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Energy invariant for shallow-water waves and the Korteweg—de Vries equation:
Doubts about the invariance of energy
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It is well known that the Korteweg—de Vries (KdV) equation has an infinite set of conserved quantities. The
first three are often considered to represent mass, momentum, and energy. Here we try to answer the question of
how this comes about and also how these KdV quantities relate to those of the Euler shallow-water equations.
Here Luke’s Lagrangian is helpful. We also consider higher-order extensions of KdV. Though in general not
integrable, in some sense they are almost so within the accuracy of the expansion.

DOI: 10.1103/PhysRevE.92.053202

I. INTRODUCTION

There exists a vast number of papers dealing with the
shallow-water problem. Aspects of the propagation of weakly
nonlinear, dispersive waves are still being studied. Last year
we published two articles [1,2] in which Korteveg—de Vries—
(KdV) type equations were derived in weakly nonlinear,
dispersive, and long-wavelength limits. The second-order
KdV-type equation was derived. The second-order KdV
equation [3,4], sometimes called the “extended KdV equation,”
was obtained for the case with a flat bottom. In derivation of
the new equation we adapted the method described in Ref. [4].
In Ref. [2], an analytic solution of this equation in the form of
a particular soliton was found as well.

It is well known, see, e.g., Ref. [5-8], that for the KdV
equation there exists an infinite number of invariants, that is,
integrals over space of functions of the wave profile and its
derivatives, which are constants in time. Looking for analogous
invariants for the second-order KdV equation we met with
some problems even for the standard KdV equation (which is
of first order in small parameters). This problem appears when
energy conservation is considered.

In this paper we reconsider invariants of the KdV equation
and formulas for the total energy in several different ap-
proaches and different frames of reference (fixed and moving
ones). We find that the invariant /®, sometimes called the
energy invariant, does not always have that interpretation. We
also give a proof that for the second-order KdV equation,
obtained in Refs. [1-4], f fooo n*dx is not an invariant of motion.

There are many papers considering higher-order KdV-type
equations. Among them we would like to point out the
works of Byatt-Smith [9], Kichenassamy and Olver [10],
Marchant [3,11-14], Zou and Su [15], Tzirtzilakis et al. [16],
and Burde [17]. It was shown that if some coefficients of
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the second-order equation for shallow water problem (1)
differ or zero, then there exists a hierarchy of solition
solutions. Kichenassamy and Olver [10] even claimed that
for the second-order KdV equation solitary solutions of
appropriate form cannot exist. This claim was falsified in our
paper [2] where the analytic solution of the second-order KdV
equation (1) was found. Concerning the energy conservation
there are indications that collisions of solitons [18,19] which
are solutions of higher-order equations of KdV type can be
inelastic [15,16].

The paper is organized as follows. In Sec. II several
frequently used forms of KdV equations are recalled with
particular attention to transformations between fixed and
moving reference frames. In Sec. III the form of the three
lowest invariants of KdV equations is derived for different
forms of the equations. In Sec. IV we show that the energy
calculated from the definition H = T + V has no invariant
form. Section V describes the variational approach in a
potential formulation which gives a proper KdV equation
but fails in obtaining second-order KdV equations. In the
next section the proper invariants are obtained from Luke’s
Lagrangian density. Section VII summarizes conclusions on
the energy for the KdV equation. In Sec. VIII we apply the
same formalism to calculate energy for waves governed by the
extended KdV equation (second order). We found that energy
is conserved neither in the fixed coordinate system nor in the
moving frame.

II. THE EXTENDED KDV EQUATION

The geometry of shallow water waves is presented in Fig. 1.

In Refs. [1,2] we derived an equation, second order in
small parameters, in the fixed reference system and with
scaled nondimensional variables containing terms for bottom
fluctuations. They will not be considered here.

For a flat bottom that equation reduces to the second-order
KdV-type equation, identical with Ref. [4, Eq. (21)] for 8 = «,
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FIG. 1. (Color online) Schematic view of the geometry.

that is,
ne+ s o dnne + B ins + o (= 3n'nx)
+oB (Bnemae + S03:) + B asnsy = 0. (1)

Subscripts denote partial differentiation. Small parameters «, 8
are defined by ratios of the wave amplitude a, the average water
depth £, and mean wavelength /,

_a _ n\?
a—z, ﬂ—(;)

Equation (1) was earlier derived in Ref. [3] and called “the
extended KdV equation.”

Limitation to the first order in small parameters yields the
KdV equation in a fixed coordinate system

me+ne +a 3nne + B Lz = 0. )
Transformation to a moving frame in the form

allows us to remove the term 7, in the KdV equation in a frame
moving with the velocity of sound \/g#h,

7 + & 3717x + B ¢iiax = 0. (4)

The explicit form of the scaling leading to equations (1)—(4) is
given by (29).

Problems with mass, momentum, and energy conservation

in the KdV equation were discussed in Ref. [20] recently. In

this paper the authors considered the KdV equations in the
original dimensional variables. Then the KdV equations are

fem 2+ =0 (5)
T)z C’?x 2 ]’l T)’?x 6 nxxx -
in a fixed frame of reference and
3 h?
c c _0 ©)

Un + Eznnx + ?nxxx

in a moving frame. In both, ¢ = \/gh, and (6) is obtained
from (5) by setting x’ = x — ¢t and dropping the prime sign.

In our present paper we discuss the energy formulas
obtained both in fixed and moving frames of reference for
KdV (2),(4), (5), and (6). There seem to be some contradictions
in the literature because the form of some invariants and the
energy formulas differ in different sources because of using
different reference frames and/or different scalings. In this
paper we address this problems.
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The second goal is to present some invariants for a KdV-type
equation of the second order (1).

III. INVARIANTS OF KDV-TYPE EQUATIONS

What invariants can be attributed to equations (1)—(2)
and (5)—(6)?
It is well known, see, e.g., [7, chap. 5], that an equation of
the form
or 90X
a - ax
where neither 7 (an analog to density) nor X (an analog
to flux) contain partial derivatives with respect to ¢, cor-
responds to some conservation law. It can be applied, in
particular, to KdV equations (where there exist an infinite
number of such conservation laws) and to the equations
of KdV-type like (1). Functions 7 and X may depend on

X,t,0,0x,02xs - - - , Ay, ..., but not on n,. If both functions
T and X, are integrable on (—oo,00) and lim X = const

x—+o00

(soliton solutions), then integration of Eq. (7) yields

d o0 o0
— </ T dx) =0 or / T dx = const, ®)
dt —00 —00

/'00 X, dx = X(co,t) — X(—00,t) = 0. )

o0

0, )

since

The same conclusion applies for periodic solutions (cnoidal
waves), when in the integrals (8) and (9) limits of integration
(—00,00) are replaced by (a,b), where b — a = A is the space
period of the cnoidal wave (the wavelength).

A. Invariants of the KdV equation

For the KdV equation (2) the two first invariants can be
obtained easily. Writing (2) in the form

A O o 1,3 0 (10)
o, a_ —o = XX =Y,
or ax \I T g% TGl

one immediately obtains the conservation-of-mass (volume)
law

o0
M =/ ndx = const. (11)

Similarly, multiplication of (2) by 1 gives

3 (1 3 (1, 1 1 1
<—n2) + —<—n2 + 5o’ — B + gﬂnnu) =0,

ar\2 ax\2"' "2
(12)
resulting in the invariant of the form
[e.¢]
[P = f n? dx = const. (13)

In the literature of the subject, see, e.g., Refs. [7,20], I? is
attributed to momentum conservation.

Invariants I, 7@ have the same form for all KdV
equations (2), (4), (A2), (5), and (6).
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Denote the left-hand side of (2) by KDV(x,¢) and take
28 d
3n% x KDV(x,1) — ——Ux X a—KDV(x ,1). (14)
The result, after simplifications, is
a( 5 18,
ot (77 3a

182,

8

+ 18 1B

BT M T 5
Then the next invariant for KdV in the fixed reference frame (2)
is

3 (9 1
+ —( san' + = Bnn® — Buin + 1’
0x 2

ni) =0. (15)

[ 1/3
Iﬁ?{ld frame — ‘/7 (’7% - gan)%)dx = const. (16)

o]

The same invariant is obtained for the KdV in the moving
frame (4). The same construction like (14) but for Eq. (4)
results in

(5, 1P 9
at(” 3a"">+ax<8a" + ﬁnzm

1 p? 182
’ 2~ g | = 0. (17)
9«
Then the next invariant for KdV equation in the moving

reference frame (4) is

o 1
= / <n3 — —éni)dx = const. (18)
0 3a

The procedure similar to those described above leads to
the same invariants for both Egs. (5) and (6) where KdV
equations are written in dimensional variables. To see this, it is
enough to take 3n? x kdv(x,t) — 3h*Lkdv(x,t) = 0, where
kdv(x,t) is the left-hand side of e1ther (5) or (6). For Eq. (5)
the conservation law is

9 (5 W 9 ( 5 9 , 1 5,
= _ i _ 254 Zon
a;(” 3”")+ax(” et T

/®

moving frame

1 1 1
+§ch2n2n“ + I—Schsnfx - §ch5nxnm> =0, (19

whereas for Eq. (6) the flux term differs:

d n d (9c 1
_n 9 ch2nn? + —ch2n?
o7 <n 3 nx) + (8hn M+ S e

1 1
+1_86h577)25x - §Ch5nxnxxx) =0. (20)

But in both cases the same I invariant is obtained as

3 o n?
Icgirzlensional = / (713 - ?ni>dx = const. 2n

oo

1. Conclusion

Invariants /® have the same form for fixed and moving
frames of reference when the transformation from fixed to
moving frame scales x and ¢ in the same way (e.g., x' = x — ¢
and t' = t). When scaling factors differ, like in (A1), then the
form of I®® in the moving frame differs from the form in the
fixed frame, see Appendix A.
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For those solutions of KdV which preserve their shapes
during the motion, that is, for cnoidal solutions and single
soliton solutions, integrals of any power of n(x,7) and any
power of arbitrary derivative of the solution with respect to x
are invariants. That is,

[e.¢]
ren = / (Mnx)*dx = const, (22)
—00

where n = 0,1,2, ..., and a € R is an arbitrary real number.
Then an arbitrary linear combination of 7¢™ is an invariant
as well.

B. Invariants of the second-order equations

Can we construct invariants for KdV-type equations of the
second order? Let us try to take 7 = n for Eq. (1). Then we
find that all terms, except n;, can be written as X, as

/ TP M R IPY (
X o= x ~3x o Y X
n 5 g 8nn

23 5
+ap 34 T2 + RS + ﬂ nsx dx

+3 2—1-15 1,
= —a —Bnay — oy
n 477 6772 3 n

tap 132+5 +19,32 23)
af| — — NNy — x-
48 T M ) T 3608
As (23) depends on 1 and space derivatives and also since all
those functions vanish when x — 400, the conservation law
for mass (volume),

/ n(x,t)dx = const, 24)
—00
holds for the second-order equation.

Until now we did not find any other invariants for the
second-order equations. Moreover, we can show that the
integral 1® (13) is no longer an invariant of the second-order
KdV equation (1).

Upon multiplication of Eq. (1) by n one obtains

IR RPN WS DY I
= —| — ] = —Qan — —_ = X
ar\ 2" )T x| 2 TR TP\ T QT

3 54 19 1
- 320[ n 360ﬂ < 77” — NxM3x + 77’74)()
5 2 1
+ —=aBnnu | + gaf nnan. (25)
12 8
The last term in (25) cannot be expressed as %X(n,nx, c).

Therefore f_’:;o n*dx is not a conserved quantity.

IV. ENERGY

The invariant I® is usually referred to as the energy
invariant. Is this really the case?

A. Energy in a fixed frame as calculated from the definition

The hydrodynamic equations for an incompressible, invis-
cid fluid, in irrotational motion and under gravity in a fixed
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frame of reference, lead to a KdV equation of the form

iz + iz + o 3771z + B §7az = 0. (26)
‘We will find the function
fr =i — Lai® + 1B, (27)

obtained as a by-product in derivation of KdV, useful in what
follows. For more details see Appendix B or Ref. [21, chap.
5]. Tildes denote scaled dimensionless quantities.

Now we construct the total energy of the fluid from the
definition. The total energy is the sum of potential and kinetic
energy. In our two-dimensional system the energy in original
(dimensional coordinates) is

+o00 h+n 2
E:T—i—V:/ (/ ﬂdy>dx
oo 0 2
+00 h+n
+f (/ pgydy)dx. (28)
—00 0

Equations (26) and (27) are obtained after scaling [1,2,4].
We now have dimensionless variables, according to

b h 6 i X  _ n
= —0, X = -, = —,
la/gh 1Ty
I t
=2, f=—— 29
YT 1/\/eh @
and
400 1+ad
V= pgh2z/ / pydydx, (30)
—00 0
1 +00 1+afn 5 0[2 ~
T = —pghzlf / <a2¢§ + —¢§> dydi. (31)
2 —oco JO :3 :

Note that the factor in front of the integrals has the dimension
of energy.

In the following, we omit signs ~, having in mind that
we are working in dimensionless variables. Integration in (30)
with respect to y yields

1 o0
V= 5ghzzpf (@®n* 4 2an + 1) dx

1 o0 o0
= 5ghzzp[/ (a2n2+2an)dx+/ dx:|. (32)
—0oQ —0Q0

After renormalization (substraction of constant term ffooo dx)
one obtains

1 o0
V= 5ghzlpf (&’n® 4+ 2an)dx. (33)
—0Q

In kinetic energy we use the velocity potential expressed in
the lowest (first) order

Or = fou— %ﬁyzfxxx and ¢y = —BYfx, (34)
where f, was defined in (27). Now the bracket in the
integral (31) is

2
(azqsﬁ + %W) =[£I+ BY* (= fiforx + F2)]- 35)
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Integration with respect to the vertical coordinate y gives, up
to the same order,

1 ~+00
T = —pghzl/ a2|:fx2(1 +an)
2 —o0

1
+ﬂ(_fxfxxx + fxzx)g(l + O”))3i|dx

1 2 oo 2 2 2 1 2
= ngh l/;QQ o |:fx "‘afx’l‘f‘gﬂ(f” _fxfxxx)i|d-x-

(36)

In order to express energy through the elevation funcion n we
use (27). We then substitute f, = n in terms of the third order
and f2=n*— %an3 + %,37777” in terms of the second order

T hzz/+<>02 2_1 3+2ﬂ
= ng . (o4 n 20”7 3 NMxx

1
+an® + gﬂ(ni - nnxx)]dx

1 +oo 1
= —,oghzl oz2|:/ (172 + —om3>dx
2 oo 2

+00 1 5
+ K 5.3(77;( + ﬂﬁxx)dX]~ 37

o0

The last term vanishes as

+00 +00 +00
/ (77)25 + nnxx)dx = / n,%dx + me|f§ — / 77)2ch

o0 —00 [e¢]

—0. (38)

Therefore the total energy in the fixed frame is given by

o]

Eq=T+V = pghzlf

—00

2 1 3
[an + (o) + Z((xn) ]dx

1 1 00

= pgh’l a1(1)+a21(2)+—a21(3)+—052.3/ ny dx).
4 12" ")

(39)

The energy (39) in a fixed frame of reference has noninvariant
form. The last term in (39) results in small deviations from
energy conservation only when 7, changes in time in the
soliton’s reference frame, which occurs only during soliton
collision. These deviations are discussed and illustrated in
Sec. VIE.

The result (39) gives the energy in powers of n only. The
same structure of powers in  was obtained by the authors of
Ref. [20], who work in dimensional KdV equations (5) and (6).
On page 122 they present a nondimensional energy density £
in a frame moving with the velocity U. Then, if U = 0 is set,
the energy density in a fixed frame is proportional to an + o*>n?
as the formula is obtained up to second order in «. However,
the third-order term is o*n?, so the formula up to the third
order in @ becomes

E ~an+a’n* + %a3n3. (40)

This energy density contains the same terms like (39) and also
does not contain the term ,>.
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Energy calculated from the definition does not contain a
proper invariant of motion.

B. Energy in a moving frame

Now consider the total energy according to (28) calculated
in a frame moving with the velocity of sound ¢ = \/gh.
Using the same scaling (29) to dimensionless variables we
note that in these variables ¢ = 1. As pointed by Ali and
Kalisch [8, Sec. 3] working in such a system one has to

replace ¢, by the horizontal velocity in a moving frame,
. T ~ ~ 2 ~

that is, by ¢z — é = aff — i%om2 +,B(% — S )ixx - é Then

repeating the same steps as in the previous subsection yields

the energy expressed by invariants,

°r 1 _ 1 _ 1 o(. 1B. i
Etot:Pghzlf_ooI:—Ean+z(0177)2+5013(773—g;nﬁ)]dx

1 1 1
= pgh21< - 5od“) + Zazl(z) + 5oﬂl@). (41)
The crucial term — 4?8 72 in (41) appears due to integration

over the vertical variable of the term gﬁﬁ supplied by

(P — D)%

V. VARIATIONAL APPROACH

A. Lagrangian approach, potential formulation

Some attempts at the variational approach to shallow-water
problems are summarized in G. B. Whitham’s book [22,
Sec. 16.14].

For KdV as it stands, we cannot write a variational principle
directly. It is necessary to introduce a velocity potential. The
simplest choice is to take n = ¢,. Then Eq. (2) in the fixed
frame takes the form

Oxt + Qrx + %agox‘/)xx + éﬂ(pxxxx =0. (42)
The appropriate Lagrangian density is
1 1 o B
»Cxe tame +— — & x__2__3 _2- 43
fixed f 291 T 59 T O 5% 43)

Indeed, the Euler-Lagrange equation obtained from La-
grangian (43) is just (42).

For our moving reference frame the substitution n = @,
into (4) gives

xt + %a¢x(pxx + éﬁ(pxxxx =0. (44)
So the appropriate Lagrangian density is
1 o B
ACmoving frame = _Eﬁpt(px - Zwi + E‘p)%x . (45)

Again, the FEuler-Lagrange obtained from

Lagrangian (45) is just (44).

equation

B. Hamiltonians for KdV equations in the potential formulation

The Hamiltonian for the KAV equation in a fixed frame (2)
can be obtained in the following way. Defining general-

ized momentum 7 = g—£ where £ is given by (43), one

¢’
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obtains
o0 * I o B

H= ) — Lldx = o+ —) — —¢l |d
/_Oo[w ldx f_w[2¢x+4¢x 1o P [9X

OO 1 2 1 3 IB 2
- S+ a0t = 202 ) |ax
/_00[2'7 +4°‘<'7 30 ) |

The energy is expressed by invariants 7®, 1™ soitis a constant
of motion.
The same procedure for KdV in a moving frame (4) gives

_ o0 . _ [ee) g 3_£ )
H—[w[nw E]dx—/oo[4<px lzwxx}dx

(46)

1 o0
_ 1y / (nS _ ﬁni)dx. 47)
4 J_ o 3
The Hamiltonian (47) only consists 1),
The constant of motion in a moving frame is
E = jTI(3) = const. (48)

The potential formulation of the Lagrangian, described
above, is successful for deriving KdV equations both for
fixed and moving reference frames. It fails, however, for
the second-order KdV equation (1). We proved that there
exists a nonlinear expression of L£(¢;,@y,@xx, - ..), such that
the resulting Euler-Lagrange equation differs very little from
Eq. (1). The difference lies only in the value of one of the
coefficients in the second-order term o8 (% NxNax + ]—Szmm).
Particular values of coefficients in this term also cause the lack
of the I® invariant for second-order KdV equation [see (25)].

VI. LUKE’S LAGRANGIAN AND KDV ENERGY

The full set of Euler equations for the shallow-water
problem, as well as KdV equations (2), (A2), and second-
order KdV equation (1), can be derived from Luke’s La-
grangian [23], see, e.g., Ref. [3]. Luke points out, however,
that his Lagrangian is not equal to the difference of kinetic
and potential energy. Euler-Lagrange equations obtained from
L =T —V do not have the proper form at the boundary.
Instead, Luke’s Lagrangian is the sum of kinetic and potential
energy supplemented by the ¢, term which is necessary in
dynamical boundary conditions.

A. Derivation of KdV energy from the original Euler equations
according to Ref. [21]

In chapter 5.2 of the Infeld and Rowlands book the authors
present a derivation of the KdV equation from the Euler
(hydrodynamic) equations using a single small parameter €.
Moreover, they show that the same method allows us to derive
the Kadomtsev-Petviashvili (KP) equation [24] for water
waves [25-28] and also nonlinear equations for ion acoustic
waves in a plasma [29,30]. The authors first derive equations of
motion and then construct a Lagrangian and look for constants
of motion. For the purpose of this paper and for comparison
to results obtained in the next subsections it is convenient to
present their results starting from Luke’s Lagrangian density.
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That density can be written as (here g = 1)

1+n 1
L= f |:¢t + 5((]5)% + ¢72) + Zi|dZ. (49)
0

In Chapter 5.2.1 of Ref. [21] the authors introduce scaled
variables in a moving frame (¢ plays a role of small parameter
and if ¢ = o = B, then the KdV equation is obtained). Then
(for details, see Appendix B or Ref. [21, Chapter 5.2])

2
3 2Z
.= —e22fee, Pr=¢efs —¢ Efsss,

ér

2 2
z z
—&fs + 82<fr + 7]%55) - 837.}%517 (50)

where & = s%(x —t)and T = g>t. Substitution of the above
formulas into the expression [ ] under the integral in (49) gives

1 2
l=z—c¢fs + 52(fr + zfgz + %fsss)

+e —[ feer + (f — fefese) | + 0" (51

Note that the full Lagrangian is obtained by integration of
the Lagrangian density (49) with respect to x. Integration
limits are (—o0,00) for a soliton solutions, or [a,b], where
b — a = X — wavelength (space period) for cnoidal solutions.
Integration by parts and properties of the solutions at the
limits, see (9), allow us to use the equivalence f ( fés

fe feeo)dé = [0 2 fZ.dE.

Therefore
2 [ Z
[l=z—¢fs+¢ fr-f-zfs-i-?fggg

+e —2[ feer + 215 ]+ O(e™). (52)
Integration over y gives (note that 1 +n = 1+ ¢n)
L= 50 +en’+ U +en[—efe +(fe + 5 /7)]
+ 30+ ey [36° feee — 38 feee + €[] (53)
We write (53) up to third order in ¢,
L=LO+eLV+2LP + LY + 0(eY).
It is easy to show that
LO=3 LV =n-f,
L = fi + 30" —nfe + 3 7 + & feee (54)
LY = nfe + 3nfe + 5nfece — ¢ feer + 5 i

The Hamiltonian density reads as

JdL JL
fraf fssrafgt

1 (1, 1, 1
- §+8(77—fs)+8 oK —Ufs+§fg +gfss€

H

+ &’ lfz-‘rlf v lp 55)
2’75 277 1333 3fgg . (
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Dropping the constant term one obtains the total energy as

&0 1 1 1
&= /_ [8(77 —fo+ 82<§772 —nfe + zfgz + gfsés>

v (Snf2 4 Snfeee + 2 f3) |d 56)
S0e + Snfess 3fgg §. (

Now we need to express f and its derivatives by 1 and its
derivatives. We use (27) replacing « and 8 by ¢, that is,

fe=n—ten® + Leng. (57)

Then the total energy in a moving frame is expressed in
terms of the second and the third invariants,

PR s (%5 1,
Sz—sZ ndx+8§ ”_§”S dx|. (58)
—00 —00

Note that the term %7@ occurring in the third-order invariant

originates from three terms appearing in ¢2, ¢7, and ¢, [see

terms fege and fege in (50)].

B. Luke’s Lagrangian
The original Lagrangian density in Luke’s paper [23] is

h(x) 1
L= /0 p[¢, + (07 +97) + gy}dy. (59)

After scaling as in Refs. [1,2,4],

. h L X . Yy !
¢=W¢s t=7 di=- V=2 ZZW,
(60)
we obtain
2
¢ = ghadr, @ =gha® 2, ¢2=gh—F2  (61)

B

The Lagrangian density in scaled variables becomes (dy =
hdy)

. N 14+an B ~2 o,
= pg a/O |:¢t <¢,€ g¢y>i|
1 2 2
+5gh*(1+an)”. (62)

So, in dimensionless quantities,

L —flm 5+ a2+ 25 a5 + Larr. 63)
pgha )y FTR\FH T g ® ) [T

where the constant term and the term proportional to 7 in the
expansion of (1 + an)? are omitted. The form (63) is identical
with Eq. (2.9) in Marchant and Smyth [3].

The full Lagrangian is obtained by integration over x. In
dimensionless variables (dx = [ dX) it gives

feE [e9) 1+4an - 1 s o -, . 1 51,
= °/m[/o [@*z(“"’”z"’f)} A }’x-

(64)

The factor in front of the integral, Ey = pghal = pghzl o, has
the dimension of energy.
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Next, the tildes will be omitted, but we have to remember
that we are working in scaled dimensionless variables in a
fixed reference frame.

C. Energy in the fixed reference frame

We express the Lagrangian density by 7 and f = ¢©. Now,
up to first order in small parameters,

¢=f =3BV ferr &= fi = 3BY fem.
$x = fr = 5B fuxr: 5 = —BYfux.
Then the expression under the integral in (63) becomes
(0= fi = 3BV’ four + 502 + 30BY* (= fe foer + fXZX)(66)

From properties of solutions at the limits (— f; furx + f2) =
22 . Integration of (66) over y yields

L
pgha

(65)

_ 1 2\ 1 1 | 3
—(ﬁ+§afx>( +an)_§ﬂfxm§( +an)

2 1 3 1 2

The dimensionless Hamiltonian density is
(ftg—é + fxxt% - L)
H

o L2 b amy +aprt L+ any + e
pgh?l 27 >3 277 |
(68)

Again, we need to express the Hamiltonian by n and its
derivatives only. Inserting

fe=n—z00" + 3B (69)
into (68) and leaving terms up to third order, one obtains
H 2 Ly s 1 2
- —_ - — o) |- (70
el a%n+4an+3M@me) (70)
The energy is
E > 2 Lys 1 2
5 — - : = xx d
pgh?l a/w[w7+4a"+damm+"") *
oo 1 o
= —[a2/ n>dx + —a3/ n3dxi| (71)
—0Q 4 —0o0

since the integral of the of term vanishes. Here, in the
same way as in calculations of energy directly from the
definition (40), the energy is expressed by integrals of 1 and
n°. The term proportional to o is not present in (71) because
it was dropped earlier [3].

D. Energy in a moving frame

Transforming into the moving frame

f=at, 9, =0, 0 =—0z+ad ((72)

¢ =f — 3BV fir, bx = fr — 3B frrr, &y = —BVfix,
(73)

¢ = —fr + 3BV frrx +a(fi — 1BV frmr). (79

PHYSICAL REVIEW E 92, 053202 (2015)

Up to second order

1 1
z(afﬁf + gfﬁi) = [Olfxz + “ﬂyz(—fxfxm + fxz)z)]

B 2
= %afé + By [ (75)
Therefore the expression under the integral in (63) is
[1 = —fz + 3BV frze + (fi — 38" foxt)
+Laf? +apy’ £l 76)

Integration yields

L
pgha

1 2 1 3
= <—fx +off + Eaf;)(l +an) + 5(1 +an)

1 2 [
X |:§,3(fxxx — fee?) + ‘Xﬁff{| +§0”7 . (77)

Like in (68) above, the Hamiltonian density is

u fo+3af2) (4 an + 1(1+any
—— =—af| — fi + zof; o = o
pah?l 2 %= T3 7

1 2 L,
X Eﬂfﬁi + aﬂfjf + 50”7 . (78)
Expressing f; by (69) one obtains
H | 1,5
povETi a[ 7on +-3ﬁnu Tl
1, 5 1,
vy — J/7Mxx | T 7o xxxx |- 79
-+aﬂ( AT M ) LA } (79)
Finally, the energy is given by
E 1 [ 1 [* 1
= az—/ n>dx +a3—/ n — —éni dx

pgh?l 4 J)_ o 2 J 3a

(80)

since integrals from terms with 8,82 vanish at integration
limits, and —15—21777” = 15—277)2( The invariant term proportional
to an is not present in (80) because it was dropped in (63). If we
include that term, then the total energy is a linear combination
of all three lowest invariants, /", 7® 13,

An almost identical formula for the energy in a moving
frame, for KdV expressed in dimensional variables (6), was
obtained in Ref. [20]. That energy is expressed by all three
lowest-order invariants,

1 [e%e} 1 2 (o]
E:——CZ/ ndx—i——c— n° dx
2 J_owo 4 h J_o

1C2 00 3 h3 5
- ——n’)d
+2h2foo(" 3m) x,

as well. Translation of (81) to nondimensional variables yields

81)

Eo= Qghzl(—%al(l) + }Tazl(z) + %a31(3)).

E. How strongly is energy conservation violated?

The total energy in the fixed frame is given by Eq. (40).
Taking into account its nondimensional part we may
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t

FIG. 2. (Color online) Precision of energy conservation for three-
soliton solution. Energies are plotted as open circles (E£;) and open
squares (E,) for 40 time instants.

write
T+V (™ 1
E(t) = W = /_DO |:0“7 + (an)” + 1(0“7) dx
1 o0
=l 4?1 4 —/ (an)’dx. (82)
4)

In order to see how much the changes of E; violate energy
conservation we will compare it to the same formula but
expressed by invariants

Ex(t)=alV +o?1? + 1’19, (83)

The time dependence of E and E; is presented in Fig. 2 for
a three-soliton solution of KdV (2). Presented is time evolution
in the interval ¢t € [—12,0]. The shape of the three-soliton
solution is presented only for three times t = —12, — 6,0 in
order to show shapes changing during the collision.

For presentation the example of a three-soliton solution with
amplitudes equal to 1.5, 1.0, and 0.5 was chosen. In Fig. 3 the

14 t=-12 — |4
t=-6

1.2 1
t= Q seeeeeeen

= 08} ]
2 .
S i
06 1
0.4 .
02| \ / .
O 1 L A->"J L -""- A
50 40 30 20 -10 0 10 20

X

FIG. 3. (Color online) Shape evolution of three-soliton solution
during collision.
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positions of solutions at given times were artificially shifted
to set them closer to each other. The plots in Figs. 2 and 3 for
t > 0 are symmetric to those which are shown in the figures.

For this example the relative discrepancy of the energy E;
from the constant value is very small

sp o F1l=—12)— Ext =0)
Et =—12)

~ (0.000258. (84)

However, the E, energy is conserved with numerical precision
of 13 decimal digits in this example. In a similar example with
a two-soliton solution (with amplitudes 1 and 0.5) the relative
error (84) was even smaller, with the value § E =~ 0.00014.
This suggests that the degree of nonconservation of energy
increases with n, where n is the number of solitons in the
solution.

VII. CONCLUSIONS FOR KDV EQUATION

The main conclusions can be formulated as follows:

(1) The invariants of KdV in fixed and moving frames have
the same form. (Of course when we have the same scaling
factor for x and ¢ in the transformation between frames).

(ii)) We confirmed some known facts. First, that the usual
form of the energy H = T + V is not always expressed by
invariants only. The reason lies in the fact, as pointed out
by Luke in Ref. [23], that the Euler-Lagrange equations
obtained from the Lagrangian L = T — V do not supply the
right boundary conditions. Second, the variational approach
based on Luke’s Lagrangian density provides the right Euler
equations at the boundary and allows for a derivation of the
higher-order KdV equations.

(iii) In the frame moving with the velocity of sound all
energy components are expressed by invariants. Energy is
conserved.

(iv) Numerical calculations confirm that invariants
ID 1@ 13 in the forms (11), (13), (16), and (18) are exact
constants of motion for two- and three-soliton solutions, both
for fixed and moving coordinate systems. In all performed tests
the invariants were exact up to 14 digits in double precision
calculations.

(v) For the extended KdV equation (1) we have only found
one invariant of motion IV (24).

(vi) The total energy in the fixed coordinate system as
calculated in (40) is not exactly conserved but only altered
during collisions, even then by minute quantities (an order of
magnitude smaller than expected). Details are provided in the
caption to Fig. 2.

A summary of these conclusions can be found in Table 1.

VIII. EXTENDED KDV EQUATION

In this section we calculate an energy formula correspond-
ing to a wave motion governed by second-order equations in
scaled variables, that is the equation (1) for the fixed coordinate
system and the corresponding equation for a moving coordi-
nate system. As previously, we compare energies calculated
from the definition with those Luke’s Lagrangian.
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TABLE 1. Comparison of different energy formulas. Here n® = [ n*dx.
Euler Luke’s Integrals Potential Kdv
equations Lagrangian T+V Lagrangian dimensional®
Fixed frame alV+a2 D4 Lady® @214 1a3n® @I+ 1D+ Lady® @4l ® alD+a2 1D+ Lady®
(39) 7 1) 39) (46) (40)
Moving frame %a21(2>+%a31<3) %azl(z)—i—%oﬁl(” —%al(”—l—iazl(z’—i—%aW@ %al(” —%(xl(l)—i—%al(z)—i—%azlw
(58) (80) 41 (47) (€2))
*Formulas in this column are written in ﬁ.

A. Energy in a fixed frame calculated from definition

Now, instead of (2) we consider the second-order KdV
equation, that is, Eq. (1), which Marchant and Smyth [3]
referred to as “extended KdV.”

In Sec. IV A, total energy of the wave governed by the
KdV equation, that is, Eq. (2) with terms only up to first
order in small parameters, was obtained in (40). In calculation
according to Eq. (1) the potential energy is expressed by the
same formula (32) as previously for the KdV equation. In the
expression for kinetic energy the velocity potential has to be
expanded to second order in small parameters,

¢ =f =3BV fux + 5387V frxnr (85)
with derivatives
b = fo— %ﬁyzfxxx + 2_14,32))4fxxxxxy
12,3 (86)
= _ﬁyfxx + aﬁ y fxxxx-

Integrating over y and retaining terms up to fourth order yields

1 ) +00 )
T = —pgh-l o

[ff +anf?
2 00

1
+_ﬂ(f foxxx)+“ﬁ( f nfxfm)

1 1
+8 (20fxxx - Efxxfxxxx + @fxfxxxxx)}dx- 87)

Expression (87) limited to first line gives kinetic energy for
KdV equation, see (36).

Now we use the expression for f, (and its derivatives)
up to second order, see, e.g., Ref. [3, Eq. (2.7)] and Ref. [2,
Eq. (17)]

fo=n—fon’* + B0 + gotn’
+ap (5 + + 6B N (89)

Insertion (88) and its derivatives into (87) gives

I00xx)

1 +o00 1 1
T = —pghzl/ | n* + san’ + B0 + nnxx)
2 - 2 3

29 3
-2 4 = 2 )
6% +aﬂ<24nnx+ 1" rm)
19

Nx Nxxx + IT:O

1 7
+/3 ( ﬂxx + — nnxxxx):|dx- (89)

45

From properties of solutions at x — oo terms with 8 and
B?% in square brackets vanish and the term with af can be

simplified. Finally, one obtains

1 +oo 1 3
T = —pghzl/ [n +—an’ — =
—00

7
5 5 T a’nt— — ﬂnnx]

(90)

Then the total energy is the sum of (33) and (90)

o0 1
E = pgh’l / [om + (an)* + Z(om)3

o0

3 4
—ﬁ(an) -

T ﬁnnx]dx on

The first three terms are identical as in KdV energy
formula (40), the last two terms are new for extended KdV
equation (1).

B. Energy in a fixed frame calculated from Luke’s Lagrangian

Calculate energy in the same way as in Sec. VI, C, but in
one order higher. In scaled coordinates Lagrangian density is
expressed by (63) (here we keep infinite constant term)

) 1+an 1 ) o )
L = pgh l{/ a[¢r+—(a¢x+—¢v)}dy
0 2 B’
+%(1 +om)2}. (92)

From (85) we have

¢ = fi— 'IBy Saxe + 24,32y4fxxxxi~ 93)

Inserting (93) and (86) into (92), integrating over y, and
retaining terms up to third order one obtains (constant term
% is dropped)

o:{()7+f;)+oe<1

Sfnfit 5 f2) - 2B
277 nj: 5/« ) xxt

L —
pgh?l

1 1
+ S 7If +Olﬁ< f 7Ifxxt_ gfxfxxx>

+_,3 Srxxxt + 0‘ ﬂ(nf nzfxxz_nfxfxxx)

120

1 1
+0‘ﬂ (40 fxzxx - %fxxfxxxx + ﬂ”fxxxxt
1 3 fxxxxxxt
= JxJxxxxx ) — P . 94
1207 ) P 5040 } ©4)
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The Hamiltonian density

H—f8L+f oL +f oL + oL L
= J; Bf, xxt anXt (4x)t af(4x)l (6x)t af(ﬁx)t

is
H 1 55 2

Sahil = T 3 (* + £7)

1 3,2 2 1 2 1
Jonfl +a ﬁ( = f2+ = fiFoe

+Ol3,3< - lﬂfz + lnfxfxxx)
270 2

212 I, 1 1
+o .B _Efxxx_‘_%fxxfxxxx_mfxfxxxxx .

95)

Now, we use f, in the second order (88) and its derivatives.
Insertion of these expressions into (95) and retention terms up
to third order yield

H 20 L33 3 44
bl AN T T g e
1 1
2 -2 =
+a ﬂ( o 6nnm>
29 3
+0t3ﬂ< — &nnﬁ - gnznxx>
1 7 19
2p2( . -2 _ _° _ 7
+a < 70 Ter ~ gl 3607777““).

(96)

The energy is obtained by integration of (96) over x (using
integration by parts and properties of n and its derivatives at
x — #£00). Then terms with «f and «B? vanish. The final
result is

+o00 1
E = _pgh2l/ [an + (an)? + Z(an)3

o0
3 4 7 3 2
. — —a dx, 97
32(om) 5% ﬁnnx} x o7

the same as (91) but with the opposite sign.

C. Energy in a moving frame from definition
Let us follow arguments given by Ali and Kalisch [20,
Sec. 3] and used already in Sec. IV B. Working in a moving
frame one has to replace ¢, by the horizontal velocity in a
moving frame, that is, ¢, — é Then in a frame moving with
the sound velocity we have

r ., I, 1
O = fo = ZBY froxx + =BV fraxwwr — =
2 24 o
| (93)
¢)’ = _ﬂyfxx + gﬁzySfxxxx-

PHYSICAL REVIEW E 92, 053202 (2015)

Then the expression under integral over y in (31) becomes (in
the following terms up to fourth order are kept)

2
(o)

=1 =2af, + o> [ + yo’Bf,

1 4 02
- Ey aﬂ fxxxxx

+ '’ lf2 —lf f +Lff (99)
47 xxx 3 xx Jxxxx 12 xJxxxxx |-

+ yzaﬂfxxx - yzazﬂfx Srxx

After integration over y one obtains

+00
T = %pghzl/ |:1+(X(7’]—2fx)+a2(_277fx+fx2)

LB a2 = Lapiy
3 XXX X 60 XXXXX

+052,3<1f2. + nfxxx - lfxfxxx)
37 3

1

+ o B(nf2 + 17 forr — 0fe fexx) + a2ﬂ2(20 fin

1 1 1
— TeJxxJxxxx T THJxxxxx ZnJxJxxxxx dx.
15/ 13 Mrwes + g5 S )} *

(100)
Then insertion f, (88) and its derivatives yields
T=] h21/+oo Ly 1/3
= 2,08 . an 201 n 305 MNxx
3 5 1
+ Za3rl3 - Oﬁﬂ(ﬁni + E”]”xx) - @aﬂznxmx
T 44 3 7T o5, .3,
T +a ﬂ(lznnﬂr g/l Max
11 233 119
22 M o [ 12
+a’p (30"“ + 30 M Mer + 360nnxxxx>
+ Lo d (101)
S-OP Nxxxxxx X,
3670

where constant term is dropped. Using properties of solutions
at x — =oo this expression can be simplified to

T — lpgh21/+°° - loﬂr/z 4 §a3n3 3 la47’14
2 - 2 4 16

T ap 2, 13 2, oo
— — — dx. (102
@ Byt et B+ 5o0t By (dx. (102)
Then the total energy is

Eg = pghzlf —an+—o’n* + o’y — —a'y’t

teory 1 3 7
2 4 8 32

o0

7 2 2 1 3 2 1 2022
— — — dx. (103
+48a 5nx+24a ﬁnnx+40aﬂ Nex |dx. (103)
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In the special case &« = B this formula simplifies to

Eq = h21/+(>o 1 15, 33 7
ot — - - o
o =pghtl [ | sent gatr PR
7 1 1
4 2
+ + — + dx. 104
* < 32’7 247777x 40””)] * (104)

D. Energy in a moving frame from Luke’s Lagrangian

Here we follow considerations presented in Sec. VI but
with KdV2 equation (1). Transforming into the moving frame
through (72) we have now

¢ = f — 3By fez + 387" feszrs (105)
b = [z — %ﬂyz xxx T 24,32)’4 EXXEX (106)
= —Byfez + éﬂzfﬁwﬁ, (107)

—fi + zﬂy Sazz — —,3 FXXEX
+a(ﬁ- = 3BY’ fesi + 5By fezenr).  (108)

Inserting (105)—(108) into (92), one obtains the Lagrangian
density in the moving frame as (the constant term % is dropped
as previously)

n—fo)+ 062(1

Pt finft 52
2 t X 2 X

et~ %

1 3 . 1 2
+ gaﬂfxxx + o (nft + 277f,€> 1200“6

gl Lo 1o Lo
+o :3 6fxx 6fxxt+ znfxxx 6fxfxxx

1 1 1
+o ,3( fox —Eﬂfxﬁ +§772fxxx —Enfxffcxx)

1
+a’B <40fxxx - %fxxfffcfx + 120 f)?i)?)‘ct
1
ﬁfﬁﬁfc 120 fx xxxxx) (109)
Then the Hamiltonian density
H= 28 fur i o =L (110)
f 0fsz "3 fernsi

after insertion of (109) into (110) yields

H _ 2 12 1,
,oghzl_a< n+fx)+a( S0 tafe =SS

1
- gaﬂfﬁx -

1
2 __f2
+a ﬂ( 6 XX

3 1L », 1, 1
+a' Bl — Eﬁf;x 3" Srex + Enf)?f)?)‘ri

1 3 2 1 2
20[ flf; + 1200[/3 XXXxx

1 1
zﬂfxm + gfxfxm)
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+a2ﬁ2(—

1 1
+ﬂﬂfxmm - l—zofx xxxxx)

L o Ly
20 IiE 30 ix Jrixxx

(111)

In order to express (111) by n only we use f; in the form (88)
and its derivatives. It gives
H 1

1 3
2.2 3.3
_— = —— + —afB i — —O
pgh?l 4 7 6 7 8 7

ozz,B > 2—}-1 + 19 a,B
48 Tix 4 NMxx Nixix

+

360

+

37—201 n 3ﬂ<—nnx 136772%;)
233 119
—a’B ( Mix + 750 T aeE + %Uﬂmm>
1
- iaﬂ Nxxxxix-
Then the energy is given by the integral

(112)

E= Qgh21/+oo[ Loy Lapng - Jatn?
oo 4 6 8
(5 5 1 19 7 iyt
+a ﬂ(&’?x + Znnxx> + ﬁ ﬂ Nizxx + = 32

3 1
3 I Pk
o ﬂ( m2 + T nu) 72aﬁ TEEEEER

/3 + 233 + 19 dx. (113)
—a A X xxx s XXxx X.
r’xx 720 NxNx 720 nn

From the properties of solution at infinity, integrals of
terms with «af,af?,aBf> vanish. Integrals of terms with
a?B,0°B,a?B? can be simplified. Finally, energy is given by
the following expression:

E:Qghzl/+oo _la2n2_§a3n3+la4n4
oo 4 8 32
1
a’pn — —a’ B — Oa2ﬂ2 ,%X}dx. (114)

In the special case when 8 = « the result is

toor 3 7
E = ogh’l ——a’n? —a —
08 /oo[ 797 8n +48

7 1 1
4 4 2
St = —n2. ) |dx.
o (3277 241 40"“)} g
If the invariant term /") = [andx is dropped in (91)

or (97), then the energy calculated in the moving frame (114)
has the same value but with opposite sign.

(115)

E. Numerical tests
1. Fixed frame

In order to check energy conservation for the extended KdV
equation (1) we performed several numerical tests. First, we
discuss energy conservation in a fixed frame. We calculated
time evolution governed by the equation (1) of waves which
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FIG. 4. (Color online) Energy (non-)conservation for the ex-
tended KdV equation in the fixed frame (1). Symbols represent values
of the total energy given by formulas (91) or (97). Full square symbols
represent the invariant V.

initial shape was given by one-, two-, and three-soliton
solutions of the KdV (first-order) equations. For presentation
the following initial conditions were chosen. Three-soliton
solution have amplitudes 1.5, 1, and 0.25, two-soliton solution
have amplitudes 1 and 0.5, and the one-soliton solution has
amplitude 1. The changes of energy (calculated in the fixed
frame) presented in Fig. 4 and those calculated in the moving
frame, shown in Fig. 5 are qualitatively the same for different
amplitudes of solitons. An example of such a time evolution
for the three-soliton solution is presented in Fig. 6.

The time range in Fig. 6 contains the initial shape of the
three-soliton solution with almost separated solitons at ¢ = 0,
intermediate shapes, and an almost ideal overlap of solitons at
t = 315. In order to not obscure details, the subsequent shapes
are shifted vertically with respect to the previous ones. Note
the additional slower waves that follow the main one, which
are generated by second-order terms of Eq. (1) and which were
already discussed in Ref. [2].

1.0005
1 & R
W e oo
0.9995 < ]
o \\A*
y 0.999 a R
i
-~
A~
0.9985 1Y /o
En-1sol —=— \
0.998 En-2sol —e— ‘.H,,"" |
En-3sol —+—
Mass —=—

09975 L L L L L L L
0 5 10 15 20 25 30 35 40

t

FIG. 5. (Color online) Energy (non-)conservation for the ex-
tended KdV equation in the moving frame (116). Symbols represent
values of the total energy given by the formula (103). Full square
symbols represent the invariant 7.
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FIG. 6. (Color online) Example of time evolution of the three-
soliton solution.

We see that the total energy for waves which move
according to the extended KdV equation is not conserved.
Although energy variations are generally small (in the time
range considered they do not extend 0.001%, 0.004%, and
0.005% for one-, two-, and three-soliton waves, respectively)
they increase with more complicated waves. For additional
check of numerics the invariant [V = fj;o an(x,t)dx for
Eq. (1) was plotted as Mass. In spite of approximate
integration the value of 1V was obtained constant up to 10
digits for all initial conditions.

F. Moving frame

Here we present variations of the energy calculated in a
moving frame. The time evolution of the wave is given by
Eq. (1) transformed with (72), that is,

3
¢ 77277)2

3 18
N+ Sz + -~ — 3

2 6«

2
+8 (;ﬂxﬁzx + %nm;) + %%nsx =0. (116)
The time range of the evolution was chosen for a convenient
comparison with the numerical results obtained in fixed
reference frame, that is, two- and three-soliton waves move
from separate solitons to a fully colliding time instant. The
convention of symbols is the same as in Fig. 4. The energy
is calculated according to the formula (103). In a moving
coordinate system energy variations are even greater than in the
fixed reference frame, because in the time period considered it
approaches values of 0.02%, 0.12%, and 0.2% for one-, two-,
and three-soliton waves, respectively. This increase of relative
time variations of energy cannot be attributed only to two
times smaller leading term (%an) in (103) with respect to (91).
Again, in spite of approximate integration the value of 7" was
obtained constant up to 10 digits for all initial conditions.

1. Conclusions for extended KdV equation

We calculated energy of the fluid governed by the extended
KdV equation (1) in two cases:
(1) In a fixed frame (Secs. VIII A and VIII B).
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(2) In the frame moving with the sound velocity
(Secs. VIII C and VIIID).

In both cases we calculated energy using two methods:
from the definition and from Luke’s Lagrangian. Both methods
give consistent results. For fixed frame energies, (91) and (97)
are the same. For a moving frame the energy calculated
from the definition contains one term more than the energy
calculated from Luke’s Lagrangian, but this term ( f andx)is
the invariant /), When this term is dropped both energies in
the moving coordinate system (103) and (114) are the same
and energies in both coordinate systems differ only by sign.

The general conclusion concerning energy conservation
for the shallow-water wave problem can be formulated as
follows. Since there exists the Lagrangian of the system
(Luke’s Lagrangian), exact solutions of Euler equations have
to conserve energy. However, when approximate equations
of different orders resulting from exact Euler equations are
considered, energy conservation is not a priori determined.
The KdV equations obtained in the first-order approximation
has a miraculous property, an infinite number of invariants
with energy among them. However, this astonishing property
is lost in the second-order approximation to Euler equations
and energy in this order may be conserved only approximately.

APPENDIX A

The simplest, mathematical form of the KdV equation
is obtained from (2) by passing to the moving frame with
additional scaling,

3 _ 13
X:\/;(x—t), I:Z\/;at, u=n, (A1)

which gives a standard, mathematical form of the KdV
equation

u;—|—6uux+—u;-,;x= , Or
o

u,—+6uu;+u;;€;=0 for ﬂIOl. (AZ)
Equations (A2), particularly with 8 = «, are favored by
mathematicians, see, e.g., Ref. [31]. This form of KdV is the
most convenient for the inverse scattering method, see, e.g.,
Refs. [32-34].

For the moving reference frame, in which the KdV equation
has a standard (mathematical) form (A2), the invariant [
slightly differs. To see this difference denote the left-hand side
of (A2) by KDVm(x,?) and construct

9
3n2xKDVmuJ)—énxxg—KDVm@J)zo.
o X

Then after simplifications one obtains
0( 5 1B, 919 4 B 5
_ _ B It —6l
8t<n 20 +8x 2" o

1 2 2
+3§r/2nxx - E(gnuc> + <§) nxnxxx:| = O, (A3)
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which implies the invariant /©® in the following form:

1 (LB dx = const or
moving frame — 8 n 2a M B

9]

3 (s 1,

Imovingframe:/ (77 - Enx)dx = const for /3 = .
—00

(A4)

We see, however, that the difference between (A4) and (18) is
caused by additional scaling.

In the Lagrangian approach as described in Sec. V, the
substitution ¥ = ¢, into (A2) gives

Dt + 6§0x(pxx + Pxxxx = 0. (AS)

Then the appropriate Lagrangian density for Eq. (A2) with
(x=pB)is

£standard Kdv = —%fﬂr‘ﬂx - (ﬂi + %(P)%x . (A6)

Indeed, the Euler-Lagrange equation obtained from the La-
grangian (A6) is just (AS).

The Hamiltonian for KdV (A2) can be found, e.g., in
Ref. [35]. Defining generalized momentum 7 = %, where
L is given by (A6), one obtains

o0 o0 8
H = / [re — Lldx = / |:—£<p, — £:|dx
—00 —00 a‘ﬂr

o0 1 o 1
:/ (pi——(pfx dx:/ 773——17)2{ dx. (A7)
PR 2 s 2

A

This is the same invariant as moving frame

in (A4).

APPENDIX B

The set of Euler equations for irrotational motion of an
incompressible and inviscid fluid can be written (neglecting
surface tension) in dimensionless form:

Vi =0, (B1)

¢.=0 on z=0, (B2)

M+ —de=0 on z=1+n, (B3)
o+ (i +¢7)+n=0 on z=1+n (B4

We look for solutions to the Laplace equation (B1) in the
form

¢=> " [Py,

(BS)
n=0
yielding
Y = D" O+ VO =0, (B6)
n=0
In two dimensions (x,z) we obtain
-1 9% £
f(n+2) _ f (B7)

T m+Dm+2) ax2
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The boundary condition at the bottom, ¢, = 0 at z=0, implies
£ = 0 and then all odd f@*D = 0. Now

" ZZm ame
¢ = }:c— Y G T (BS)

where f := f©. In the stretched coordinates af = 88§ SO

2m

- 5[f+2(— )’"(2 e ea?)™" f]. (BY)

Now both (B1) and (B2) are satisfied. We must also satisfy the
boundary conditions on z = 1 + 7.

In the derivation of KdV and Kadomtsev-Petiashvili [24]
from the Euler equations (B1)—(B4) Infeld and Rowlands [21]
applied scaling assuming the following relations:

wavelength : depth : amplitude as &~ '/%:1:¢.

They then applied a transformation to a frame mov-
ing with the velocity of sound. The coordinates scale

PHYSICAL REVIEW E 92, 053202 (2015)

as

3
T=e2t,

E=e2(x—1),
do=—6210; +6° 0,

(B10)
3, = &7 0. (B11)

For the wave amplitude and velocity potential the appropriate
scaling was

n=enV+e2n?® 4. (B12)
and
=0 +ei® + (B13)
Then the lowest-order expression for ¢ is
1 3 Z2
q)%sff—eigfgg. (B14)

Next, Infeld and Rowlands show that in order to simultane-
ously satisfy (B3) and (B4) the next order contributions to n
and ¢ cancel. It is enough to keep

and ¢ = 854)(1)

l+n=1+ep? (B15)

and drop the upper index (" in what follows.
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