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Energy invariant for shallow-water waves and the Korteweg–de Vries equation:
Doubts about the invariance of energy
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(Received 1 April 2015; revised manuscript received 11 September 2015; published 10 November 2015)

It is well known that the Korteweg–de Vries (KdV) equation has an infinite set of conserved quantities. The
first three are often considered to represent mass, momentum, and energy. Here we try to answer the question of
how this comes about and also how these KdV quantities relate to those of the Euler shallow-water equations.
Here Luke’s Lagrangian is helpful. We also consider higher-order extensions of KdV. Though in general not
integrable, in some sense they are almost so within the accuracy of the expansion.
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I. INTRODUCTION

There exists a vast number of papers dealing with the
shallow-water problem. Aspects of the propagation of weakly
nonlinear, dispersive waves are still being studied. Last year
we published two articles [1,2] in which Korteveg–de Vries–
(KdV) type equations were derived in weakly nonlinear,
dispersive, and long-wavelength limits. The second-order
KdV-type equation was derived. The second-order KdV
equation [3,4], sometimes called the “extended KdV equation,”
was obtained for the case with a flat bottom. In derivation of
the new equation we adapted the method described in Ref. [4].
In Ref. [2], an analytic solution of this equation in the form of
a particular soliton was found as well.

It is well known, see, e.g., Ref. [5–8], that for the KdV
equation there exists an infinite number of invariants, that is,
integrals over space of functions of the wave profile and its
derivatives, which are constants in time. Looking for analogous
invariants for the second-order KdV equation we met with
some problems even for the standard KdV equation (which is
of first order in small parameters). This problem appears when
energy conservation is considered.

In this paper we reconsider invariants of the KdV equation
and formulas for the total energy in several different ap-
proaches and different frames of reference (fixed and moving
ones). We find that the invariant I (3), sometimes called the
energy invariant, does not always have that interpretation. We
also give a proof that for the second-order KdV equation,
obtained in Refs. [1–4],

∫ ∞
−∞ η2dx is not an invariant of motion.

There are many papers considering higher-order KdV-type
equations. Among them we would like to point out the
works of Byatt-Smith [9], Kichenassamy and Olver [10],
Marchant [3,11–14], Zou and Su [15], Tzirtzilakis et al. [16],
and Burde [17]. It was shown that if some coefficients of
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the second-order equation for shallow water problem (1)
differ or zero, then there exists a hierarchy of solition
solutions. Kichenassamy and Olver [10] even claimed that
for the second-order KdV equation solitary solutions of
appropriate form cannot exist. This claim was falsified in our
paper [2] where the analytic solution of the second-order KdV
equation (1) was found. Concerning the energy conservation
there are indications that collisions of solitons [18,19] which
are solutions of higher-order equations of KdV type can be
inelastic [15,16].

The paper is organized as follows. In Sec. II several
frequently used forms of KdV equations are recalled with
particular attention to transformations between fixed and
moving reference frames. In Sec. III the form of the three
lowest invariants of KdV equations is derived for different
forms of the equations. In Sec. IV we show that the energy
calculated from the definition H = T + V has no invariant
form. Section V describes the variational approach in a
potential formulation which gives a proper KdV equation
but fails in obtaining second-order KdV equations. In the
next section the proper invariants are obtained from Luke’s
Lagrangian density. Section VII summarizes conclusions on
the energy for the KdV equation. In Sec. VIII we apply the
same formalism to calculate energy for waves governed by the
extended KdV equation (second order). We found that energy
is conserved neither in the fixed coordinate system nor in the
moving frame.

II. THE EXTENDED KDV EQUATION

The geometry of shallow water waves is presented in Fig. 1.
In Refs. [1,2] we derived an equation, second order in

small parameters, in the fixed reference system and with
scaled nondimensional variables containing terms for bottom
fluctuations. They will not be considered here.

For a flat bottom that equation reduces to the second-order
KdV-type equation, identical with Ref. [4, Eq. (21)] for β = α,
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FIG. 1. (Color online) Schematic view of the geometry.

that is,

ηt + ηx + α 3
2ηηx + β 1

6η3x + α2
( − 3

8η2ηx

)
+αβ

(
23
24ηxη2x + 5

12ηη3x

) + β2 19
360η5x = 0. (1)

Subscripts denote partial differentiation. Small parameters α,β

are defined by ratios of the wave amplitude a, the average water
depth h, and mean wavelength l,

α = a

h
, β =

(
h

l

)2

.

Equation (1) was earlier derived in Ref. [3] and called “the
extended KdV equation.”

Limitation to the first order in small parameters yields the
KdV equation in a fixed coordinate system

ηt + ηx + α 3
2ηηx + β 1

6η3x = 0. (2)

Transformation to a moving frame in the form

x̄ = (x − t), t̄ = t, η̄ = η, (3)

allows us to remove the term ηx in the KdV equation in a frame
moving with the velocity of sound

√
gh,

η̄t̄ + α 3
2 η̄η̄x̄ + β 1

6 η̄3x̄ = 0. (4)

The explicit form of the scaling leading to equations (1)–(4) is
given by (29).

Problems with mass, momentum, and energy conservation
in the KdV equation were discussed in Ref. [20] recently. In
this paper the authors considered the KdV equations in the
original dimensional variables. Then the KdV equations are

ηt + cηx + 3

2

c

h
ηηx + ch2

6
ηxxx = 0 (5)

in a fixed frame of reference and

ηt + 3

2

c

h
ηηx + ch2

6
ηxxx = 0 (6)

in a moving frame. In both, c = √
gh, and (6) is obtained

from (5) by setting x ′ = x − ct and dropping the prime sign.
In our present paper we discuss the energy formulas

obtained both in fixed and moving frames of reference for
KdV (2), (4), (5), and (6). There seem to be some contradictions
in the literature because the form of some invariants and the
energy formulas differ in different sources because of using
different reference frames and/or different scalings. In this
paper we address this problems.

The second goal is to present some invariants for a KdV-type
equation of the second order (1).

III. INVARIANTS OF KDV-TYPE EQUATIONS

What invariants can be attributed to equations (1)–(2)
and (5)–(6)?

It is well known, see, e.g., [7, chap. 5], that an equation of
the form

∂T

∂t
+ ∂X

∂x
= 0, (7)

where neither T (an analog to density) nor X (an analog
to flux) contain partial derivatives with respect to t , cor-
responds to some conservation law. It can be applied, in
particular, to KdV equations (where there exist an infinite
number of such conservation laws) and to the equations
of KdV-type like (1). Functions T and X may depend on
x,t,η,ηx,η2x, . . . ,h,hx, . . . , but not on ηt . If both functions
T and Xx are integrable on (−∞,∞) and lim

x→±∞ X = const

(soliton solutions), then integration of Eq. (7) yields

d

dt

(∫ ∞

−∞
T dx

)
= 0 or

∫ ∞

−∞
T dx = const, (8)

since ∫ ∞

−∞
Xx dx = X(∞,t) − X(−∞,t) = 0. (9)

The same conclusion applies for periodic solutions (cnoidal
waves), when in the integrals (8) and (9) limits of integration
(−∞,∞) are replaced by (a,b), where b − a = � is the space
period of the cnoidal wave (the wavelength).

A. Invariants of the KdV equation

For the KdV equation (2) the two first invariants can be
obtained easily. Writing (2) in the form

∂η

∂t
+ ∂

∂x

(
η + 3

4
αη2 + 1

6
βηxx

)
= 0, (10)

one immediately obtains the conservation-of-mass (volume)
law

I (1) =
∫ ∞

−∞
η dx = const. (11)

Similarly, multiplication of (2) by η gives

∂

∂t

(
1

2
η2

)
+ ∂

∂x

(
1

2
η2 + 1

2
αη3 − 1

12
βη2

x + 1

6
βηηxx

)
= 0,

(12)

resulting in the invariant of the form

I (2) =
∫ ∞

−∞
η2 dx = const. (13)

In the literature of the subject, see, e.g., Refs. [7,20], I (2) is
attributed to momentum conservation.

Invariants I (1),I (2) have the same form for all KdV
equations (2), (4), (A2), (5), and (6).
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Denote the left-hand side of (2) by KDV(x,t) and take

3η2 × KDV(x,t) − 2

3

β

α
ηx × ∂

∂x
KDV(x,t). (14)

The result, after simplifications, is

∂

∂t

(
η3 − 1

3

β

α
η2

x

)
+ ∂

∂x

(
9

8
αη4 + 1

2
βη2xη

2 − βη2
xη + η3

+ 1

18

β2

α
η2

2x − 1

9

β2

α
ηxη3x − 1

3

β

α
η2

x

)
= 0. (15)

Then the next invariant for KdV in the fixed reference frame (2)
is

I
(3)
fixed frame =

∫ ∞

−∞

(
η3 − 1

3

β

α
η2

x

)
dx = const. (16)

The same invariant is obtained for the KdV in the moving
frame (4). The same construction like (14) but for Eq. (4)
results in

∂

∂t

(
η3 − 1

3

β

α
η2

x

)
+ ∂

∂x

(
9

8
αη4 + 1

2
βη2xη

2

−βη2
xη + η3 + 1

18

β2

α
η2

2x − 1

9

β2

α
ηxη3x

)
= 0. (17)

Then the next invariant for KdV equation in the moving
reference frame (4) is

I
(3)
moving frame =

∫ ∞

−∞

(
η3 − 1

3

β

α
η2

x

)
dx = const. (18)

The procedure similar to those described above leads to
the same invariants for both Eqs. (5) and (6) where KdV
equations are written in dimensional variables. To see this, it is
enough to take 3η2 × kdv(x,t) − 2

3h3 ∂
∂x

kdv(x,t) = 0, where
kdv(x,t) is the left-hand side of either (5) or (6). For Eq. (5)
the conservation law is

∂

∂t

(
η3 − h3

3
η2

x

)
+ ∂

∂x

(
cη3 − 9c

8h
η4 − 1

3
ch3η2

x − ch2ηη2
x

+1

2
ch2η2ηxx + 1

18
ch5η2

xx − 1

9
ch5ηxηxxx

)
= 0, (19)

whereas for Eq. (6) the flux term differs:

∂

∂t

(
η3 − h3

3
η2

x

)
+ ∂

∂x

(
9c

8h
η4 − ch2ηη2

x + 1

2
ch2η2ηxx

+ 1

18
ch5η2

xx − 1

9
ch5ηxηxxx

)
= 0. (20)

But in both cases the same I (3) invariant is obtained as

I
(3)
dimensional =

∫ ∞

−∞

(
η3 − h3

3
η2

x

)
dx = const. (21)

1. Conclusion

Invariants I (3) have the same form for fixed and moving
frames of reference when the transformation from fixed to
moving frame scales x and t in the same way (e.g., x ′ = x − t

and t ′ = t). When scaling factors differ, like in (A1), then the
form of I (3) in the moving frame differs from the form in the
fixed frame, see Appendix A.

For those solutions of KdV which preserve their shapes
during the motion, that is, for cnoidal solutions and single
soliton solutions, integrals of any power of η(x,t) and any
power of arbitrary derivative of the solution with respect to x

are invariants. That is,

I (a,n) =
∫ ∞

−∞
(ηnx)adx = const, (22)

where n = 0,1,2, . . . , and a ∈ R is an arbitrary real number.
Then an arbitrary linear combination of I (a,n) is an invariant
as well.

B. Invariants of the second-order equations

Can we construct invariants for KdV-type equations of the
second order? Let us try to take T = η for Eq. (1). Then we
find that all terms, except ηt , can be written as Xx , as∫ [

ηx + α
3

2
ηηx + β

1

6
η3x + α2

(
− 3

8
η2ηx

)

+αβ

(
23

24
ηxη2x + 5

12
ηη3x

)
+ β2 19

360
η5x

]
dx

= η + 3

4
αη2 + 1

6
βη2x − 1

8
α2η3

+αβ

(
13

48
η2

x + 5

12
ηη2x

)
+ 19

360
β2η4x. (23)

As (23) depends on η and space derivatives and also since all
those functions vanish when x → ±∞, the conservation law
for mass (volume),∫ ∞

−∞
η(x,t) dx = const, (24)

holds for the second-order equation.
Until now we did not find any other invariants for the

second-order equations. Moreover, we can show that the
integral I (2) (13) is no longer an invariant of the second-order
KdV equation (1).

Upon multiplication of Eq. (1) by η one obtains

0 = ∂

∂t

(
1

2
η2

)
+ ∂

∂x

[
1

2
η2 + 1

2
αη3 + 1

6
β

(
− 1

2
η2

x + ηη2x

)

− 3

32
α2η4 + 19

360
β2

(
1

2
η2

xx − ηxη3x + ηη4x

)

+ 5

12
αβ η2η2x

]
+ 1

8
αβ ηηxη2x. (25)

The last term in (25) cannot be expressed as ∂
∂x

X(η,ηx, . . .).

Therefore
∫ +∞
−∞ η2dx is not a conserved quantity.

IV. ENERGY

The invariant I (3) is usually referred to as the energy
invariant. Is this really the case?

A. Energy in a fixed frame as calculated from the definition

The hydrodynamic equations for an incompressible, invis-
cid fluid, in irrotational motion and under gravity in a fixed
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frame of reference, lead to a KdV equation of the form

η̃t̃ + η̃x̃ + α 3
2 η̃η̃x̃ + β 1

6 η̃3x̃ = 0. (26)

We will find the function

f̃x̃ = η̃ − 1
4αη̃2 + 1

3βη̃x̃x̃ , (27)

obtained as a by-product in derivation of KdV, useful in what
follows. For more details see Appendix B or Ref. [21, chap.
5]. Tildes denote scaled dimensionless quantities.

Now we construct the total energy of the fluid from the
definition. The total energy is the sum of potential and kinetic
energy. In our two-dimensional system the energy in original
(dimensional coordinates) is

E = T + V =
∫ +∞

−∞

( ∫ h+η

0

ρv2

2
dy

)
dx

+
∫ +∞

−∞

( ∫ h+η

0
ρgy dy

)
dx. (28)

Equations (26) and (27) are obtained after scaling [1,2,4].
We now have dimensionless variables, according to

φ̃ = h

la
√

gh
φ, x̃ = x

l
, η̃ = η

a
,

ỹ = y

h
, t̃ = t

l/
√

gh
, (29)

and

V = ρgh2l

∫ +∞

−∞

∫ 1+αη̃

0
ρ ỹ dỹ dx̃, (30)

T = 1

2
ρgh2l

∫ +∞

−∞

∫ 1+αη̃

0

(
α2φ̃2

x̃ + α2

β
φ̃2

ỹ

)
dỹ dx̃. (31)

Note that the factor in front of the integrals has the dimension
of energy.

In the following, we omit signs ∼, having in mind that
we are working in dimensionless variables. Integration in (30)
with respect to y yields

V = 1

2
gh2lρ

∫ ∞

−∞
(α2η2 + 2αη + 1) dx

= 1

2
gh2lρ

[ ∫ ∞

−∞
(α2η2 + 2αη) dx +

∫ ∞

−∞
dx

]
. (32)

After renormalization (substraction of constant term
∫ ∞
−∞ dx)

one obtains

V = 1

2
gh2lρ

∫ ∞

−∞
(α2η2 + 2αη) dx. (33)

In kinetic energy we use the velocity potential expressed in
the lowest (first) order

φx = fx − 1
2βy2fxxx and φy = −βyfxx, (34)

where fx was defined in (27). Now the bracket in the
integral (31) is
(

α2φx
2 + α2

β
φy

2

)
= α2

[
f 2

x + βy2
(−fxfxxx + f 2

xx

)]
. (35)

Integration with respect to the vertical coordinate y gives, up
to the same order,

T = 1

2
ρgh2l

∫ +∞

−∞
α2

[
f 2

x (1 + αη)

+β
(−fxfxxx + f 2

xx

)1

3
(1 + αη)3

]
dx

= 1

2
ρgh2l

∫ +∞

−∞
α2

[
f 2

x + αf 2
x η + 1

3
β
(
f 2

xx − fxfxxx

)]
dx.

(36)

In order to express energy through the elevation funcion η we
use (27). We then substitute fx = η in terms of the third order
and f 2

x = η2 − 1
2αη3 + 2

3βηηxx in terms of the second order

T = 1

2
ρgh2l

∫ +∞

−∞
α2

[(
η2 − 1

2
αη3 + 2

3
βηηxx

)

+αη3 + 1

3
β
(
η2

x − ηηxx

)]
dx

= 1

2
ρgh2l α2

[ ∫ +∞

−∞

(
η2 + 1

2
αη3

)
dx

+
∫ +∞

−∞

1

3
β
(
η2

x + ηηxx

)
dx

]
. (37)

The last term vanishes as∫ +∞

−∞

(
η2

x + ηηxx

)
dx =

∫ +∞

−∞
η2

xdx + ηηx |+∞
−∞ −

∫ +∞

−∞
η2

xdx

= 0. (38)

Therefore the total energy in the fixed frame is given by

Etot = T + V = ρgh2l

∫ ∞

−∞

[
αη + (αη)2 + 1

4
(αη)3

]
dx

= ρgh2l

(
αI (1)+α2I (2)+ 1

4
α2I (3)+ 1

12
α2β

∫ ∞

−∞
η2

x dx

)
.

(39)

The energy (39) in a fixed frame of reference has noninvariant
form. The last term in (39) results in small deviations from
energy conservation only when ηx changes in time in the
soliton’s reference frame, which occurs only during soliton
collision. These deviations are discussed and illustrated in
Sec. VI E.

The result (39) gives the energy in powers of η only. The
same structure of powers in η was obtained by the authors of
Ref. [20], who work in dimensional KdV equations (5) and (6).
On page 122 they present a nondimensional energy density E

in a frame moving with the velocity U . Then, if U = 0 is set,
the energy density in a fixed frame is proportional to αη + α2η2

as the formula is obtained up to second order in α. However,
the third-order term is 1

4α3η3, so the formula up to the third
order in α becomes

E ∼ αη + α2η2 + 1
4α3η3. (40)

This energy density contains the same terms like (39) and also
does not contain the term η2

x .
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Energy calculated from the definition does not contain a
proper invariant of motion.

B. Energy in a moving frame

Now consider the total energy according to (28) calculated
in a frame moving with the velocity of sound c = √

gh.
Using the same scaling (29) to dimensionless variables we
note that in these variables c = 1. As pointed by Ali and
Kalisch [8, Sec. 3] working in such a system one has to
replace φx by the horizontal velocity in a moving frame,
that is, by φ̃x̃ − 1

α
= αη̃ − 1

4αη̃2 + β( 1
3 − y2

2 )η̃x̃x̃ − 1
α

. Then
repeating the same steps as in the previous subsection yields
the energy expressed by invariants,

Etot =ρgh2l

∫ ∞

−∞

[
−1

2
αη̃+ 1

4
(αη̃)2+ 1

2
α3

(
η̃3− 1

3

β

α
η̃2

x̃

)]
dx̃

= ρgh2l

(
− 1

2
αI (1) + 1

4
α2I (2) + 1

2
α3I (3)

)
. (41)

The crucial term − 1
6α2β η̃2

x̃ in (41) appears due to integration
over the vertical variable of the term β

α
η̃x̃x̃ supplied by

(φ̃x̃ − 1
α

)2.

V. VARIATIONAL APPROACH

A. Lagrangian approach, potential formulation

Some attempts at the variational approach to shallow-water
problems are summarized in G. B. Whitham’s book [22,
Sec. 16.14].

For KdV as it stands, we cannot write a variational principle
directly. It is necessary to introduce a velocity potential. The
simplest choice is to take η = ϕx . Then Eq. (2) in the fixed
frame takes the form

ϕxt + ϕxx + 3
2αϕxϕxx + 1

6βϕxxxx = 0 . (42)

The appropriate Lagrangian density is

Lfixed frame := −1

2
ϕtϕx − 1

2
ϕ2

x − α

4
ϕ3

x + β

12
ϕ2

xx . (43)

Indeed, the Euler-Lagrange equation obtained from La-
grangian (43) is just (42).

For our moving reference frame the substitution η = ϕx

into (4) gives

ϕxt + 3
2αϕxϕxx + 1

6βϕxxxx = 0 . (44)

So the appropriate Lagrangian density is

Lmoving frame := −1

2
ϕtϕx − α

4
ϕ3

x + β

12
ϕ2

xx . (45)

Again, the Euler-Lagrange equation obtained from
Lagrangian (45) is just (44).

B. Hamiltonians for KdV equations in the potential formulation

The Hamiltonian for the KdV equation in a fixed frame (2)
can be obtained in the following way. Defining general-
ized momentum π = ∂L

∂ϕt
, where L is given by (43), one

obtains

H =
∫ ∞

−∞
[πϕ̇ − L]dx =

∫ ∞

−∞

[
1

2
ϕ2

x + α

4
ϕ3

x − β

12
ϕ2

xx

]
dx

=
∫ ∞

−∞

[
1

2
η2 + 1

4
α

(
η3 − β

3α
η2

x

)]
dx. (46)

The energy is expressed by invariants I (2),I (3) so it is a constant
of motion.

The same procedure for KdV in a moving frame (4) gives

H =
∫ ∞

−∞
[πϕ̇ − L]dx =

∫ ∞

−∞

[
α

4
ϕ3

x − β

12
ϕ2

xx

]
dx

= 1

4
α

∫ ∞

−∞

(
η3 − β

3α
η2

x

)
dx. (47)

The Hamiltonian (47) only consists I (3).
The constant of motion in a moving frame is

E = 1
4I (3) = const. (48)

The potential formulation of the Lagrangian, described
above, is successful for deriving KdV equations both for
fixed and moving reference frames. It fails, however, for
the second-order KdV equation (1). We proved that there
exists a nonlinear expression of L(ϕt ,ϕx,ϕxx, . . .), such that
the resulting Euler-Lagrange equation differs very little from
Eq. (1). The difference lies only in the value of one of the
coefficients in the second-order term αβ ( 23

24ηxη2x + 5
12ηη3x).

Particular values of coefficients in this term also cause the lack
of the I (2) invariant for second-order KdV equation [see (25)].

VI. LUKE’S LAGRANGIAN AND KDV ENERGY

The full set of Euler equations for the shallow-water
problem, as well as KdV equations (2), (A2), and second-
order KdV equation (1), can be derived from Luke’s La-
grangian [23], see, e.g., Ref. [3]. Luke points out, however,
that his Lagrangian is not equal to the difference of kinetic
and potential energy. Euler-Lagrange equations obtained from
L = T − V do not have the proper form at the boundary.
Instead, Luke’s Lagrangian is the sum of kinetic and potential
energy supplemented by the φt term which is necessary in
dynamical boundary conditions.

A. Derivation of KdV energy from the original Euler equations
according to Ref. [21]

In chapter 5.2 of the Infeld and Rowlands book the authors
present a derivation of the KdV equation from the Euler
(hydrodynamic) equations using a single small parameter ε.
Moreover, they show that the same method allows us to derive
the Kadomtsev-Petviashvili (KP) equation [24] for water
waves [25–28] and also nonlinear equations for ion acoustic
waves in a plasma [29,30]. The authors first derive equations of
motion and then construct a Lagrangian and look for constants
of motion. For the purpose of this paper and for comparison
to results obtained in the next subsections it is convenient to
present their results starting from Luke’s Lagrangian density.
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That density can be written as (here g = 1)

L =
∫ 1+η

0

[
φt + 1

2

(
φ2

x + φ2
z

) + z

]
dz. (49)

In Chapter 5.2.1 of Ref. [21] the authors introduce scaled
variables in a moving frame (ε plays a role of small parameter
and if ε = α = β, then the KdV equation is obtained). Then
(for details, see Appendix B or Ref. [21, Chapter 5.2])

φz = −ε
3
2 zfξξ , φx = εfξ − ε2 z2

2
fξξξ ,

φt = −εfξ + ε2

(
fτ + z2

2
fξξξ

)
− ε3 z2

2
fξξτ , (50)

where ξ = ε
1
2 (x − t) and τ = ε

3
2 t . Substitution of the above

formulas into the expression [ ] under the integral in (49) gives

[] = z − εfξ + ε2

(
fτ + 1

2
f 2

ξ + z2

2
fξξξ

)

+ ε3 z2

2

[−fξξτ + (
f 2

ξξ − fξfξξξ

)] + O(ε4). (51)

Note that the full Lagrangian is obtained by integration of
the Lagrangian density (49) with respect to x. Integration
limits are (−∞,∞) for a soliton solutions, or [a,b], where
b − a = X − wavelength (space period) for cnoidal solutions.
Integration by parts and properties of the solutions at the
limits, see (9), allow us to use the equivalence

∫ ∞
−∞(f 2

ξξ −
fξfξξξ )dξ = ∫ ∞

−∞ 2f 2
ξξ dξ .

Therefore

[] = z − εfξ + ε2

(
fτ + 1

2
f 2

ξ + z2

2
fξξξ

)

+ ε3 z2

2

[−fξξτ + 2f 2
ξξ

] + O(ε4). (52)

Integration over y gives (note that 1 + η =⇒ 1 + εη)

L = 1
2 (1 + εη)2 + (1 + εη)

[−εfξ + ε2
(
fτ + 1

2f 2
ξ

)]
+ 1

3 (1 + εη)3
[

1
2ε2fξξξ − 1

2ε3fξξτ + ε3f 2
ξξ

]
. (53)

We write (53) up to third order in ε,

L = L(0) + εL(1) + ε2L(2) + ε3L(3) + O(ε4) .

It is easy to show that

L(0) = 1
2 , L(1) = η − fξ ,

L(2) = fτ + 1
2η2 − ηfξ + 1

2f 2
ξ + 1

6fξξξ , (54)

L(3) = ηfτ + 1
2ηf 2

ξ + 1
2ηfξξξ − 1

6fξξτ + 1
3f 2

ξξ .

The Hamiltonian density reads as

H = fτ

∂L

∂fτ

+ fξξτ

∂L

∂fξξτ

− L

= −
[

1

2
+ ε(η − fξ ) + ε2

(
1

2
η2 − ηfξ + 1

2
f 2

ξ + 1

6
fξξξ

)

+ ε3

(
1

2
ηf 2

ξ + 1

2
ηfξξξ + 1

3
f 2

ξξ

)]
. (55)

Dropping the constant term one obtains the total energy as

E =
∫ ∞

−∞

[
ε(η − fξ ) + ε2

(
1

2
η2 − ηfξ + 1

2
f 2

ξ + 1

6
fξξξ

)

+ ε3

(
1

2
ηf 2

ξ + 1

2
ηfξξξ + 1

3
f 2

ξξ

)]
dξ. (56)

Now we need to express fξ and its derivatives by η and its
derivatives. We use (27) replacing α and β by ε, that is,

fξ = η − 1
4εη2 + 1

3εηξξ . (57)

Then the total energy in a moving frame is expressed in
terms of the second and the third invariants,

E = −
[
ε2 1

4

∫ ∞

−∞
η2 dx + ε3 1

2

∫ ∞

−∞

(
η3 − 1

3
η2

ξ

)
dx

]
. (58)

Note that the term 1
3η2

ξ occurring in the third-order invariant
originates from three terms appearing in φ2

z , φ2
x , and φt [see

terms fξξ and fξξξ in (50)].

B. Luke’s Lagrangian

The original Lagrangian density in Luke’s paper [23] is

L =
∫ h(x)

0
ρ

[
φt + 1

2

(
φ2

x + φ2
y

) + gy

]
dy. (59)

After scaling as in Refs. [1,2,4],

φ̃ = h

la
√

gh
φ, x̃ = x

l
, η̃ = η

a
, ỹ = y

h
, t̃ = t

l/
√

gh
,

(60)

we obtain

φt = ghα φ̃t̃ , φ2
x = ghα2 φ̃2

x̃ , φ2
y = gh

α2

β
φ̃2

ỹ . (61)

The Lagrangian density in scaled variables becomes (dy =
hdỹ)

L = ρgha

∫ 1+αη

0

[
φ̃t̃ + 1

2

(
φ̃2

x̃ + α2

β
φ̃2

ỹ

)]
dỹ

+ 1

2
ρgh2(1 + αη)2. (62)

So, in dimensionless quantities,

L

ρgha
=

∫ 1+αη

0

[
φ̃t̃ + 1

2

(
αφ̃2

x̃ + α

β
φ̃2

ỹ

)]
dỹ + 1

2
αη2, (63)

where the constant term and the term proportional to η in the
expansion of (1 + αη)2 are omitted. The form (63) is identical
with Eq. (2.9) in Marchant and Smyth [3].

The full Lagrangian is obtained by integration over x. In
dimensionless variables (dx = l dx̃) it gives

L=E0

∫ ∞

−∞

[∫ 1+αη

0

[
φ̃t̃ + 1

2

(
αφ̃2

x̃ + α

β
φ̃2

ỹ

)]
dỹ+ 1

2
αη2

]
dx̃.

(64)

The factor in front of the integral, E0 = ρghal = ρgh2l α, has
the dimension of energy.
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Next, the tildes will be omitted, but we have to remember
that we are working in scaled dimensionless variables in a
fixed reference frame.

C. Energy in the fixed reference frame

We express the Lagrangian density by η and f = φ(0). Now,
up to first order in small parameters,

φ = f − 1
2βy2fxx, φt = ft − 1

2βy2fxxt ,

φx = fx − 1
2βy2fxxx, φy = −βyfxx. (65)

Then the expression under the integral in (63) becomes

[] = ft − 1
2βy2fxxt + 1

2αf 2
x + 1

2αβy2
(−fxfxxx + f 2

xx

)
.

(66)
From properties of solutions at the limits (−fxfxxx + f 2

xx) ⇒
2f 2

xx . Integration of (66) over y yields

L

ρgha
=

(
ft + 1

2
αf 2

x

)
(1 + αη) − 1

2
βfxxt

1

3
(1 + αη)3

+αβf 2
xx

1

3
(1 + αη)3 + 1

2
αη2. (67)

The dimensionless Hamiltonian density is
(ft

∂L
∂ft

+ fxxt
∂L

∂fxxt
− L)

H

ρgh2l
=−α

[
1

2
αf 2

x (1 + αη) + αβf 2
xx

1

3
(1 + αη)3 + 1

2
αη2

]
.

(68)

Again, we need to express the Hamiltonian by η and its
derivatives only. Inserting

fx = η − 1
4αη2 + 1

3βηxx (69)

into (68) and leaving terms up to third order, one obtains

H

ρgh2l
= −α

[
αη2 + 1

4
α2η3 + 1

3
αβ

(
η2

x + ηηxx

)]
. (70)

The energy is

E

ρgh2l
= −α

∫ ∞

−∞

[
αη2 + 1

4
α2η3 + 1

3
αβ

(
η2

x + ηηxx

)]
dx

= −
[
α2

∫ ∞

−∞
η2dx + 1

4
α3

∫ ∞

−∞
η3dx

]
(71)

since the integral of the αβ term vanishes. Here, in the
same way as in calculations of energy directly from the
definition (40), the energy is expressed by integrals of η2 and
η3. The term proportional to αη is not present in (71) because
it was dropped earlier [3].

D. Energy in a moving frame

Transforming into the moving frame

x̄ = x − t, t̄ = αt, ∂x = ∂x̄, ∂t = −∂x̄ + α∂t̄ , (72)

φ = f − 1
2βy2fx̄x̄ , φx = fx̄ − 1

2βy2fx̄x̄x̄ , φy = −βyfx̄x̄ ,

(73)

φt = −fx̄ + 1
2βy2fx̄x̄x̄ + α

(
ft̄ − 1

2βy2fx̄x̄t̄

)
. (74)

Up to second order

1

2

(
αφ2

x + α

β
φ2

y

)
= 1

2

[
αf 2

x̄ + αβy2(−fx̄fx̄x̄x̄ + f 2
x̄x̄

)]

= 1

2
αf 2

x̄ + αβy2f 2
x̄x̄ . (75)

Therefore the expression under the integral in (63) is

[] = −fx̄ + 1
2βy2fx̄x̄x̄ + α

(
ft̄ − 1

2βy2fx̄x̄t̄

)
+ 1

2αf 2
x̄ + αβy2f 2

x̄x̄ . (76)

Integration yields

L

ρgha
=

(
−fx̄ + αft̄ + 1

2
αf 2

x̄

)
(1 + αη) + 1

3
(1 + αη)3

×
[
1

2
β(fx̄x̄x̄ − fx̄x̄t̄ ) + αβf 2

x̄x̄

]
+ 1

2
αη2. (77)

Like in (68) above, the Hamiltonian density is

H

ρgh2l
= −α

[(
− fx̄ + 1

2
αf 2

x̄

)
(1 + αη) + 1

3
(1 + αη)3

×
(

1

2
βfx̄x̄x̄ + αβf 2

x̄x̄

)
+ 1

2
αη2

]
. (78)

Expressing fx̄ by (69) one obtains

H

ρgh2l
= −α

[
−1

4
αη2 + 1

3
βηxx − 1

2
α2η3

+αβ

(
−1

4
η2

x − 5

12
ηηxx

)
− 1

18
β2ηxxxx

]
. (79)

Finally, the energy is given by

E

ρgh2l
= α2 1

4

∫ ∞

−∞
η2dx + α3 1

2

∫ ∞

−∞

(
η3 − 1

3

β

α
η2

x

)
dx

(80)
since integrals from terms with β,β2 vanish at integration
limits, and − 5

12ηηxx ⇒ 5
12η2

x . The invariant term proportional
to αη is not present in (80) because it was dropped in (63). If we
include that term, then the total energy is a linear combination
of all three lowest invariants, I (1),I (3),I (3).

An almost identical formula for the energy in a moving
frame, for KdV expressed in dimensional variables (6), was
obtained in Ref. [20]. That energy is expressed by all three
lowest-order invariants,

E = −1

2
c2

∫ ∞

−∞
η dx + 1

4

c2

h

∫ ∞

−∞
η2 dx

+ 1

2

c2

h2

∫ ∞

−∞

(
η3 − h3

3
η2

x

)
dx, (81)

as well. Translation of (81) to nondimensional variables yields

E� = �gh2l
(− 1

2αI (1) + 1
4α2I (2) + 1

2α3I (3)
)
.

E. How strongly is energy conservation violated?

The total energy in the fixed frame is given by Eq. (40).
Taking into account its nondimensional part we may
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FIG. 2. (Color online) Precision of energy conservation for three-
soliton solution. Energies are plotted as open circles (E1) and open
squares (E2) for 40 time instants.

write

E1(t) = T + V

�gh2l
=

∫ ∞

−∞

[
αη + (αη)2 + 1

4
(αη)3

]
dx

= αI (1) + α2I (2) + 1

4

∫ ∞

−∞
(αη)3dx. (82)

In order to see how much the changes of E1 violate energy
conservation we will compare it to the same formula but
expressed by invariants

E2(t) = αI (1) + α2I (2) + 1
4α3I (3). (83)

The time dependence of E1 and E2 is presented in Fig. 2 for
a three-soliton solution of KdV (2). Presented is time evolution
in the interval t ∈ [−12,0]. The shape of the three-soliton
solution is presented only for three times t = −12, − 6,0 in
order to show shapes changing during the collision.

For presentation the example of a three-soliton solution with
amplitudes equal to 1.5, 1.0, and 0.5 was chosen. In Fig. 3 the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-50 -40 -30 -20 -10  0  10  20

η(
x,

t)

x

 t=-12

 t = -6

 t =  0

FIG. 3. (Color online) Shape evolution of three-soliton solution
during collision.

positions of solutions at given times were artificially shifted
to set them closer to each other. The plots in Figs. 2 and 3 for
t > 0 are symmetric to those which are shown in the figures.

For this example the relative discrepancy of the energy E1

from the constant value is very small

δE = E1(t = −12) − E1(t = 0)

E1(t = −12)
≈ 0.000258. (84)

However, the E2 energy is conserved with numerical precision
of 13 decimal digits in this example. In a similar example with
a two-soliton solution (with amplitudes 1 and 0.5) the relative
error (84) was even smaller, with the value δE ≈ 0.00014.
This suggests that the degree of nonconservation of energy
increases with n, where n is the number of solitons in the
solution.

VII. CONCLUSIONS FOR KDV EQUATION

The main conclusions can be formulated as follows:
(i) The invariants of KdV in fixed and moving frames have

the same form. (Of course when we have the same scaling
factor for x and t in the transformation between frames).

(ii) We confirmed some known facts. First, that the usual
form of the energy H = T + V is not always expressed by
invariants only. The reason lies in the fact, as pointed out
by Luke in Ref. [23], that the Euler-Lagrange equations
obtained from the Lagrangian L = T − V do not supply the
right boundary conditions. Second, the variational approach
based on Luke’s Lagrangian density provides the right Euler
equations at the boundary and allows for a derivation of the
higher-order KdV equations.

(iii) In the frame moving with the velocity of sound all
energy components are expressed by invariants. Energy is
conserved.

(iv) Numerical calculations confirm that invariants
I (1),I (2),I (3) in the forms (11), (13), (16), and (18) are exact
constants of motion for two- and three-soliton solutions, both
for fixed and moving coordinate systems. In all performed tests
the invariants were exact up to 14 digits in double precision
calculations.

(v) For the extended KdV equation (1) we have only found
one invariant of motion I (1) (24).

(vi) The total energy in the fixed coordinate system as
calculated in (40) is not exactly conserved but only altered
during collisions, even then by minute quantities (an order of
magnitude smaller than expected). Details are provided in the
caption to Fig. 2.

A summary of these conclusions can be found in Table I.

VIII. EXTENDED KDV EQUATION

In this section we calculate an energy formula correspond-
ing to a wave motion governed by second-order equations in
scaled variables, that is the equation (1) for the fixed coordinate
system and the corresponding equation for a moving coordi-
nate system. As previously, we compare energies calculated
from the definition with those Luke’s Lagrangian.

053202-8



ENERGY INVARIANT FOR SHALLOW-WATER WAVES AND . . . PHYSICAL REVIEW E 92, 053202 (2015)

TABLE I. Comparison of different energy formulas. Here η(3) = ∫ ∞
−∞ η3 dx.

Euler Luke’s Integrals Potential KdV
equations Lagrangian T + V Lagrangian dimensionala

Fixed frame αI (1)+α2I (2)+ 1
4 α3η(3) α2I (2)+ 1

4 α3η(3) αI (1)+α2I (2)+ 1
4 α3η(3) 1

2 I (2)+ 1
4 αI (3) αI (1)+α2I (2)+ 1

4 α3η(3)

(39) (71) (39) (46) (40)

Moving frame 1
4 α2I (2)+ 1

2 α3I (3) 1
4 α2I (2)+ 1

2 α3I (3) − 1
2 αI (1)+ 1

4 α2I (2)+ 1
2 α3I (3) 1

4 αI (3) − 1
2 αI (1)+ 1

4 αI (2)+ 1
2 α2I (3)

(58) (80) (41) (47) (81)

aFormulas in this column are written in E

�gh2l
.

A. Energy in a fixed frame calculated from definition

Now, instead of (2) we consider the second-order KdV
equation, that is, Eq. (1), which Marchant and Smyth [3]
referred to as “extended KdV.”

In Sec. IV A, total energy of the wave governed by the
KdV equation, that is, Eq. (2) with terms only up to first
order in small parameters, was obtained in (40). In calculation
according to Eq. (1) the potential energy is expressed by the
same formula (32) as previously for the KdV equation. In the
expression for kinetic energy the velocity potential has to be
expanded to second order in small parameters,

φ = f − 1
2βy2fxx + 1

24β2y4fxxxx, (85)

with derivatives

φx = fx − 1
2βy2fxxx + 1

24β2y4fxxxxx,
(86)

φy = −βyfxx + 1
6β2y3fxxxx.

Integrating over y and retaining terms up to fourth order yields

T = 1

2
ρgh2l

∫ +∞

−∞
α2

[
f 2

x + αηf 2
x

+ 1

3
β
(
f 2

xx − fxfxxx

) + αβ
(
ηf 2

xx − ηfxfxxx

)

+β2

(
1

20
f 2

xxx − 1

15
fxxfxxxx + 1

60
fxfxxxxx

)]
dx. (87)

Expression (87) limited to first line gives kinetic energy for
KdV equation, see (36).

Now we use the expression for fx (and its derivatives)
up to second order, see, e.g., Ref. [3, Eq. (2.7)] and Ref. [2,
Eq. (17)]

fx = η − 1
4αη2 + 1

3βηxx + 1
8α2η3

+αβ
(

3
16η2

x + 1
2ηηxx

) + 1
10β2ηxxxx. (88)

Insertion (88) and its derivatives into (87) gives

T = 1

2
ρgh2l

∫ +∞

−∞
α2

[
η2 + 1

2
αη3 + 1

3
β
(
η2

x + ηηxx

)

− 3

16
α2η4 + αβ

(
29

24
ηη2

x + 3

4
η2ηxx

)

+β2

(
1

20
η2

xx + 7

45
ηxηxxx + 19

180
ηηxxxx

)]
dx. (89)

From properties of solutions at x → ±∞ terms with β and
β2 in square brackets vanish and the term with αβ can be

simplified. Finally, one obtains

T = 1

2
ρgh2l

∫ +∞

−∞
α2

[
η2 + 1

2
αη3 − 3

16
α2η4 − 7

24
αβηη2

x

]
dx.

(90)

Then the total energy is the sum of (33) and (90)

Etot = ρgh2l

∫ ∞

−∞

[
αη + (αη)2 + 1

4
(αη)3

− 3

32
(αη)4 − 7

48
α3βηη2

x

]
dx. (91)

The first three terms are identical as in KdV energy
formula (40), the last two terms are new for extended KdV
equation (1).

B. Energy in a fixed frame calculated from Luke’s Lagrangian

Calculate energy in the same way as in Sec. VI, C, but in
one order higher. In scaled coordinates Lagrangian density is
expressed by (63) (here we keep infinite constant term)

L = ρgh2l

{ ∫ 1+αη

0
α

[
φt + 1

2

(
αφ2

x + α

β
φ2

y

)]
dy

+1

2
(1 + αη)2

}
. (92)

From (85) we have

φt = ft − 1
2βy2fxxt + 1

24β2y4fxxxxt . (93)

Inserting (93) and (86) into (92), integrating over y, and
retaining terms up to third order one obtains (constant term
1
2 is dropped)

L

ρgh2l
= α

{
(η + ft ) + α

(
1

2
η2 + ηft + 1

2
f 2

x

)
− 1

2
βfxxt

+1

2
α2ηf 2

x + αβ

(
1

6
f 2

xx − 1

2
ηfxxt − 1

6
fxfxxx

)

+ 1

120
β2fxxxxt + 1

2
α2β

(
ηf 2

xx −η2fxxt −ηfxfxxx

)

+αβ2

(
1

40
f 2

xxx − 1

30
fxxfxxxx + 1

24
ηfxxxxt

+ 1

120
fxfxxxxx

)
− β3 fxxxxxxt

5040

}
. (94)
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The Hamiltonian density

H = ft

∂L

∂ft

+ fxxt

∂L

∂fxxt

+ f(4x)t
∂L

∂f(4x)t
+ f(6x)t

∂L

∂f(6x)t
− L

is

H

ρgh2l
= −αη − 1

2
α2(η2 + f 2

x

)

− 1

2
α3ηf 2

x + α2β

(
− 1

6
f 2

xx + 1

6
fxfxxx

)

+α3β

(
− 1

2
ηf 2

xx + 1

2
ηfxfxxx

)

+α2β2

(
− 1

40
f 2

xxx + 1

30
fxxfxxxx − 1

120
fxfxxxxx

)
.

(95)

Now, we use fx in the second order (88) and its derivatives.
Insertion of these expressions into (95) and retention terms up
to third order yield

H

ρgh2l
= −αη − α2η2 − 1

4
α3η3 + 3

32
α4η4

+α2β

(
− 1

6
η2

x − 1

6
ηηxx

)

+α3β

(
− 29

48
ηη2

x − 3

8
η2ηxx

)

+α2β2

(
− 1

40
η2

xx − 7

90
ηxηxxx − 19

360
ηηxxxx

)
.

(96)

The energy is obtained by integration of (96) over x (using
integration by parts and properties of η and its derivatives at
x → ±∞). Then terms with αβ and αβ2 vanish. The final
result is

E = −ρgh2l

∫ +∞

−∞

[
αη + (αη)2 + 1

4
(αη)3

− 3

32
(αη)4 − 7

48
α3βηη2

x

]
dx, (97)

the same as (91) but with the opposite sign.

C. Energy in a moving frame from definition

Let us follow arguments given by Ali and Kalisch [20,
Sec. 3] and used already in Sec. IV B. Working in a moving
frame one has to replace φx by the horizontal velocity in a
moving frame, that is, φx − 1

α
. Then in a frame moving with

the sound velocity we have

φx = fx − 1

2
βy2fxxx + 1

24
β2y4fxxxxx − 1

α
,

(98)

φy = −βyfxx + 1

6
β2y3fxxxx.

Then the expression under integral over y in (31) becomes (in
the following terms up to fourth order are kept)

(
α2φ2

x + α2

β
φ2

y

)

= 1 − 2αfx + α2f 2
x + y2α2βf 2

xx

+ y2αβfxxx − y2α2βfxfxxx − 1

12
y4αβ2fxxxxx

+ y4α2β2

(
1

4
f 2

xxx − 1

3
fxxfxxxx + 1

12
fxfxxxxx

)
. (99)

After integration over y one obtains

T = 1

2
ρgh2l

∫ +∞

−∞

[
1 + α(η − 2fx) + α2

(−2ηfx + f 2
x

)

+ 1

3
αβfxxx + α3ηf 2

x − 1

60
αβ2fxxxxx

+α2β

(
1

3
f 2

xx + ηfxxx − 1

3
fxfxxx

)

+α3β
(
ηf 2

xx + η2fxxx − ηfxfxxx

) + α2β2

(
1

20
f 2

xxx

− 1

15
fxxfxxxx − 1

12
ηfxxxxx + 1

60
fxfxxxxx

)]
dx.

(100)

Then insertion fx (88) and its derivatives yields

T = 1

2
ρgh2l

∫ +∞

−∞

[
− αη − 1

2
α2η2 − 1

3
αβηxx

+ 3

4
α3η3 − α2β

(
5

24
η2

x + 1

2
ηηxx

)
− 19

180
αβ2ηxxxx

− 7

16
α4η4 + α3β

(
7

12
ηη2

x + 3

8
η2ηxx

)

+ α2β2

(
11

30
η2

xx + 233

360
ηxηxxx + 119

360
ηηxxxx

)

+ 1

36
αβ3ηxxxxxx

]
dx, (101)

where constant term is dropped. Using properties of solutions
at x → ±∞ this expression can be simplified to

T = 1

2
ρgh2l

∫ +∞

−∞

[
− αη − 1

2
α2η2 + 3

4
α3η3 − 7

16
α4η4

+ 7

24
α2β η2

x + 1

12
α3β ηη2

x + 1

20
α2β2η2

xx

]
dx. (102)

Then the total energy is

Etot = ρgh2l

∫ +∞

−∞

[
1

2
αη + 1

4
α2η2 + 3

8
α3η3 − 7

32
α4η4

+ 7

48
α2β η2

x + 1

24
α3β ηη2

x + 1

40
α2β2η2

xx

]
dx. (103)
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In the special case α = β this formula simplifies to

Etot = ρgh2l

∫ +∞

−∞

[
1

2
αη + 1

4
α2η2 + α3

(
3

8
η3 + 7

48
η2

x

)

+α4

(
− 7

32
η4 + 1

24
ηη2

x + 1

40
η2

xx

)]
dx. (104)

D. Energy in a moving frame from Luke’s Lagrangian

Here we follow considerations presented in Sec. VI but
with KdV2 equation (1). Transforming into the moving frame
through (72) we have now

φ = f − 1
2βy2fx̄x̄ + 1

24β2y4fx̄x̄x̄x̄ , (105)

φx = fx̄ − 1
2βy2fx̄x̄x̄ + 1

24β2y4fx̄x̄x̄x̄x̄ , (106)

φy = −βyfx̄x̄ + 1
6β2y3fx̄x̄x̄x̄ , (107)

φt = −fx̄ + 1
2βy2fx̄x̄x̄ − 1

24β2y4fx̄x̄x̄x̄x̄

+α
(
ft̄ − 1

2βy2fx̄x̄t̄ + 1
24β2y4fx̄x̄x̄x̄t̄

)
. (108)

Inserting (105)–(108) into (92), one obtains the Lagrangian
density in the moving frame as (the constant term 1

2 is dropped
as previously)

L

ρgh2l
= α(η − fx̄) + α2

(
1

2
η2 + ft̄ − ηfx̄ + 1

2
f 2

x̄

)

+ 1

6
αβfx̄x̄x̄ + α3

(
ηft̄ + 1

2
ηf 2

x̄

)
− 1

120
αβ2fx̄x̄x̄x̄x̄

+α2β

(
1

6
f 2

x̄x̄ − 1

6
fx̄x̄t̄ + 1

2
ηfx̄x̄x̄ − 1

6
fx̄fx̄x̄x̄

)

+α3β

(
1

2
ηf 2

x̄x̄ − 1

2
ηfx̄x̄t̄ + 1

2
η2fx̄x̄x̄ − 1

2
ηfx̄fx̄x̄x̄

)

+α2β2

(
1

40
f 2

x̄x̄x̄ − 1

30
fx̄x̄fx̄x̄x̄x̄ + 1

120
fx̄x̄x̄x̄t̄

− 1

24
ηfx̄x̄x̄x̄x̄ + 1

120
fx̄fx̄x̄x̄x̄x̄

)
. (109)

Then the Hamiltonian density

H = ft̄

∂L

∂ft̄

+ fx̄x̄t̄

∂L

∂fx̄x̄t̄

+ fx̄x̄x̄x̄t̄

∂L

∂fx̄x̄x̄x̄t̄

− L (110)

after insertion of (109) into (110) yields

H

ρgh2l
= α

(
− η + fx̄

)
+ α2

(
− 1

2
η2 + ηfx̄ − 1

2
f 2

x̄

)

− 1

6
αβfx̄x̄x̄ − 1

2
α3ηf 2

x̄ + 1

120
αβ2fx̄x̄x̄x̄x̄

+α2β

(
− 1

6
f 2

x̄x̄ − 1

2
ηfx̄x̄x̄ + 1

6
fx̄fx̄x̄x̄

)

+α3β

(
− 1

2
ηf 2

x̄x̄ − 1

2
η2fx̄x̄x̄ + 1

2
ηfx̄fx̄x̄x̄

)

+α2β2

(
− 1

40
f 2

x̄x̄x̄ + 1

30
fx̄x̄fx̄x̄x̄x̄

+ 1

24
ηfx̄x̄x̄x̄x̄ − 1

120
fx̄fx̄x̄x̄x̄x̄

)
. (111)

In order to express (111) by η only we use fx̄ in the form (88)
and its derivatives. It gives

H

ρgh2l
= −1

4
α2η2 + 1

6
αβηx̄x̄ − 3

8
α3η3

+ α2β

(
5

48
η2

x + 1

4
ηηxx

)
+ 19

360
αβ2ηx̄x̄x̄x̄

+ 7

32
α4η4 − α3β

(
7

24
ηη2

x̄ + 3

16
η2ηx̄x̄

)

− α2β2

(
11

60
η2

x̄x̄ + 233

720
ηx̄ηx̄x̄x̄ + 119

720
ηηx̄x̄x̄x̄

)

− 1

72
αβ3ηx̄x̄x̄x̄x̄x̄ . (112)

Then the energy is given by the integral

E = �gh2l

∫ +∞

−∞

[
− 1

4
α2η2 + 1

6
αβηx̄x̄ − 3

8
α3η3

+α2β

(
5

48
η2

x + 1

4
ηηxx

)
+ 19

360
αβ2ηx̄x̄x̄x̄ + 7

32
α4η4

−α3β

(
7

24
ηη2

x̄ + 3

16
η2ηx̄x̄

)
− 1

72
αβ3ηx̄x̄x̄x̄x̄x̄

−α2β2

(
11

60
η2

x̄x̄ + 233

720
ηx̄ηx̄x̄x̄ + 119

720
ηηx̄x̄x̄x̄

)]
dx. (113)

From the properties of solution at infinity, integrals of
terms with αβ,αβ2,αβ3 vanish. Integrals of terms with
α2β,α3β,α2β2 can be simplified. Finally, energy is given by
the following expression:

E = �gh2l

∫ +∞

−∞

[
−1

4
α2η2 − 3

8
α3η3 + 7

32
α4η4

− 7

48
α2βη2

x − 1

24
α3βηη2

x̄ − 1

40
α2β2η2

x̄x̄

]
dx. (114)

In the special case when β = α the result is

E = �gh2l

∫ +∞

−∞

[
− 1

4
α2η2 − α3

(
3

8
η3 + 7

48
η2

x

)

+α4

(
7

32
η4 − 1

24
ηη2

x̄ − 1

40
η2

x̄x̄

)]
dx. (115)

If the invariant term I (1) ≡ ∫
αη dx is dropped in (91)

or (97), then the energy calculated in the moving frame (114)
has the same value but with opposite sign.

E. Numerical tests

1. Fixed frame

In order to check energy conservation for the extended KdV
equation (1) we performed several numerical tests. First, we
discuss energy conservation in a fixed frame. We calculated
time evolution governed by the equation (1) of waves which
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FIG. 4. (Color online) Energy (non-)conservation for the ex-
tended KdV equation in the fixed frame (1). Symbols represent values
of the total energy given by formulas (91) or (97). Full square symbols
represent the invariant I (1).

initial shape was given by one-, two-, and three-soliton
solutions of the KdV (first-order) equations. For presentation
the following initial conditions were chosen. Three-soliton
solution have amplitudes 1.5, 1, and 0.25, two-soliton solution
have amplitudes 1 and 0.5, and the one-soliton solution has
amplitude 1. The changes of energy (calculated in the fixed
frame) presented in Fig. 4 and those calculated in the moving
frame, shown in Fig. 5 are qualitatively the same for different
amplitudes of solitons. An example of such a time evolution
for the three-soliton solution is presented in Fig. 6.

The time range in Fig. 6 contains the initial shape of the
three-soliton solution with almost separated solitons at t = 0,
intermediate shapes, and an almost ideal overlap of solitons at
t = 315. In order to not obscure details, the subsequent shapes
are shifted vertically with respect to the previous ones. Note
the additional slower waves that follow the main one, which
are generated by second-order terms of Eq. (1) and which were
already discussed in Ref. [2].
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FIG. 5. (Color online) Energy (non-)conservation for the ex-
tended KdV equation in the moving frame (116). Symbols represent
values of the total energy given by the formula (103). Full square
symbols represent the invariant I (1).
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FIG. 6. (Color online) Example of time evolution of the three-
soliton solution.

We see that the total energy for waves which move
according to the extended KdV equation is not conserved.
Although energy variations are generally small (in the time
range considered they do not extend 0.001%, 0.004%, and
0.005% for one-, two-, and three-soliton waves, respectively)
they increase with more complicated waves. For additional
check of numerics the invariant I (1) = ∫ +∞

−∞ αη(x,t)dx for
Eq. (1) was plotted as Mass. In spite of approximate
integration the value of I (1) was obtained constant up to 10
digits for all initial conditions.

F. Moving frame

Here we present variations of the energy calculated in a
moving frame. The time evolution of the wave is given by
Eq. (1) transformed with (72), that is,

ηt̄ + 3

2
ηηx̄ + 1

6

β

α
η3x̄ − 3

8
α η2ηx̄

+β

(
23

24
ηx̄η2x̄ + 5

12
ηη3x̄

)
+ 19

360

β2

α
η5x̄ = 0. (116)

The time range of the evolution was chosen for a convenient
comparison with the numerical results obtained in fixed
reference frame, that is, two- and three-soliton waves move
from separate solitons to a fully colliding time instant. The
convention of symbols is the same as in Fig. 4. The energy
is calculated according to the formula (103). In a moving
coordinate system energy variations are even greater than in the
fixed reference frame, because in the time period considered it
approaches values of 0.02%, 0.12%, and 0.2% for one-, two-,
and three-soliton waves, respectively. This increase of relative
time variations of energy cannot be attributed only to two
times smaller leading term ( 1

2αη) in (103) with respect to (91).
Again, in spite of approximate integration the value of I (1) was
obtained constant up to 10 digits for all initial conditions.

1. Conclusions for extended KdV equation

We calculated energy of the fluid governed by the extended
KdV equation (1) in two cases:

(1) In a fixed frame (Secs. VIII A and VIII B).
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(2) In the frame moving with the sound velocity
(Secs. VIII C and VIII D).

In both cases we calculated energy using two methods:
from the definition and from Luke’s Lagrangian. Both methods
give consistent results. For fixed frame energies, (91) and (97)
are the same. For a moving frame the energy calculated
from the definition contains one term more than the energy
calculated from Luke’s Lagrangian, but this term (

∫
αη dx) is

the invariant I (1). When this term is dropped both energies in
the moving coordinate system (103) and (114) are the same
and energies in both coordinate systems differ only by sign.

The general conclusion concerning energy conservation
for the shallow-water wave problem can be formulated as
follows. Since there exists the Lagrangian of the system
(Luke’s Lagrangian), exact solutions of Euler equations have
to conserve energy. However, when approximate equations
of different orders resulting from exact Euler equations are
considered, energy conservation is not a priori determined.
The KdV equations obtained in the first-order approximation
has a miraculous property, an infinite number of invariants
with energy among them. However, this astonishing property
is lost in the second-order approximation to Euler equations
and energy in this order may be conserved only approximately.

APPENDIX A

The simplest, mathematical form of the KdV equation
is obtained from (2) by passing to the moving frame with
additional scaling,

x̄ =
√

3

2
(x − t), t̄ = 1

4

√
3

2
α t, u = η, (A1)

which gives a standard, mathematical form of the KdV
equation

ut̄ + 6 u ux̄ + β

α
ux̄x̄x̄ = 0, or

ut̄ + 6 u ux̄ + ux̄x̄x̄ = 0 for β = α. (A2)

Equations (A2), particularly with β = α, are favored by
mathematicians, see, e.g., Ref. [31]. This form of KdV is the
most convenient for the inverse scattering method, see, e.g.,
Refs. [32–34].

For the moving reference frame, in which the KdV equation
has a standard (mathematical) form (A2), the invariant I (3)

slightly differs. To see this difference denote the left-hand side
of (A2) by KDVm(x,t) and construct

3η2 × KDVm(x,t) − β

α
ηx × ∂

∂x
KDVm(x,t) = 0.

Then after simplifications one obtains

∂

∂t

(
η3 − 1

2

β

α
η2

x

)
+ ∂

∂x

[
9

2
η4 − 6

β

α
ηη2

x

+ 3
β

α
η2ηxx − 1

2

(
β

α
ηxx

)2

+
(

β

α

)2

ηxηxxx

]
= 0, (A3)

which implies the invariant I (3) in the following form:

I
(3)
moving frame =

∫ ∞

−∞

(
η3 − 1

2

β

α
η2

x

)
dx = const or

I
(3)
moving frame =

∫ ∞

−∞

(
η3 − 1

2
η2

x

)
dx = const for β = α.

(A4)

We see, however, that the difference between (A4) and (18) is
caused by additional scaling.

In the Lagrangian approach as described in Sec. V, the
substitution u = ϕx into (A2) gives

ϕxt + 6 ϕxϕxx + ϕxxxx = 0 . (A5)

Then the appropriate Lagrangian density for Eq. (A2) with
(α = β) is

Lstandard KdV := − 1
2ϕtϕx − ϕ3

x + 1
2ϕ2

xx . (A6)

Indeed, the Euler-Lagrange equation obtained from the La-
grangian (A6) is just (A5).

The Hamiltonian for KdV (A2) can be found, e.g., in
Ref. [35]. Defining generalized momentum π = ∂L

∂ϕt
, where

L is given by (A6), one obtains

H =
∫ ∞

−∞
[πϕ̇ − L]dx =

∫ ∞

−∞

[
∂L
∂ϕt

ϕt − L
]
dx

=
∫ ∞

−∞

[
ϕ3

x − 1

2
ϕ2

xx

]
dx =

∫ ∞

−∞

[
η3 − 1

2
η2

x

]
dx . (A7)

This is the same invariant as I
(3)
moving frame in (A4).

APPENDIX B

The set of Euler equations for irrotational motion of an
incompressible and inviscid fluid can be written (neglecting
surface tension) in dimensionless form:

∇2φ = 0, (B1)
φz = 0 on z = 0, (B2)

ηt + φxηx − φx = 0 on z = 1 + η, (B3)

φt + 1
2

(
φ2

x + φ2
z

) + η = 0 on z = 1 + η. (B4)

We look for solutions to the Laplace equation (B1) in the
form

φ =
∞∑

n=0

zn f (n)(x,y,t), (B5)

yielding

∞∑
n=0

[n(n − 1)zn−2 f (n) + zn∇2f (n)] = 0. (B6)

In two dimensions (x,z) we obtain

f (n+2) = −1

(n + 1)(n + 2)

∂2f (n)

∂x2
. (B7)
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The boundary condition at the bottom, φz = 0 at z=0, implies
f (1) = 0 and then all odd f (2k+1) = 0. Now

φ =
∞∑

n=0

(−1)m
z2m

(2m)!

∂2mf

∂x2m
, (B8)

where f := f (0). In the stretched coordinates ∂2
x = ε∂2

ξ so

φ = ε
1
2

[
f +

∞∑
n=0

(−1)m
z2m

(2m)!

(
ε∂2

ξ

)2m
f

]
. (B9)

Now both (B1) and (B2) are satisfied. We must also satisfy the
boundary conditions on z = 1 + η.

In the derivation of KdV and Kadomtsev-Petiashvili [24]
from the Euler equations (B1)–(B4) Infeld and Rowlands [21]
applied scaling assuming the following relations:

wavelength : depth : amplitude as ε−1/2 : 1 : ε.

They then applied a transformation to a frame mov-
ing with the velocity of sound. The coordinates scale

as

ξ = ε
1
2 (x − t), τ = ε

3
2 t, (B10)

∂t = −ε
1
2 ∂ξ + ε

3
2 ∂τ , ∂x = ε

1
2 ∂ξ . (B11)

For the wave amplitude and velocity potential the appropriate
scaling was

η = εη(1) + ε2η(2) + . . . (B12)

and

φ = ε
1
2 φ(1) + ε

3
2 φ(2) + . . . . (B13)

Then the lowest-order expression for φ is

φ ≈ ε
1
2 f − ε

3
2
z2

2
fξξ . (B14)

Next, Infeld and Rowlands show that in order to simultane-
ously satisfy (B3) and (B4) the next order contributions to η

and φ cancel. It is enough to keep

1 + η = 1 + εη(1) and φ = ε
1
2 φ(1) (B15)

and drop the upper index (1) in what follows.
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