of the performance of quantum

annealing ambiguous [22]. It is of outstanding importance to
establish if and how computer simulations based on stochastic
methods [hereafter referred to as simulated quantum annealing
(SQA)] can be used to ascertain the superiority of quantum
annealing versus classical algorithms. This would permit us
to understand under which conditions quantum speed-up is
attainable [4], and to identify the distinctive signatures of
quantum effects to be sought for in a quantum device. In
this article, we tackle these open problems by analyzing the
performance of SQA in finding the absolute minimum of
simple double-well potentials and in more intricate multi-
well potentials with disorder and with competing interaction
terms. Compared to the Ising models, such continuous-space
potentials allow us to tune more easily the difficulty of the
optimization problem, an aspect which was indeed found to be
of crucial importance for a fair assessment of the performance
of quantum annealing [23]. Furthermore, effective double-well
and multiwell potentials have recently been implemented on
a D-wave machine [24]. In most previous studies addressing
analogous problems the simulations were performed using the
PIMC method (relevant exceptions are Refs. [16,25,26]). This
is designed to simulate quantum many-body systems at finite
temperatures and is based on an effective classical model that
evolves according to the stochastic dynamics defined by the
Metropolis algorithm. Instead, here we employ a projective
QMC technique, namely the diffusion Monte Carlo (DMC)
algorithm [27]. This is based on the stochastic simulation
of the time-dependent Schrödinger equation in imaginary
time. It permits us to sample configurations according to
the ground-state wave function, thus providing access to
zero-temperature properties. It is worth emphasizing that
neither the PIMC nor the DMC algorithms directly simulate
the real-time Schrödinger dynamics of the quantum annealing
process as it would be implemented on an adiabatic quantum
computer. In relation to this, they should be regarded as
quantum inspired heuristic optimization methods. However,
there is a strong connection between the imaginary-time
dynamics of the DMC simulations and the real-time dynamics
of the adiabatic quantum computation. Indeed, it was shown
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in Ref. [18] that, in the regime of applicability of an
adiabatic perturbation theory, the optimization performed via
imaginary-time dynamics is (asymptotically) equally effective
as the real-time counterpart. It has also been found that
certain universal critical properties characterizing the real-time
evolution through a quantum critical point can be extracted
from the imaginary-time dynamics [28]. Therefore, while
the relation between the metropolis dynamics of the PIMC
simulations and the real-time quantum annealing is not evident,
the DMC algorithm can provide us with less ambiguous
information on the true potential of quantum annealers, at
least in the aforementioned circumstances. In tune with this,
we compare the performances of the SQA implemented using
the DMC and PIMC algorithms (for the latter we employ
data from Ref. [29]) and we highlight their radically different
behaviors due to their distinct stochastic dynamics. The DMC
quantum annealing is then compared with CA. We analyze
how the performances of these two methods degrade when the
problem difficulty increases, and we identify some conditions
where the DMC algorithm outperforms CA. One of the goals
is to single out the features that distinguish quantum annealing
from CA. The rest of this article is organized as follows: in
Sec. II we describe the implementation of SQA with the DMC
algorithm, as well as the CA methods we employ to perform
comparisons with SQA. In Sec. III, we first consider the
optimization of both symmetric and asymmetric double-well
potentials with different types of SQA and CA methods.
Then, we address more intricate models with many closely
competing minima characterized by an increasing degree of
difficulty, including the multiwell washboard potential, the
quasiperiodic (double-sinusoidal) potential, and a two-particle
model with competing interaction terms. Our conclusions
concerning the potential supremacy of quantum annealing
and the possibility to analyze its efficiency with stochastic
simulations are reported in Sec. IV.

II. METHODS

The DMC algorithm is one of the most powerful stochastic
techniques to simulate the ground state of quantum many-body
systems [27,30]. It has proven to be extremely effective
in numerous studies of divers systems, including electrons
in solids, quantum fluids, nuclear matter, ultracold atoms,
and also discrete lattice models. In this article we consider
one-particle and two-particle continuous-space models in one
spatial dimension. The Hamiltonian can be written in the
generic form (here, and in the rest of the article, we set � = 1):

Ĥ = − 1

2m

N∑
i=1

∇2
i + V (X), (1)

where m is the particles mass, X = (x1, . . . ,xN ) denotes the
particles configuration, with xi the position of the particle i

(with i = 1, . . . ,N ), and N is the particle number. We consider
only the two cases N = 1 and N = 2. The total potential-
energy operator V (X) = ∑

i<j vint(|xi − xj |) + ∑
i vext(xi) is

composed by the two-body interparticle interaction vint(x)
and by the external potential vext(x). The DMC algorithm
projects out the ground-state wave function by evolving the
following modified time-dependent Schrödinger equation for

the function f (X,τ ) = �(X,τ )ψT (X) written in imaginary-
time τ = it :

− ∂f (X,τ )

∂τ
= −D∇2

Xf (X,τ ) + D∇X[F(X)f (X,τ )]

+ [EL(X) − Eref]f (X,τ ). (2)

Here, �(X,τ ) denotes the wave function at the imaginary
time τ and ψT (X) is a trial function used for importance
sampling. Moreover, EL(X) = ψT (X)−1HψT (X) denotes the
local energy, F(X) = 2ψT (X)−1∇XψT (X) is the quantum drift
force, D = (2m)−1 plays the role of an effective diffusion
constant, while Eref is a reference energy. The modified
Schrödinger Eq. (2) can be solved by applying iteratively the
integral equation:

f (X,τ + �τ ) =
∫

dX′G(X′,X,�τ )f (X′,τ ), (3)

where �τ is a short time-step, and G(X′,X,�τ ) is a suitable
approximation (exact in the �τ → 0 limit) for the Green’s
function of Eq. (2). In this article, we employ the so-called
primitive approximation [31]:

G(X′,X,�τ ) ≈ Gd (X′,X,�τ )Gb(X′,X,�τ ), (4)

where

Gd (X′,X,�τ ) = (4Dπ�τ )−N/2 exp

×
[

− (X′ − X − �τF(X)/2)2

4�τD

]
, (5)

and

Gb(X,X′,�τ ) = exp[−�τ (EL(X′) − Eref)]. (6)

Equation (3) could be interpreted as the definition of a Markov
chain with transition matrix equal to the (positive-definite)
Green’s function G(X′,X,�τ ). However, while Gd (X′,X,�τ )
defines a standard drift-diffusion process, the second term
Gb(X′,X,�τ ) is not normalized. The Markov chain can
still be defined in an extended configuration space. One
has to evolve a (large) ensemble of copies of the system
(typically referred to as random walkers) according to the drift-
Gaussian process, with an additional branching (or killing)
process where walker replicas are generated (or annihilated)
proportionally to Gb(X′,X,�τ ). This branching process takes
into account the lack of normalization of the Green’s function
and causes fluctuations in the random-walker number. For the
random-walker branching and for the total population control
we follow the standard procedure exhaustively described in
Ref. [31]. After an equilibration time, the walkers sample
configurations according to the function f (X,τ → ∞) =
�0(X)ψT (X), where �0(X) is the ground-state wave function.
If ψT (X) is chosen to be a good approximation of the ground-
state wave function, then the most relevant configurations are
sampled more frequently and the fluctuations of the number
of random walkers are strongly suppressed, given that EL(X)
is close to a constant. This reduces the computational cost, in
particular for large systems. By tuning Eref , one can adjust the
average random-walker number at a desired value Nw.

The DMC algorithm can also be implemented without
importance sampling by setting �T (X) = 1, usually at the
cost of larger computational times. In this case the modified
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Schrödinger Eq. (2) reduces to the standard imaginary-time
Schrödinger equation. The potential sources of systematic
errors in the DMC algorithm originate from the finite time-step
�τ and the finite walkers population Nw. For all the models
considered in this article, we carefully analyzed these effects,
and we report data obtained with small enough values of �τ

and large enough values of Nw ∈ [10 000, 20 000] to be close
to the asymptotic exact regime. An exhaustive description of
the DMC algorithm can be found, e.g., in Refs. [27,31–33],
and we refer the interested readers to those reviews for more
details.

In this article, we are interested in using the DMC algorithm
as a heuristic optimization method that searches for the optimal
configuration Xmin where the potential attains its minimum
value Vmin = V (Xmin). This can be achieved by implementing
a quantum annealing process, in which quantum fluctuations
are gradually suppressed during the stochastic imaginary-time
evolution. The suppression of quantum fluctuations can be
enforced by reducing the diffusion coefficient D, which
is equivalent to a particle mass increase. This reduces the
quantum delocalization of the particle position, thus favoring
random-walkers localization in the configuration Xmin cor-
responding to the classical absolute minimum. D = D(τ ) is
now time-dependent in a step-wise manner (the imaginary-
time can take only the discrete values τ = 0,�τ,2�τ, . . . )
and in each time interval the Green’s function G(X,X′,�τ )
corresponding to a time-independent Hamiltonian is employed
[25]. Equation (3) now defines an inhomogeneous Markov
chain, since the transition matrix varies at each step, due to
the (discrete) changes in D(τ ). Rigorous sufficient conditions
for the ergodicity and for the convergence of this quantum
annealing method based on the inhomogeneous Markov chain
have been derived in Ref. [34]. The corresponding conditions
for CA were derived in Ref. [35]. In this article, we implement
the following protocol: first, we make the random-walkers pop-
ulation equilibrate by applying the standard DMC algorithm
with a constant D = Dini for a sufficiently long equilibration
time τeq, so that the random walkers distribute according to
f (X,τeq) = � ini

0 (X)ψT (X), where � ini
0 (X) is the ground-state

wave function at D = Dini; then, we run the DMC algorithm
for a (long) annealing time τf while decreasing the effective
diffusion coefficient after each time-step �τ according to the
step-wise linear law D(τ ) = Dini − �Dτ/�τ , where �D =
Dini�τ/τf . Here, the imaginary time τ is measured from the
end of the equilibration time. At the end of the annealing
process the diffusion coefficient vanishes D(τf ) = 0, while
during the last DMC step it is D(τf − �τ ) = �D. All
quantum annealing simulations reported in Sec. III start with
Dini = 0.5 (this is equivalent to an initial mass m = 1). For
an infinitely slow quantum annealing process (corresponding
to τf → ∞), the random-walkers population would follow
the adiabatic ground-state wave function at D(τ ) [multiplied
times the trial function �T (X)], which gradually shrinks in
the minima of the potential landscape; therefore, at the end
of the quantum annealing process all random walkers would
concentrate in the absolute minimum Xmin [34]. The key
issue we investigate is how efficiently the absolute minimum
is found for finite τf . To quantify the efficiency of the
optimization algorithm we measure the average of the potential
energies computed in the configurations corresponding to

the final random-walkers populations, formally written as
V̄ (τf ) = ∫

dXf (X,τf )V (X)/
∫

dXf (X,τf ). In the standard
DMC formalism this formula would correspond to the mixed
estimator of the potential energy. In particular, we analyze
the dependence of the residual energy εres = V̄ (τf ) − Vmin

as a function of the total annealing time τf . Notice that the
total number of DMC steps in the annealing process is τf /�τ

(we use fixed time-steps, in the range 2�τDini ∈ [0.01,0.1]),
simply proportional to the total annealing time; this number
determines the run time of the simulation on the classical
computer.

In order to benchmark the performance of the DMC
algorithm, we also perform CA simulations. In CA one
uses the metropolis algorithm to sample configurations ac-
cording to the Boltzmann canonical distribution P (X) =
exp (−V (X)/T )/Z, where Z = ∫

dX exp (−V (X)/T ) and T

is the temperature of a fictitious classical statistical system (we
chose units such that the Boltzmann constant is kB = 1). The
temperature is gradually reduced during the simulation, thus
removing thermal fluctuations. We adopt a linear annealing
schedule of the temperature: T (τ ) = Tini(1 − τ/τf ), with τ =
0,1, . . . ,τf an integer counting the Monte Carlo sweeps (a
number of proposed updates equal to the number of variables),
and Tini the initial temperature. The Markov chain is specified
by the transition probability W (X′,X) = A(X′,X)P (X′,X),
where P (X′,X) is the probability to propose a move from the
configuration X to X′. For a symmetric proposal function, the
acceptance probability is A(X′,X) = min(1, exp{−[V (X′) −
V (X)]/T }). We adopt two proposal functions. The first is the
box distribution:

P (X′,X) = 1

2σ

(σ − |x ′

i − xi |), (7)

where 
(x) is the Heaviside step function; the second is a
Lorentzian distribution:

P (X′,X) = 1

π

σ

(x ′
i − xi)2 + σ 2

. (8)

The index i labels the particle being (tentatively) displaced
from xi to x ′

i , and X′ = (x1, . . . ,x
′
i , . . . ,xN ). In both cases the

parameter σ controls the range of the proposed displacements.
However, the two distributions determine qualitatively differ-
ent dynamics, the first one characterized by short-range moves
with maximum range σ , the second one by long-range jumps
due to the fat tail of the Lorentzian distribution. Following
Ref. [29], we vary the range parameter during the annealing
process according to the square root law σ (T ) = σini

√
T/Tini,

where σini is the initial range parameter. This schedule was
found to generate reasonably constant acceptance rates close to
the optimal value [29]. For the box updates, we adopt the initial
range parameter σini = 2; for the Lorentzian updates, we use
σini = 2.9 for all models considered in this article, apart for the
two-particle model (see Sec. III), for which we use σini = 1.5.
Analogously to the case of the DMC simulations, we perform
the classical annealing using a large ensemble of random
walkers. Before starting the annealing process, we let the
population evolve according to the metropolis algorithm at the
constant temperature Tini = 1, so that the walkers population
equilibrates at the Boltzmann thermal distribution. As a
measure of the CA efficiency we consider the residual energy
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εres, defined (as in DMC quantum annealing) as the average
potential energy of the final random-walker population, minus
Vmin. τf is here the number of metropolis steps in the
annealing process. Clearly, in the classical annealing case one
could perform serial single-walker simulations. Both in DMC
quantum annealing and in CA we determine the uncertainty on
εres by repeating a few (typically 5) simulations starting from
different initial random-walker distributions and computing
the standard deviation of the (small) population. The resulting
error bar is typically smaller than the symbol sizes.

One of the key issues we address is whether SQA,
which exploits quantum fluctuations to escape local minima,
is more or less efficient than CA, which instead exploits
thermal fluctuations. In particular, we analyze how rapidly εres

decreases with the annealing time τf . One should notice that
the annealing times of the quantum and the classical annealing
processes cannot be directly compared. Indeed, while in the
former case τf is an imaginary time, in the latter case it is just
an integer counting the number of Monte Carlo sweeps during
the annealing schedule. Furthermore, depending on the details
of the implementation (e.g., serial versus parallel simulations
of the random walkers in DMC) the computational times can
be different. However, in general, εres decays asymptotically
as a power law of τf . Therefore, as in previous works [29,36],
we will compare the powers characterizing the asymptotic
scalings of εres in the various annealing algorithms, thus
obtaining a measure of their efficiency, which is independent
of the implementation details and of the scale chosen to
measure τf .

III. RESULTS

We start by analyzing the performance of the DMC
algorithm as a heuristic optimization method in the context of
double-well potentials. We consider the two models introduced
in Ref. [36]. The first is a symmetric double well: Vsym =
V0(x2 − a2)

2
/a4 + δx, where V0 = 1, a = 1, and δ = 0.1

(see Fig. 1, top panel). Since δa 	 V0, the difference in
the two minima is �V 
 2δa, with the absolute minimum
located at xmin 
 −a. The two wells have essentially the same
widths. We adopt the annealing protocol described in Sec. II,
where the parameter D = 1/(2m) is linearly reduced to zero
(in a stepwise manner). We perform both DMC simulations
with importance sampling (using a Boltzmann-like trial wave
function �T (x) = exp [−β̃V (x)], where β̃ = 0.8 is a fictitious
inverse temperature) and also without importance sampling,
setting �T (x) = 1. The results for the residual energy εres

as a function of the annealing time τf are displayed in
Fig. 1 (we recall that the number of DMC steps, and so the
simulation run-time, is simply proportional to τf ). We observe
that the use of importance sampling introduces a quantitative
improvement, providing somewhat lower residual energies;
however, the two approaches (with and without importance
sampling) display the same asymptotic scaling εres ∝ τ

−1/3
f ,

meaning that the efficiency of the optimization process is not
affected in a qualitative manner. This power-law dependence
with the characteristic power −1/3 was first found in Ref. [36]
by exactly solving the imaginary-time Schrödinger equation
for a single harmonic well; it appears to be a generic feature of
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FIG. 1. (Color online) Simulated quantum annealing (SQA) of
symmetric and asymmetric double-well potentials. Top panel: poten-
tial energy V (x) versus particle coordinate x. Central panel: residual
energy εres versus annealing time τf for the symmetric double well,
obtained using the diffusion Monte Carlo (DMC) algorithm, the DMC
algorithm with importance sampling (IS-DMC), the path-integral
Monte Carlo algorithm with instanton move (PIMC+ins., from
Ref. [29]), and via integration of the real-time Schrödinger equation
(RT, from Ref. [36]). Bottom panel: as in the central panel (except
for the RT data), for the asymmetric double-well. The horizontal
brown dot-dashed lines indicate the lowest εres reachable in the
PIMC simulation due to the finite temperature. The thick black solid
segments indicate fits to the DMC asymptotic data according to the
power-law scaling εres ∼ τ

−1/3
f . The units of τf in PIMC and DMC

simulations are different (see text). The thin dashed curves are guides
to the eye. Here and in the other graphs the error bars are smaller than
the symbol size.
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DMC quantum annealing in the asymptotic regime. Figure 1
also displays the residual energies obtained in Ref. [29] using
the PIMC method, employing a linear annealing protocol as
in our DMC simulations. For the PIMC data, the annealing
time τf represents the number of Monte Carlo sweeps. One
observes that for large τf the PIMC data decay similarly to
the DMC results; however, in the τf → ∞ limit they saturate
at the energy corresponding to the temperature at which the
PIMC simulations were performed. In principle, this finite
temperature could be reduced arbitrarily close to zero (but
at the expense of higher computational cost); therefore, we
conclude that the DMC and the PIMC quantum annealing
methods perform comparably well in this symmetric double-
well problem. A more interesting test problem is obtained
by introducing an asymmetry in the widths of the two wells;
specifically, we consider the asymmetric potential:

Vasym(x) =
{

V0(x2 − a2
+)2/a4

+ + δx if x ≥ 0

V0(x2 − a2
−)2/a4

− + δx if x < 0
, (9)

where the new constants are a− = 0.75 and a+ = 1.25. In this
case, the well corresponding to the false minimum is wider
than the well corresponding to the absolute minimum (which
is located at xmin 
 −a− − δa2

−/(8V0), to linear order in δ).
In the early state of the annealing process, where zero-point
motion is large, the wave function weight is mostly located
close to the false minimum, implying a larger probability to
find the quantum particle in the wider well. Only in a later
stage of the annealing process, where the annealing parameter
D is small (corresponding to a large particle mass), the
wave function starts concentrating in the deepest (narrower)
well. This is reflected in the dependence of εres versus τf

obtained with the DMC algorithm, which displays different
behaviors in the two stages, with the crossover taking place
at τf ≈ 103. In the asymptotic regime τf → ∞, the residual
energy decays again with the power-law εres ∝ τ

−1/3
f , just like

in the symmetric wells case, both with and without importance
sampling. It is interesting to observe that the PIMC data display
a qualitatively different behavior: the residual energy decreases
much slower than in the symmetric wells case, even well
before the thermal limit is reached. This occurs in spite of
the fact that the PIMC simulations were performed including
the so-called instanton Monte Carlo update, which is designed
to displace a significant portion of the path-integral across
the energy barrier that separates the two wells, exploiting the
knowledge of the potential landscape details. In principle, this
kind of update should boost the performance of the PIMC
simulations, strongly favoring equilibration. However, it is
clear that in the framework of the annealing process this is
not sufficient; in fact, the transfer to the deepest (but narrower)
well is particularly slow. This dramatic change of efficiency
going from symmetric to asymmetric double-wells appears
to be a deficiency of the path-integral scheme, rather than a
genuine feature of a perfect quantum annealer. Indeed, when
quantum annealing is simulated via the DMC algorithm, the
asymmetry of the two wells has essentially no effect on the
optimization efficiency. In the DMC scheme, the random-
walker distribution in the different wells easily equilibrates
thanks to the branching process, making it perfectly suited
to simulate the optimization of potential energy landscapes

in situations where quantum tunneling across energy barriers
plays a fundamental computational role. Such a case was
indeed recently implemented by researchers working with a
D-wave two chip via an appropriate choice of the couplings
between the quantum spins in two unit cells of the chimera
graph [24]. In this experiment, the effective double-well
potential varies in time, with the false minimum appearing
first, and the absolute minimum appearing at a later time.
While classical trajectories would remain trapped in the false
minimum, quantum tunneling allows the system to reach
the absolute minimum. This setup is slightly different from the
double-well model we address here: in our case the potential
does not vary with time, but the system is initially attracted
toward the well corresponding to the wrong minimum due
to its larger width. It is possible that in the time-dependent
potential case considered in Ref. [24] the PIMC and DMC
algorithms would perform equally well. The DMC simulations
have a more direct connection with the quantum annealing as
understood in the framework of adiabatic quantum computing,
which assumes a real-time Schrödinger dynamics with a
time-dependent Hamiltonian [15]. Indeed, inspired by the
conjecture formulated in Ref. [36], Morita and Nishimori
[18] showed that, from the imaginary-time version of the
adiabatic theorem, it follows that the residual energy obtained
from the imaginary-time Schrödinger dynamics has, for τf →
∞, the same asymptotic scaling form as the one obtained
from the real-time Schrödinger dynamics. Since the
DMC algorithm stochastically simulates the imaginary-time
Schrödinger equation—with the difference that the annealing
parameter is decreased in a stepwise manner (see Sec. II)—it
represents a more legitimate benchmark for the performance
of the quantum annealing process as it would be implemented
on an ideal (perfectly isolated) quantum device operating at
zero temperature. Clearly, the conditions for the applicability
of the adiabatic perturbation theory of Ref. [18], namely that
the adiabatic ground-state contribution is the dominant one
at all times, might be violated in certain, possibly relevant,
cases. However, the strong relation between imaginary-time
and real-time dynamics has been, in fact, confirmed in
nontrivial simulations of both clean and disordered Ising
models driven to critical points [26,28]. As an illustrative
example, which also confirms this relation, we show in Fig. 1
(central panel) the residual energies for the symmetric double-
well case as obtained by performing quantum annealing via
real-time Schrödinger dynamics. These data were obtained
in Ref. [36] via exact (deterministic) numerical integration
of the time-dependent Schrödinger equation. As predicted
by the theory of Ref. [18], the real-time residual energies
share the same asymptotic scaling behavior as the DMC
imaginary-time data, the uniform shift being affected by
the use of importance sampling and of the mixed-energy
estimator in the DMC simulations (see Sec. II). Therefore, one
understands the importance of comparing the performance of
the DMC algorithm with the one of CA-based methods in this
and in more challenging optimization problems; this will help
us understand in which situations quantum annealing has at
least the potential to outperform classical algorithms. Also,
it is useful to establish if and when the stochastic simulation
of the imaginary-time Schrödinger dynamics on a classical
computer via the DMC algorithm becomes unfeasible (e.g.,
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FIG. 2. (Color online) Classical annealing (CA) and SQA of the
asymmetric double-well potential. Residual energy εres as a function
of annealing time τf obtained using the metropolis algorithm with
Lorentzian proposed moves (cyan triangles) and box-type moves
(violet squares), and using the DMC algorithm (red circles). The
thick black solid segments is a fit to the DMC asymptotic data with
the power-law εres ∼ τ

−1/3
f . The dotted black curve is a fit to the CA

box-moves data with the asymptotic law εHF
res (τf ) (see text). The units

of τf in CA and DMC simulations are different (see text).

due to the exponential growth on the required random-walker
number [37]), because only in such a case one is actually
forced to resort to quantum devices.

Figure 2 shows the DMC and the CA data for the asymmet-
ric double-well potential. CA is performed both with the short-
range (box) and with the long-range (Lorentzian) proposed
updates, as described in the Sec. II. In the former case, the
stochastic dynamics is well described by the Fokker-Planck
equation [38], which—as shown by Huse and Fisher [39]—in
a double-well problem leads to the following asymptotic decay
of the residual energy (see dotted curve in Fig. 2):

εHF
res (τf ) = c1τ

−�V /B

f [ln(c2τf )]2�V /B, (10)

where c1 and c2 are fitting parameters, �V = δ(a+ + a−) is
the splitting between the two minima, and B = V0 − �V −
V (xmin) is the energy barrier separating them. As discussed
above, DMC quantum annealing displays the power-law
asymptotic decay εres ∼ τ

−1/3
f , clearly outperforming CA

with short-range updates. However, long-range (Lorentzian)
updates strongly increase the efficiency of CA, making it more
performant than the DMC algorithm.

It is now natural to wonder how CA and DMC quantum
annealing perform in more challenging optimization problems.
To address this question, we consider the multiwell problem
defined by the following “washboard” potential (shown in the
inset of Fig. 3):

V (x) = a1x
2 + a2 sin (a0x) + a2, (11)

where a0 = 15, a1 = 0.01, and a2 = 1. This model was
first studied in Refs. [40,41], where it was suggested that
CA should suffer from a pathological slowdown due to the
presence of many well-separated minima. In a wide range
of annealing times [36], the residual energy decay should
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FIG. 3. (Color online) CA and SQA of the washboard potential
(shown in the inset). The symbols are defined as described in
the caption of Fig. 2. The thick black solid segment is a fit to
the DMC asymptotic data with the power-law εres ∼ τ

−1/3
f . The

dotted black curve is a fit to the CA data with the logarithmic law
εres = c1 log−1(c2τf ), where the fitting parameters are c1 and c2.

be at best logarithmic: εres(τf ) ∝ [ln(τf )]−1. The CA data
with short-range (box) updates (shown in Fig. 3) are indeed
consistent with this logarithmic upper bound, showing that,
in general, with the CA dynamics it becomes problematic to
equilibrate to the minimum energy configuration when many
close solutions compete. Instead, DMC quantum annealing
maintains its efficiency, displaying again the asymptotic decay
εres ∼ τ

−1/3
f (we only display data obtained with the pure

DMC algorithm, since importance sampling was again found
not to affect the asymptotic efficiency). This −1/3 power
appears to be the footprint of quantum annealing. Below, we
will demonstrate the same behavior in even more intricate
problems. This suggests that the identification of a −1/3
power-law decay in a quantum annealer could be interpreted
as an evidence of quantum effects playing a fundamental
computational role. We also notice that, as in the double-well
case, long-range updates boost the efficiency of CA at the point
of outperforming the DMC algorithm. One might suspect that
long-range updates do not provide the same boost in more
complex problems with more variables. We will show later on
that this is indeed the case.

DMC quantum annealing has so far displayed a surprisingly
stable efficiency. Clearly, the models we addressed previously
do not contain one of the most relevant ingredients, which
make realistic optimizations problems difficult, namely a
disordered distribution of the competing solutions. Disorder
is indeed expected to hamper quantum annealing due to the
Anderson localization phenomenon. This consists in the spatial
localization of the Hamiltonian eigenstates, causing the ab-
sence of particle diffusion. While in three and more dimensions
Anderson localization takes place only for sufficiently strong
disorder [42], in one and two dimensions any amount of
uncorrelated disorder induces localization. A minimal model
that contains (quasi) disorder is the following double-sine
potential:

V (x) = K0x
2 + A[sin(b1πx) + sin(b2πx)], (12)
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where K0 = 0.01, A = 1, b1 = 2, and b2 = 1 + 51/2. Due to
the irrational ratio of the wavelengths of the two sinusoidal
functions, this potential is aperiodic. However, it is determin-
istic and, therefore, not truly random. This kind of pseudoran-
domness is conventionally referred to as quasidisorder. In a
tight binding scheme (which would be rigorously justified if
one sinusoidal potential was much more intense than the other
one), this incommensurate double-sine model could be approx-
imated by the so-called Aubry-André Hamiltonian, provided
one neglects the weak harmonic confinement. Differently
from one-dimensional models with uncorrelated disorder, in
the Aubry-André Hamiltonian, Anderson localization takes
place at a finite disorder strength or, equivalently, when the
particle mass exceeds a critical value [43]. We expect the weak
harmonic term to play a minor role, at least well beyond the
critical point, meaning that the Hamiltonian eigenstates would
still be strongly localized in this regime. This strong spatial
localization inhibits diffusion, preventing the particle from
exploring the complete configuration space, possibly causing
localization in local minima. It is therefore interesting to ana-
lyze whether in the last part of the quantum annealing process,
where the annealing parameter is small and, correspondingly,
the particle mass is large, Anderson localization deteriorates
the efficiency of DMC quantum annealing.

In fact, the data displayed in Fig. 4 show that the efficiency
of DMC quantum annealing is not affected by the presence
of quasidisorder, demonstrating again the extreme stability of
its performance (notice that here and in the following we only
consider data obtained without importance sampling). As in
the case of ordered minima (i.e., the washboard potential),
CA with short-range updates displays a pathological slow-
down of the annealing process at large annealing times, leading
to a logarithmic decay of the residual energy. However, CA
with long-range updates is still the most efficient optimization
algorithm.

So far, the DMC algorithm has proven to be an effective
and stable optimization method. However, the fact that it is
outperformed by CA if appropriate (long-range) Monte Carlo
updates are included is quite discouraging for the prospect of
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FIG. 4. (Color online) CA and SQA of the quasidisordered po-
tential (shown in the inset). The symbols and the curves are defined
as described in the caption of Fig. 2.

developing quantum enhanced optimization algorithms. As
anticipated above, one might wonder whether it is always
possible to obtain such a boost in the efficiency of CA via
long-range updates. To address this question, we consider a
model with two particles that move in an external potential
and interact with each other. The potential energy is defined as

V (x1,x2) = K0
(
x2

1 + x2
2

)
/2 + Krel(x1 − x2)2/2

+A[sin(b1πx1) + sin(b2πx2)], (13)

where we set K0 = 0.01, Krel = 2, b1 = 2, and b2 = 1 + 21/2.
For the intensity parameter A, we will employ the three
values A = 1, 3, 5. The first term in Eq. (13) confines both
particles in a global harmonic trap. The second term introduces
an attractive harmonic interaction between the two particles.
The last term is inspired by the incommensurate double-sine
potential analyzed previously. However, here the two particles
experience the two sinusoidal fields separately. The first
sinusoidal field acts only on one particle, while the second
one acts on the other particle. While the attractive interaction
tends to localize the two particles in the same location,
the sinusoidal terms have their minima in different points.
The competition among the terms in Eq. (13) constitutes the
minimal element of frustration. If one interprets Eq. (13) as the
external potential of one particle moving in a two-dimensional
system, one obtains the intricate landscape shown in Fig. 5.
One notices that there are several closely competing solutions,
well separated by high-energy barriers. By construction, there
is no periodicity and the bottoms of the different valleys are
at close but different levels. The height of the barriers can be
varied by changing the intensity parameter A, allowing us to
tune the difficulty of the optimization problem. The results
of the optimization of this two-particle model are displayed
in Fig. 6, both for CA (top panel) and SQA performed via
the DMC algorithm (central panel). The CA simulations are

FIG. 5. (Color online) Potential energy V (x1,x2) of the two par-
ticle model 13 in the case A = 5. The color scale represents the
potential intensity; x1 and x2 are the coordinates of the two particles.
The absolute minimum is at V (−0.25, − 0.208) ∼= −9.99759.
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FIG. 6. (Color online) CA and SQA of the two particle model.
Top panel: residual energy εres versus annealing time τf obtained
using CA with Lorentzian updates, for different intensities A of the
sinusoidal part of the potential. Central panel: data analogous to those
in the top panel, obtained using the DMC algorithm. Bottom panel:
comparison between CA and SQA at A = 5. The thick black solid
segment indicates the asymptotic scaling of the DMC data εres ∼
τ

−1/3
f , while the black dotted curve the one of the CA data εres ∼

log−1 (cτf ).

performed with Lorentzian updates. We apply three kinds of
updates: the first displaces only the first particle, the second the
other particle, the third applies the same displacement to both

FIG. 7. (Color online) Final random-walker distribution in CA
[panels (a) and (c)] and in SQA [panels (b) and (d)]. Panels (a) and
(c) correspond to short annealing times τf = 103, while panels (b)
and (d) correspond to long annealing times τf = 105. The color scale
corresponds to the random-walker density.

particles. It is evident that when A increases the asymptotic
slope of the CA data diminishes, indicating a loss of efficiency
of the optimization process. Instead, the DMC data display
the same asymptotic decay εres ∼ τ

−1/3
f for all values of A.

As anticipated before, the independence of the asymptotic
power-law decay of the residual energy appears to be the
hallmark of quantum annealing. The comparison shown in
the bottom panel of Fig. 6 (for A = 5) demonstrates that in
the most challenging optimization problem DMC quantum
annealing outperforms CA, suggesting that quantum annealing
has indeed the potential to outperform classical algorithms
in hard optimization problems. It is particularly instructive to
analyze how and why SQA outperforms CA. In Fig. 7 we show
the probability to reach a certain two-particle configuration
(x1,x2), both with CA and SQA, after a short and after a
long annealing time. In the mixed estimator scheme (see Sec.
II), this probability corresponds to the spatial distribution of
the random-walker population at the end of the annealing
process. We observe that, in CA, several false minima have
a large probability to be selected. While the random-walker
distribution in each individual well rapidly shrinks, even after
a long annealing time quite a few competing solutions are still
likely to be chosen. This indicates that CA has high chance
to remain trapped close to false minima. The behavior of
DMC quantum annealing is, in a sense, the opposite: already
after a short annealing time only three wells are populated
by random walkers. However, the distribution in each well is
quite broad, indicating that SQA is slower in sinking to the very
bottom of the well. After a long annealing time, only the well
corresponding to the absolute minimum is populated, but the
residual energy is still nonzero since the random walkers need
further time to sink to the very bottom of the well, thus selecting
the optimal configuration. At this point, it is worth mentioning
that other classical algorithms which potentially outperform
CA for specific optimization problems, in particular for small
systems, do exist (e.g., genetic algorithms). However, CA
has proven to be one of the most powerful and versatile
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optimization methods [12], succeeding even in challenging
continuous-variables problems with multiple minima (e.g.,
the optimization of the structure of Lennard-Jones clusters
[44]), where gradient-based algorithms like the conjugate
gradient method remain trapped in local minima. Therefore,
CA represents a fair term of comparison for SQA.

IV. CONCLUSIONS

We have analyzed the efficiency of SQA in finding the
absolute minimum of different model potentials in continuous
space, including symmetric and asymmetric double wells,
and also more intricate models with many closely competing
minima with both ordered and disordered spatial distribution
of the wells. Contrarily to the finite-temperature path-integral
Monte Carlo techniques adopted in several previous studies,
the projective method employed in this work, namely the DMC
algorithm, exhibits a stable performance that is not affected by
details of the potential energy landscape like the asymmetry of
the competing wells. Furthermore, due to the formal relation
between imaginary-time and real-time Schrödinger dynamics
(valid in quasiadiabatic regimes [18]), the outcomes of the
DMC simulations (which are based on the imaginary-time
dynamics) have more direct implications for the evaluation
of the potential of adiabatic quantum computing. While the
DMC quantum annealing is outperformed by CA in simple
one-variable model potentials if one employs ad-hoc Monte
Carlo updates that exploit the specific features of the potential
landscapes, it is easy to construct more challenging optimiza-
tion problems with more variables where such tricks in CA
become ineffective and SQA turns out to be the most effective
optimization method. This result is strongly encouraging
for the prospect of developing quantum devices that exploit
quantum fluctuations to enhance the efficiency of optimization

methods. The stable performance of DMC quantum annealing,
characterized in quite general continuous-space models by an
asymptotic power-law decay of the residual energy, appears
to be a hallmark of an ideal quantum annealer. The DMC
algorithm is designed to simulate the ground states of isolated
quantum systems; it does not take into account thermal
fluctuations nor the coupling to the environment. Including
these effects in a projective QMC algorithm would provide
us with an extremely useful tool to investigate the potential
of realistic devices designed to perform adiabatic quantum
computations. This is clearly an interesting direction for future
research. Also, it would be important to identify the cases
where the DMC simulations become infeasible due to, e.g.,
an exponential scaling of the required random-walker number
[45]. Computational problems of this kind did not occur in any
of the double-well and multiwell problems addressed in this
work, probably due to the small particle number. However,
in the context of standard (i.e., without annealing) quantum
simulations of parahydrogen clusters, results suggesting an
exponential scaling of the random-walker population with
the system size have been reported [37]. Also, frustration
is expected to harm the efficiency of the DMC simulations.
Further exploring such potential pathologies of the DMC
algorithm in the context of quantum annealing simulations
could shed light on the features that make a problem hard
for optimization methods based on quantum fluctuations, and
also on the conditions where adiabatic quantum computers are
expected to outperform stochastic simulations performed on
classical computers.
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[43] S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980).
[44] L. Wille, Chem. Phys. Lett. 133, 405 (1987).
[45] N. Nemec, Phys. Rev. B 81, 035119 (2010).

053304-10

http://arxiv.org/abs/arXiv:1411.4036
http://dx.doi.org/10.1103/PhysRevE.75.036703
http://dx.doi.org/10.1103/PhysRevE.75.036703
http://dx.doi.org/10.1103/PhysRevE.75.036703
http://dx.doi.org/10.1103/PhysRevE.75.036703
http://dx.doi.org/10.1103/PhysRevLett.114.147203
http://dx.doi.org/10.1103/PhysRevLett.114.147203
http://dx.doi.org/10.1103/PhysRevLett.114.147203
http://dx.doi.org/10.1103/PhysRevLett.114.147203
http://dx.doi.org/10.1103/PhysRevB.84.224303
http://dx.doi.org/10.1103/PhysRevB.84.224303
http://dx.doi.org/10.1103/PhysRevB.84.224303
http://dx.doi.org/10.1103/PhysRevB.84.224303
http://dx.doi.org/10.1103/PhysRevB.73.144302
http://dx.doi.org/10.1103/PhysRevB.73.144302
http://dx.doi.org/10.1103/PhysRevB.73.144302
http://dx.doi.org/10.1103/PhysRevB.73.144302
http://dx.doi.org/10.1063/1.431514
http://dx.doi.org/10.1063/1.431514
http://dx.doi.org/10.1063/1.431514
http://dx.doi.org/10.1063/1.431514
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1088/0305-4470/39/45/004
http://dx.doi.org/10.1088/0305-4470/39/45/004
http://dx.doi.org/10.1088/0305-4470/39/45/004
http://dx.doi.org/10.1088/0305-4470/39/45/004
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1103/PhysRevB.72.014303
http://dx.doi.org/10.1103/PhysRevB.72.014303
http://dx.doi.org/10.1103/PhysRevB.72.014303
http://dx.doi.org/10.1103/PhysRevB.72.014303
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevE.86.056712
http://dx.doi.org/10.1103/PhysRevLett.57.2203
http://dx.doi.org/10.1103/PhysRevLett.57.2203
http://dx.doi.org/10.1103/PhysRevLett.57.2203
http://dx.doi.org/10.1103/PhysRevLett.57.2203
http://dx.doi.org/10.1143/JPSJ.60.3993
http://dx.doi.org/10.1143/JPSJ.60.3993
http://dx.doi.org/10.1143/JPSJ.60.3993
http://dx.doi.org/10.1143/JPSJ.60.3993
http://dx.doi.org/10.1088/0305-4470/24/3/008
http://dx.doi.org/10.1088/0305-4470/24/3/008
http://dx.doi.org/10.1088/0305-4470/24/3/008
http://dx.doi.org/10.1088/0305-4470/24/3/008
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1016/0009-2614(87)87091-4
http://dx.doi.org/10.1016/0009-2614(87)87091-4
http://dx.doi.org/10.1016/0009-2614(87)87091-4
http://dx.doi.org/10.1016/0009-2614(87)87091-4
http://dx.doi.org/10.1103/PhysRevB.81.035119
http://dx.doi.org/10.1103/PhysRevB.81.035119
http://dx.doi.org/10.1103/PhysRevB.81.035119
http://dx.doi.org/10.1103/PhysRevB.81.035119



