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In materials science and many other research areas, models are frequently inferred without considering their
generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive
coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics
(GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD “training”
data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested
on GD “test” data independent of the data used to train the model on. Using two different error metrics, we
perform a detailed analysis of the error between magnetization time trajectories simulated using the learned
sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium
and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free
energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of
training data can shift the optimal model complexity to higher values. Our results are promising in that they pave
the way for the use of statistical learning as a general tool for materials modeling and discovery.
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I. INTRODUCTION

Due to limitations in computational resources, the behavior
of complex systems (e.g., climate, turbulent flow, materials
under shock loading) often needs to be modeled using a
coarse-grained description that captures the phenomenon of
interest. Coarse-grained models cannot be perfect, of course,
since many microscopic degrees of freedom are absent.
The Mori-Zwanzig formalism [1,2] tells us that the relevant
coarse-grained description should contain both noise [3,4] and
memory kernels to represent the “integrated out” fine scale
dynamics. Deriving an appropriate coarse graining analytically
is therefore extremely difficult. Statistical learning provides a
tractable way of finding a coarse-grained description that is
able to predict the results of new experiments or simulations
beyond those used in the model construction, which serves as
a true objective test of the model. In fact, unlike traditional
approaches, statistical learning can also serve as a coarse-
graining strategy in cases where there is no clear separation
of spatial and/or temporal scales. For example, it may be
applied to problems that involve inhomogeneous flows (e.g.,
multicomponent fluids, complex fluids) and those in materials
science where the coarse-grained description needs to account
for inhomogeneities at a finer scale, such as microstructural
defects. Techniques such as the heterogeneous multiscale
method (HMM) [5] that demand a clean separation in time
scales are not applicable.

In the statistical approach to coarse graining discussed
here, the goal is to search over a certain class of coarse-
grained models and find the complexity for which the
description is “optimally predictive.” This technique is called
regularization, and to estimate the generalization error we use
cross-validation. The latter involves randomly dividing data
(either from experiments or simulations) into “training” and
“test” samples. Ideally one would like both groups of data
to be infinite, but in practice one only has a limited amount

of data to work with. Experimentalists can only synthesize a
small number of material samples, and in molecular dynamics
simulations one is also limited to a finite number of samples.
For the purposes of the current analysis, we will assume that
the amount of training data is limited but that we can test our
learned model on an infinite amount of data independent of the
training samples. An extension to cases where both training
and test data are finite will be the topic of future research.

Selecting the appropriate model regularization is of
paramount importance because it can minimize both underfit-
ting and overfitting. An underfitted model is too simplistic and
therefore fails to capture much of the useful information avail-
able in the training data; hence, it will perform suboptimally
on data independent of the training set. In contrast, overfitting
refers to the case where an overly complex model describes
the many irrelevant details that appear in the training data by
chance. An overfitted model will therefore be also less success-
ful in generalizing to new data from simulations or experiments
that are outside the class of the training data. The model devel-
oped in this study avoids common issues associated with over-
fitting by using an effectively infinite amount of test data inde-
pendent of the samples on which it was trained, and selecting
the complexity that makes it most predictive of this test data.

As an error estimator, cross-validation has been used for a
number of years. When the amount of data is very limited
though, there can be a significant difference between the
cross-validation error and the actual error [6,7]. Moreover,
a detailed error analysis is often lacking in physics modeling
applications. Our motivation is to learn mesoscale models from
microstructural data incorporating prior domain knowledge
and physical symmetries. We will focus on the time-dependent
stochastic Ginzburg-Landau equation (sGLE) which provides
a coarse-grained description of a kinetic nearest-neighbor
Ising model with Glauber dynamics (GD) and of which the
dynamics are expected to be particularly straightforward to
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learn. While our approach is related to that in [8], we do
not assume a prior distribution for the learned parameters
and do not include a penalty for overfitting or complexity
in the Bayesian information criterion. Moreover, instead of
simply fitting a regular quartic free energy to a single or joint
magnetization distribution function as in [9,10], we consider
higher order terms and find the parameters that optimally
predict GD data independent of the samples on which the
model was trained. The inclusion of terms beyond fourth order
in the free energy accounts for the fact that we are in a regime
of finite coarse-graining block sizes, and hence not at a fixed
point in the renormalization group theory [11,12]. Our current
approach does not account for higher order spatial gradients,
which can play an important role out of equilibrium; we plan
to include these terms in future versions of the model.

Section II describes the microscopic GD model and its
mesoscale description provided by the sGLE. Section III
details our design loop used to select the optimal complexity
of the sGLE for each amount of training data considered,
after which Sec. IV discusses the results of the error analysis
we performed in order to arrive at an optimally predictive
model. Section V summarizes our conclusions and discusses
possibilities for future work.

II. THE KINETIC ISING MODEL AND ITS
COARSE-SCALE DESCRIPTION BY A STOCHASTIC

GINZBURG-LANDAU EQUATION

A. Kinetic Ising model with Glauber dynamics

The Ising model with nearest-neighbor interactions [13]
is a simple, yet very rich, model in statistical mechan-
ics for describing ferromagnetic behavior. Consider a two-
dimensional (2D) ferromagnet with atoms arranged on an
N1 × N2 square lattice. The spin si,j (where i = 0, . . . ,N1 − 1
and j = 0, . . . ,N2 − 1) of each atom can be in one of two
states, si,j = ±1, and can only interact with its four adjacent
spins. We can add dynamics to this system by flipping spins
with a certain transition rate w, and the result is a kinetic
nearest-neighbor Ising model with spin-flip (Glauber) [14]
dynamics (which we will refer to as GD). This allows us to
express the time evolution of the spin system through a master
equation given by

d

dt
P(σ ; t) =

∑
σ ′

[w(σ ′ → σ )P(σ ′; t) − w(σ → σ ′)P(σ ; t)],

(1)

where P(σ ; t) is the joint probability of finding the system in
spin configuration σ at time t , and the w’s are the transition
rates between two N1 × N2-spin configurations differing only
in the value of one spin, si,j . For w we choose the heat bath
rate, given by

wHB(σ → σ ′) = κ(1 + e−β[H(σ )−H(σ ′)])−1. (2)

Here H(σ ) represents the Hamiltonian of the spin system with
configuration σ , β = 1/(kBT ) with T the system temperature,
and κ−1 sets the time scale of the spin-flip process and can
depend both on T and the spins other than si,j . We simulate
this kinetic Ising model via a Monte Carlo (MC) algorithm

with one MC step per spin; i.e., to complete one step in our
Ising run, we perform N1 × N2 times the following procedure:

(1) Pick a random site (i,j ) where i = 0, . . . ,N1 − 1 and
j = 0, . . . ,N2 − 1.

(2) Draw a number r1 from a uniform distribution on [0,1].
(3) Flip the spin si,j if r1 < w(σ → σ ′), or leave it in its

original state if r1 � w(σ → σ ′).
In all of our work here, we initialize the lattice by selecting

spins to be +1 or −1 randomly with equal probability.

B. Ginzburg-Landau equation

By invoking a phenomenological coarse-graining approach,
it is possible to obtain a mesoscopic model of GD given
by a time-dependent Ginzburg-Landau equation (GLE) [15].
The latter will describe the spatiotemporal evolution of an
“order parameter” φ, a field variable which represents the
instantaneous average of Ising spin values over some portion
of a ferromagnetic material (also called “magnetization”). At
finite temperatures, one needs to account for fluctuations,
which can be added via a white noise term to obtain an
overdamped stochastic relaxation equation,

∂φ(x,t)

∂t
= −M

δF [φ(x,t)]

δφ(x,t)
+ η(x,t), (3)

with M the mobility which sets the time scale of the
dynamics. Here η(x,t) is a zero-mean Gaussian white noise
with a variance which, according to the fluctuation-dissipation
theorem, scales linearly with M and the system temperature.
Moreover, F [φ] is an effective free energy for the system, and
is usually developed as a power series in φ and its derivatives,

F ∼
∑

k

akφ
k + b∇2φ + c∇4φ + d φ∇2φ + . . . . (4)

In the context of late-stage domain growth, renormalization
group arguments indicate that the Ising model with Glauber
dynamics is in the universality class of Model A dynamics
[12], and hence well represented at the coarse scale by having
only a2 and a4 different from zero. However, since we are
focusing on intermediate time and length scales, we relax this
assumption and instead consider a model class for the free
energy consisting of even-term polynomials with degree two
or greater. The complexity that we eventually select is the
one for which the model is optimally predictive of GD data
independent of the samples from which it was learned.

III. NUMERICAL ALGORITHM

Our goal is to learn the parameters of a discrete version
of the stochastic Ginzburg-Landau equation (sGLE) which
evolves the magnetization φ from time tn to time tn+1 according
to

φn+1,i,j = φn,i,j + α0(φn,i+1,j + φn,i−1,j + φn,i,j+1

+ φn,i,j−1 − 4φn,i,j ) +
C−1

2∑
k=0

αk+1φ
2k+1
n,i,j

+ α(C+3)/2 ξn,i,j , (5)
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where C is the model complexity [16] and the ξn,i,j are
independent, identically distributed standard normal random
variables. Here n and n + 1 refer to times tn and tn+1, while
i = 0, . . . ,N̄1 − 1 and j = 0, . . . ,N̄2 − 1 indicate the spatial
position of the spin blocks resulting from the coarse-graining
procedure, with N̄1 and N̄2 the number of blocks in both
spatial directions. Given block-averaged training data Sn,i,j

with n = 0, . . . ,neq, where neq will be specified for each of our
numerical experiments in Sec. IV, we would like to find the
set of parameters αopt ≡ {α0,α1, . . . ,α(C+3)/2} that maximizes
the likelihood of observing this data using the sGLE model.
For notational convenience, the N̄1 × N̄2 block-averaged spin
configuration after n steps will be denoted by Sn; the notation
Sn,i,j will refer to its (i,j )th matrix element. The same
convention will be used for φ. It turns out αopt is the solution
to a linear system,

Aαopt = b, (6)

where the components of A and the elements of b involve
products of Sn, its powers, and its discrete Laplacian. The
dimension of this system is given by the number of free
parameters that make up the model (5), which is equal
to (C − 1)/2 + 3. For more details, we refer the reader to
Appendix A where we have worked out the case of C = 3. We
then test our learned sGLE model against independent GD data
(“test” data) to ascertain how well learned models of different
complexities perform on unseen data. By calculating the
root-mean-square (RMS) error between GD test trajectories
and those simulated using the learned sGLE, we then determine
for which complexity C the latter is optimally predictive of the
GD test data.

We will consider two error metrics in our analysis, which
we will refer to as the “type 1” and “type 2” error. For the type
1 error, we calculate the sGLE grid at time tn+1 through (5) but
replace φn with the block-averaged GD test data at time tn. This
error is of the same type as the error that we want to minimize
when calculating αopt from the GD training data, where we
search for the set of parameters that maximizes the likelihood
of observing the training data at tn+1 given the sGLE model
and the training data at tn, for every n (see Appendix A). For
the type 2 error, we evolve the sGLE grid in time through (5)
directly, i.e., we do not keep referring back to the GD test data
at each time tn.

A flowchart of the operational algorithm is shown in Fig. 1.
At a high level, our approach for computing one data point

in the error probability density function (pdf) for a learned
sGLE model of complexity C, given a number of training
samples Ntrain, can be described as follows (see Appendix B
for more details).

(1) We simulate Ntest independent GD test sample trajecto-
ries. For each trajectory, we let the Ising system evolve over nmc

steps, after which we take another neq steps during which we
record the block-averaged Ising configuration. Each of these
steps represents one MC step per spin as detailed in Sec. II A.

(2) We simulate Ntrain independent GD training sample
trajectories. We let the spins evolve over nmc steps, and then
record their block-averaged configuration over the next neq

steps.
(3) Using the data gathered during the last neq steps of

each training trajectory, we compute the coefficients of the

learned sGLE polynomial using a log-likelihood analysis (see
Appendix A).

(4) With the parameters calculated in step 3, we now
simulate Ntest sGLE trajectories. Each trajectory consists of
neq steps, with each step involving the advancement of the
discrete sGLE (5) from one discrete point in time to the next.

(5) For the kth sGLE trajectory, we calculate the RMS error
εk between this trajectory and the kth block-averaged GD test
trajectory.

(6) Finally, we compute the test-averaged error,

ε = 1

Ntest

Ntest∑
k=1

εk, (7)

which we will call the “type 1” or “type 2” test error depending
on how the sGLE trajectory has been calculated (see our above
definition of these errors).

The quantity ε represents one point in the error pdf for
the considered complexity C and number of training samples
Ntrain. The entire pdf is then obtained by repeating the above
procedure except for step 1 (we use the same GD test
trajectories for each point in the pdf) nreal � 1 number of
times. We will denote the sample (i.e., realization) mean and
variance of this pdf by ε̄ and s2

ε , respectively.

IV. ERROR ANALYSIS AND MAIN RESULTS

We now present the pdfs of the type 1 and type 2 errors,
defined in Sec. III, for different complexities C = 3,5,7 or 9,
given a finite number of GD training samples Ntrain. We will
use Ntest = 1000 GD test samples, which provides an accurate
generalization error [17]. Moreover, we will build up the
error histograms using nreal = 5000 independent realizations,
and consider both training data in equilibrium and out of
equilibrium. For the equilibrium case, we measure the energy
of the spin system and choose nmc as the number of steps
after which thermal equilibrium has been reached. Out of
equilibrium, we choose nmc such that after nmc steps domains
have started to form. Learning the sGLE model parameters
from GD data for which the block size is smaller than the
size of a typical domain allows the Laplacian in the sGLE
to better capture gradients in the GD data, and should hence
yield a more accurate coarse-grained description. For both
cases, we determine an appropriate value for neq through
trial and error, and choose values that provide a sufficient
amount of input data to our log-likelihood solver. We will
use nmc + 1 = 2000 and neq + 1 = 100 for the equilibrium
case, and nmc + 1 = neq + 1 = 500 out of equilibrium (these
values include the number of steps plus the starting condition
at t = 0 or after nmc steps). In all cases, we simulate the
Glauber dynamics on a 256 × 256 spin lattice with periodic
boundary conditions, and coarse grain using 16 × 16 blocks.
We set the parameter κ in (2) equal to 1. Finally, next to
each error distribution, we show a plot of the free energy
constructed using the learned model parameters. These plots
are meant to serve as a check of the physical soundness
of our approach in the sense that, consistent with common
knowledge, a single-well potential should be observed above
the phase transition and a double-well potential below the
phase transition. However, they do not convey any information
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FIG. 1. (Color online) Flowchart for the model complexity selection algorithm.

regarding the predictiveness of our model, which follows
entirely from the error distributions.

A. Type 1 test error pdfs for training data in equilibrium

We first consider the case where we train on Ntrain = 8 GD
trajectories in equilibrium, obtained by quenching the spin
lattice from infinite temperature to either T = 1.6 J/kB (below
Tc = 2.269 J/kB [18]) or T = 2.8 J/kB (above Tc). As Fig. 2
shows, at T = 1.6 J/kB the error pdf’s sample mean ε̄ clearly
decreases with complexity C. Hence, the most predictive sGLE
model is that with the highest complexity considered, C = 9.

At T = 2.8 J/kB , however, the error pdfs for all the
complexities overlap almost completely (see Fig. 3), indicating
that the regular third-order sGLE polynomial is adequate to
predict the coarse-grained Glauber dynamics.

B. Type 1 test error pdfs for training data out of equilibrium

Next, we look at the case where we train on various amounts
of GD trajectories out of equilibrium, obtained by quenching
the spin lattice from infinite temperature to T = 2.2 J/kB (just
below Tc).

As Figs. 4–7 show, regardless of the amount of training data
the regular φ4 form of the free energy (C = 3) is not optimally
predictive of the GD test data. The complexity for which the
sGLE model best predicts the GD test trajectories varies with
the amount of training data. For small amounts of training
data (i.e., Ntrain = 1 or 2), the histograms for the different
complexities largely overlap. As the number of training
samples is increased to 16, the pdfs for C = 5 and higher can
be more clearly distinguished from that for C = 3. When one
further increases the amount of training samples to 128, the
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FIG. 2. (Color online) Type 1 error pdfs (left) and learned Ginzburg-Landau free energy (right) for different complexities of an sGLE
model learned from eight equilibrium GD training samples at T = 1.6 J/kB (below the phase transition). The sGLE with C = 9 predicts the
GD test data best.
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FIG. 3. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from eight equilibrium GD training samples
at T = 2.8 J/kB (above the phase transition). All considered model complexities are equally predictive of the GD test data.
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FIG. 4. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from one out-of-equilibrium GD training
sample at T = 2.2 J/kB (just below the phase transition). Complexities 5 and higher are optimally predictive of the GD test data, but the
corresponding error pdfs still largely overlap with that for C = 3.
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FIG. 5. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from two out-of-equilibrium GD training
samples at T = 2.2 J/kB .
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FIG. 6. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 16 out-of-equilibrium GD training
samples at T = 2.2 J/kB . The error pdfs for C = 5 and higher are now clearly distinct from that for C = 3.
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FIG. 7. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 128 out-of-equilibrium GD training
samples at T = 2.2 J/kB . The error pdf for C = 5 and those for C = 7 and higher are becoming more distinct, shifting the optimally predictive
model complexity to C = 7.
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FIG. 8. (Color online) Type 2 error pdfs for different complexities of an sGLE model learned from one out-of-equilibrium GD training
sample at T = 2.2 J/kB . The sGLE with C = 3 is most predictive of the GD test data.

pdf for C = 3 becomes fully distinct from those for higher
complexities, and the pdf for C = 5 is becoming more distinct
from those for C = 7 and C = 9. In sum, increasing the
amount of GD training data causes the complexity at which the
sGLE is optimally predictive to shift toward higher values.

C. Type 2 test error pdfs for training data out of equilibrium

Finally, we repeat the simulations in Sec. IV B for the type
2 error. We find that for this error type the regular φ4 free
energy does optimally predict the GD test data, regardless of
the amount of training data. Figure 8 shows this for the case of
one GD training sample. We note here that it is to be expected
that ε̄ is bigger for the type 2 error than for the type 1 error,
since the latter is calculated in the same way as the optimization
error for obtaining the αopt is calculated from the GD training
data, while the former is not.

V. SUMMARY AND CONCLUSIONS

By performing a detailed error analysis in the context
of a statistical learning approach using cross-validation, we
derive an optimally predictive coarse-grained description of
a two-dimensional kinetic nearest-neighbor Ising model with
Glauber dynamics (GD) based on the stochastic Ginzburg-
Landau equation (sGLE). The latter is learned from micro-
scopic GD “training” data through a log-likelihood analysis,
and its capacity to predict GD “test” data independent of the
training data is analyzed for various model complexities using
two error metrics and varying amounts of training data.

Our analysis yields the following major conclusions:
(1) For the type 1 error, a complexity of 3 in the sGLE force

equation does not yield an optimally predictive model for any
amount of training data that we investigated. Moreover, the
model complexity yielding the most predictive coarse-grained
description increases with the amount of GD training data.

(2) For the type 2 error, the regular Ginzburg-Landau
description using a φ4 mean-field free energy does yield
the most predictive model irrespective of the amount of GD
training data.

The principled methodology developed here for simple
model A dynamics can be applied to more complicated prob-
lems such as model H dynamics [12]. A particular application
which might benefit from this work is the use of data generated
from experiments, e.g., ultrafast x-ray diffraction patterns
of structural phase transitions in semiconductor crystals
to generate models describing crystal disordering [19]. In
general, our approach can be utilized in any application using a
Ginzburg-Landau functional, e.g., in phase field simulations of
materials.

Directions for future work include studying the effects of
the coarse-graining block size (in both space and time), per-
forming a rigorous analysis of the stability and discretization
error of our numerical scheme, and expanding the model class
by including operator terms that account for higher order
spatial gradients. Moreover, it is desirable to complement
the current computational analysis with a rigorous theoretical
derivation of an expression for the error probability density
function in terms of model complexity, number of training
samples, and coarse-graining block size.
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APPENDIX A: COMPUTATION OF THE PARAMETERS
IN THE LEARNED sGLE MODEL

In order to calculate the coefficients of the learned discrete
sGLE, we employ the widely used statistical technique of
maximizing the log likelihood that the model will predict the
GD training data. The discrete sGLE we are trying to learn has
the form,

φn+1,i,j = φn,i,j + α0(φn,i+1,j + φn,i−1,j + φn,i,j+1

+ φn,i,j−1 − 4φn,i,j ) +
C−1

2∑
k=0

αk+1φ
2k+1
n,i,j

+ α(C+3)/2 ξn,i,j , (A1)

where C is the model complexity (we only consider odd
complexities), the ξn,i,j are independent, identically distributed
standard normal random variables. Subscripts n and n + 1
refer to times tn and tn+1, while i = 0, . . . ,N̄1 − 1 and j =
0, . . . ,N̄2 − 1 are the spatial coordinates of the blocks obtained
by coarse-graining the spin lattice, with N̄1 and N̄2 the number
of blocks in both spatial directions. Given the block-averaged
training data Sn,i,j with n = 0, . . . ,neq, we would like to
find the set of parameters αopt ≡ {α0,α1, . . . ,α(C+3)/2} that
maximizes the probability of observing S0,S1, . . . ,Sneq from
model (A1). Here Sn refers to the N̄1 × N̄2 block-averaged spin
configuration after n steps following the convention introduced
in Sec. III. This probability is given by

P(S0,S1, . . . ,Sneq ; α)

= P(S0)P(S1 | S0; α) . . .P(Sneq | S1, . . . ,Sneq−1; α)

= P(S0)P(S1 | S0; α) . . .P(Sneq | Sneq−1; α). (A2)

Given Sn, we can see from (A1) that for each i and j , Sn+1,i,j

is normally distributed with mean,

Yn,i,j = Sn,i,j + α0(Sn,i+1,j + Sn,i−1,j + Sn,i,j+1

+ Sn,i,j−1 − 4Sn,i,j ) +
C−1

2∑
k=0

αk+1S
2k+1
n,i,j , (A3)

and variance α2
(C+3)/2. Therefore, we have

P(Sn+1,i,j = s | Sn; α)

= 1

α(C+3)/2

√
2π

exp

[
− (s − Yn,i,j )2

2α2
(C+3)/2

]
, (A4)

and since the ξn,i,j are independent,

P(Sn+1 | Sn; α)

= 1(
α2

(C+3)/22π
)(N̄1N̄2)/2

exp

[
−‖Sn+1 − Yn‖2

2α2
(C+3)/2

]
, (A5)

where Yn is defined according to the notational convention in
Sec. III. Hence,

lnP(S0,S1, . . . ,Sneq ; α)

= −
neq−1∑
n=0

‖Sn+1 − Yn‖2

2α2
(C+3)/2

− neqN̄1N̄2 ln(α(C+3)/2) + constant. (A6)

For notational simplicity, let us now focus on the case
of C = 3; the generalization to higher order nonlinearity
is straightforward. From (A6), it follows that we need to
minimize

L(S1, . . . ,Sneq ; α) = 1
2α−2

3 f (α0,α1,α2)

+ neqN̄1N̄2 ln (α3), (A7)

where

f (α0,α1,α2) =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

[
(Sn+1,i,j − Sn,i,j )

− α0(Sn,i+1,j + Sn,i−1,j + Sn,i,j+1

+ Sn,i,j−1 − 4Sn,i,j ) − α1Sn,i,j − α2S
3
n,i,j

]2
.

(A8)

From

∂L
∂α3

= −α−3
3 f (α0,α1,α2) + neqN̄1N̄2α

−1
3 = 0, (A9)

we can solve for α3,

α3 =
√

f (α0,α1,α2)

neqN̄1N̄2
. (A10)

Also, for k 
= 3, we have

∂L
∂αk

= 1

2
α−2

3

∂f

∂αk

. (A11)

If we now define

Dn,i,j = Sn+1,i,j − Sn,i,j ,

An,i,j = Sn,i+1,j + Sn,i−1,j + Sn,i,j+1 + Sn,i,j−1 − 4Sn,i,j ,

Bn,i,j = Sn,i,j , Cn,i,j = S3
n,i,j , (A12)

then

∂f

∂α0
= ∂α0

neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

(Dn,i,j − α0An,i,j

− α1Bn,i,j − α2Cn,i,j )2
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= −2

⎛
⎝neq−1∑

n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Dn,i,jAn,i,j

⎞
⎠

+ 2

⎛
⎝neq−1∑

n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

A2
n,i,j

⎞
⎠α0

+ 2

⎛
⎝neq−1∑

n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Bn,i,jAn,i,j

⎞
⎠α1

+ 2

⎛
⎝neq−1∑

n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Cn,i,jAn,i,j

⎞
⎠α2

= −2(a0 − a00α0 − a01α1 − a02α2). (A13)

Similarly,

∂f

∂α1
= −2(a1 − a10α0 − a11α1 − a12α2), (A14)

where

a1 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Dn,i,jBn,i,j ,

a10 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

An,i,jBn,i,j ,

(A15)

a11 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

B2
n,i,j ,

a12 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Cn,i,jBn,i,j .

Finally,

∂f

∂α2
= −2(a2 − a20α0 − a21α1 − a22α2), (A16)

where

a2 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Dn,i,jCn,i,j ,

a20 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

An,i,jCn,i,j ,

(A17)

a21 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Bn,i,jCn,i,j ,

a22 =
neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

C2
n,i,j .

Hence, we need to solve the linear system,

a00α0 + a01α1 + a02α2 = a0,

a10α0 + a11α1 + a12α2 = a1, (A18)

a20α0 + a21α1 + a22α2 = a2.

We can see that despite the nonlinearity of the sGLE,
optimizing the log-likelihood function can be reduced to
solving a linear system.

APPENDIX B: DETAILS OF THE OPERATIONAL
PROCEDURE FOR CALCULATING THE ERROR PDFS

To compute one data point in the error pdf for a learned
sGLE model of complexity C given a number of training
samples Ntrain, we do the following.

(1) We simulate Ntest independent GD test sample trajec-
tories. The kth trajectory is obtained as follows:

(a) Starting from a random initial Ising configuration,
we march over nmc steps.

(b) Starting from the resulting Ising configuration, we
march over neq steps and store the block-averaged time
history over these steps in a three-dimensional (3D) matrix
sav,test with dimensions (neq + 1) × N̄1 × N̄2. Here N̄1 and
N̄2 represent the number of spin blocks in each spatial
direction.

(c) This matrix sav,test will be the kth element of a
four-dimensional matrix sav,test,all with dimensions Ntest ×
(neq + 1) × N̄1 × N̄2.
The initial spins si,j (i = 0, . . . ,N1 − 1 and j = 0, . . . ,

N2 − 1) are given by si,j = 1 − 2 ri,j , where the ri,j are
drawn from a discrete uniform distribution on the half-
open interval [0,2). Furthermore, with “block-averaged time
history,” we refer to the time evolution of the block-averaged
spin configuration of the Ising lattice. At each discrete point
in time, we group the individual spins into blocks of a
certain size, and then calculate the average spin values over
the different blocks. The resulting coarsened grid is then
recorded.

(2) We simulate Ntrain independent GD training sample
trajectories. A trajectory is calculated as follows.

(a) Starting from a random initial Ising configuration,
we march over nmc steps.

(b) Starting from the final Ising configuration, we march
over neq steps and store the block-averaged time history
over these steps in a 3D matrix sav,train with dimensions
(neq + 1) × N̄1 × N̄2.

(c) We concatenate sav,train of the current training
sample with the corresponding matrices of the previous
training samples along the first (time) dimension, and
hence obtain a bigger matrix sav,train,all with dimensions
Ntrain × (neq + 1) × N̄1 × N̄2.
(3) Using the training data stored in sav,train,all, we compute

the coefficients of the learned sGLE polynomial using a log-
likelihood analysis (see Appendix A).

(4) With the parameters calculated in step 3, we now
simulate Ntest sGLE trajectories. The kth trajectory is obtained
as follows:

(a) We define a 3D matrix φ with dimensions (neq +
1) × N̄1 × N̄2.

(b) We take the block-averaged Ising test configuration
stored in s

av,test,all
k,0,:,: as the initial condition and define sav,test ≡

s
av,test,all
k,:,:,: . We then define φ0,:,: ≡ s

av,test
0,:,: .

(c) We march over neq steps and store the time history
over these steps in φ.
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(d) The configuration φn+1,:,: is calculated according to

φn+1,i,j = xi,j + G(x:,:; α), (B1)

where x:,: is either sav,test
n,:,: or φn,:,:, i = 0, . . . ,N̄1 − 1, and

j = 0, . . . ,N̄2 − 1.
In (d), we have defined G(x:,:; α) as

G(x:,:; α) = α0(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j )

+
C−1

2∑
k=0

αk+1(xi,j )2k+1 + α(C+3)/2 ξn,i,j . (B2)

(5) For the kth sGLE trajectory, we calculate the RMS
error εk

εk =

√√√√√1

a

neq−1∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

(
φn+1,i,j − s

av,test
n+1,i,j

)2
, (B3)

where a = neqN̄1N̄2.
(6) Finally, we compute the test-averaged error,

ε = 1

Ntest

Ntest∑
k=1

εk, (B4)

which we will call the “type 1” test error if the φn+1,i,j are
calculated using x:,: = sav,test

n,:,: in (B1), or the “type 2” test error
if the φn+1,i,j are calculated using x:,: = φn,:,: in (B1).
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