
PHYSICAL REVIEW E 92, 053102 (2015)

Quasicollisional magneto-optic effects in collisionless plasmas
with sub-Larmor-scale electromagnetic fluctuations
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High-amplitude, chaotic or turbulent electromagnetic fluctuations are ubiquitous in high-energy-density
laboratory and astrophysical plasmas, where they can be excited by various kinetic-streaming and/or anisotropy-
driven instabilities, such as the Weibel instability. These fields typically exist on “sub-Larmor scales”—scales
smaller than the electron Larmor radius. Electrons moving through such magnetic fields undergo small-angle
stochastic deflections of their pitch angles, thus establishing diffusive transport on long time scales. We show
that this behavior, under certain conditions, is equivalent to Coulomb collisions in collisional plasmas. The
magnetic pitch-angle diffusion coefficient, which acts as an effective “collision” frequency, may be substantial
in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma
“quasicollisionality,” may radically alter the expected radiative transport properties of candidate plasmas. We
argue that the modified magneto-optic effects in these plasmas provide an attractive, radiative diagnostic tool for
the exploration and characterization of small-scale magnetic turbulence, as well as affect inertial confinement
fusion and other laser-plasma experiments.

DOI: 10.1103/PhysRevE.92.053102 PACS number(s): 52.38.Dx, 78.20.Ls, 95.30.Jx, 52.57.−z

I. INTRODUCTION

Strong electromagnetic turbulence is a common phe-
nomenon in high-energy-density (HED) environments. In the
laboratory settings, manipulating and understanding electro-
magnetic turbulence is essential to fusion energy science and
the inertial confinement fusion (ICF) [1,2]. In addition, elec-
tromagnetic turbulence is critical to numerous astrophysical
systems such as gamma-ray bursts and supernova shocks
[3–6], as well as in laboratory astrophysics laser-plasma
experiments [7,8].

Despite much variation in the origin of the electromagnetic
turbulence (e.g., the Weibel or filamentation instabilities), most
of these plasmas have one thing in common: their configuration
is such that binary Coulomb collisions are negligible; i.e.,
the plasmas are “collisionless.” Nonetheless, some of these
environments, such as plasmas at collisionless shocks, display
phenomena that resemble conventional collisional interac-
tions. Hereafter, we colloquially refer to these phenomena as
“quasicollisional.”

In this work, we will show that sub-Larmor-scale (“small-
scale”) magnetic turbulence induces particle dynamics rem-
iniscent of binary Coulomb interactions. In fact, as we will
demonstrate, the random small-angle deflections of electrons
by small-scale magnetic fields leads to an effective collisional-
ity with the effective “collision” frequency being equal to the
(small-angle) pitch-angle diffusion coefficient.

Random magnetic fields are known to lead to effective
diffusion. Particularly, braided fields, for example, can cause
anomalous transport in tokamaks near destroyed rational
magnetic surfaces [9] and in turbulent plasmas inside galaxy
clusters [10–14]. The key difference in the present paper from
previous works is that they considered that the correlation
length of the field (or equivalently the chaotic Lyapunov
exponent) is substantially larger than the Larmor scale (hence
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the term “braided”), whereas we consider the case of the
fluctuating field having a correlation length smaller than the
Larmor scale.

The rest of the paper is organized as follows. Section II
briefly reviews the analytic theory of pitch-angle diffusion
in small-scale random magnetic fields. Next, we argue that
the small-angle deflections, characteristic of these fields, are
analogous to the small deflections induced by Coulomb colli-
sions. We then show that the pitch-angle diffusion coefficient,
itself, acts as an effective collision frequency. In Sec. III, we
explore the implications for electromagnetic wave propagation
in magnetized plasmas with high “effective collisionality”
or “quasicollisionality.” Finally, Sec. IV is the conclusions.
Unless otherwise specified, we use cgs units throughout the
paper.

II. SMALL-SCALE MAGNETIC TURBULENCE
AND EFFECTIVE COLLISIONALITY

Magnetic fluctuations are known to occur on various spatial
scales. We define the fluctuation scale as sub-Larmor if the
electron’s (fluctuation) Larmor radius, rL ≡ γeβmec

2/eδB, is
greater than, or comparable to, the spatial correlation length,
λB , i.e., rL � λB . Here β = v/c is the dimensionless particle
velocity, δB is the rms value of the fluctuating field, me is the
electron mass, c is the speed of light, e is the electric charge,
and γe is the electron’s Lorentz factor.

Formally, the correlation length is defined over all spatial
scales of the magnetic field. Nonetheless, any realization
of electromagnetic turbulence may be envisioned as the
superposition of small-scale and “large-scale” (i.e., the “sub-”
and “super-Larmor-scale”) components. Thus we may roughly
define two characteristic spatial scales for the general case,
where λssc

B and λlsc
B are the sub-Larmor-scale and super-

Larmor-scale correlation lengths, respectively.
Ignoring the mean magnetic field, there are a number of

different regimes that may be enumerated, depending upon
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the relative significance of the magnetic field at each scale.
First, if the correlation length is infinite, then the electrons will
follow helical orbits about the axis of a perfectly homogeneous
magnetic field. Next, if the magnetic field is large-scale—
i.e., possessing fluctuations on a finite, though super-Larmor,
spatial scale—then the electron’s guiding center will drift, due
to slight inhomogeneity in the magnetic field.

Thirdly, an electron moving through purely sub-Larmor-
scale magnetic turbulence will not complete a Larmor orbit,
because the magnetic field varies on a scale shorter than the
Larmor curvature radius. With rL/λB � 1, this trajectory is a
nearly straight line, with small, random (diffusive) deflections
perpendicular to the direction of motion. Finally, when a
range of spatial scales exists, the chaotic trajectory will
be a combination of large-scale gyromotions (though not
necessarily complete gyro-orbits) with small-scale diffusive
deflections.

We argue that it is these small-scale deflections that induce
a quasicollisionality with the pitch-angle diffusion coefficient
acting as an effective collision frequency.

A. Pitch-angle diffusion in sub-Larmor-scale
magnetic turbulence

Consider an electron moving through a random magnetic
field with the mean value 〈B〉. The total magnetic field can be
written as

B(x,t) = B0 + δB(x,t), (1)

where B0 ≡ 〈B〉 and δB(x,t) is the mean-free, “fluctuation”
field, i.e., 〈δB〉 = 0, but δB ≡ 〈δB2〉1/2 �= 0.

The pitch-angle diffusion coefficient, due to deflections in
purely small-scale magnetic turbulence, is a known function
of statistical parameters. It may be obtained by considering
that the electron’s pitch-angle experiences only a slight
deflection, αλ, over a single magnetic correlation length.
Consequently, the ratio of the change in the electron’s
transverse momentum, �p⊥, to its initial momentum, p,
is αλ ≈ �p⊥/p ∼ e(δB/c)λB/γemev, since �p⊥ ∼ FLτλ—
where FL = (e/c) v × δB is the transverse Lorentz force and
τλ ∼ λB/v is the time to transit λB . The subsequent deflection
will be in a random direction, because the field is uncorrelated
over the scales greater than λB . As for any diffusive process,
the mean squared pitch-angle grows linearly with time. Thus
the diffusion coefficient appears as [15,16]

Dαα ≡ 〈α2〉
t

∼
(

e2

m2
ec

3

)
λssc

B (x,t)

γ 2
e 〈β2〉1/2

〈δB2
⊥〉, (2)

where α is the electron deflection angle (pitch angle) with
respect to the electron’s initial direction of motion, δB⊥, is
the component of the fluctuation field perpendicular to the
electron’s velocity, and 〈β2〉1/2 is an appropriate ensemble
average over the electron velocities.

In general, any anisotropy in the fluctuation field will
induce a path-dependent correlation length. Thus the diffusion
coefficient along an axis of anisotropy (which is usually along
the direction of the mean magnetic field, B0) may differ from
that across the transverse plane.

For simplicity, unless otherwise specified, we will assume
that the magnetic turbulence is statistically homogeneous

and isotropic. With this assumption, the pitch-angle diffusion
coefficient will be the same along all directions, and thus
we may arbitrarily define the axis of the deflection angle,
α. Without loss of generality, we may then define α as the
conventional pitch angle, i.e., the angle of the velocity vector
with respect to the mean (ambient) magnetic field, B0.

Furthermore, we will assume that all relevant time scales
(e.g., the time to transit λB) are much smaller than the
magnetic field variability time scale—thus we may treat the
magnetic turbulence statically, thereby ignoring any time
dependence in the correlation length, and therefore in Dαα .

B. Lorentz collision model of electron-ion collisions

In the typical treatment, Coulomb collisions are considered
in the small deflection angle regime. In this approximation, a
“test” electron will undergo a slight (transverse) deflection as
it passes by an ion. Additionally, electron-electron collisions
are neglected.

Many scatterings will occur, as the binary collisions con-
tinue with subsequent ions. These scatterings are effectively
stochastic, if the background of (stationary) ions is randomly
distributed. Since the collisions with the fixed ion background
are elastic, the total electron energy is conserved.

Nevertheless, the small deflections accumulate, leading to a
gradual change in the electron’s transverse momentum, �p⊥.
An electron is deflected by one radian, i.e., �p⊥/p ∼ 1, in
a single collision time, τc. The inverse of the collision time,
νei ≡ τ−1

c , is defined as the electron-ion collision frequency.
Given a Maxwellian distribution of electrons, the electron-

ion collision frequency assumes the simple form [17]:

νei 
 3 × 10−6 ln(
)
neZi

θ
3/2
eV

[s−1], (3)

where ne is the electron number density in cm−3, θeV is the
electron temperature in units of electron volts, Zi is the atomic
ionization number, and ln(
) is the Coulomb logarithm.

Here, we employ the Spitzer result for the Coulomb
logarithm [18]:

ln(
) ≈ 25.28 + ln

[
θeV√
ne

]
, (4)

which is valid for temperatures above 4 × 105 K ≈ 34 eV.
Next, we will argue that the pitch-angle diffusion coefficient

of Eq. (2) acts as an effective collision frequency in plasmas
with sub-Larmor-scale magnetic fluctuations.

C. Pitch-angle diffusion as effective collisionality

The small-angle magnetic deflections are analogous to
electron-ion collisional deflections in a number of ways,
namely they both (i) conserve particle’s energy and (ii) induce
deflections transverse to the initial electron’s velocity.

Where the two effects differ, however, is in the nature
of the stochasticity. In an idealized scenario, an electron
in a collisional plasma is continuously deflected by ions
along its trajectory. In contrast, an electron moving through
small-scale magnetic turbulence is deflected on a characteristic
spatial scale of finite length: the correlation length. Thus the
two descriptions are only equivalent on a coarse graining.
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Indeed, the electron motion in small-scale magnetic turbulence
resembles electron-ion collisions only on spatial scales much
greater than the magnetic correlation length.

Thus we must require that

L � λssc
B , (5)

where L is the characteristic length scale of the system.
Next, we may infer this effective collision frequency

directly from Eq. (2). The pitch-angle deflections are assumed
to be small, hence α ∼ �p⊥/p. Thus, at τc, the following
condition must hold:

Dαατc ∼ 1. (6)

Therefore, Dαα must be the effective collision frequency.
In general, electron-ion collisions in plasmas are often im-

portant too; hence we include them in our study. Consequently,
we define the total (effective) collision frequency as

νeff ≡ νei + Dαα. (7)

D. Phenomenological interpretation

Estimating Dαα , in real plasmas, may be difficult since it
depends upon the small-scale correlation length—a quantity
which requires knowledge of the magnetic spectral distribution
to obtain. In principle, if the nature of the instability which
produces the electromagnetic fluctuations is known, then we
may produce a rough estimate of the characteristic spatial
scales which ultimately set the correlation length. However,
in many cases, the type of turbulent fluctuations may not be
known; hence an a priori estimate of the magnetic spectrum
may not be available.

Fortunately, charged particles undergoing quasicollisions
in small-scale magnetic fields emit small-angle jitter radiation
[3,15,16,19–22]. This radiation, which is distinct from both
cyclotron and synchrotron radiation, has spectral properties
which are fully determined by the statistical characteristics
of the magnetic turbulence. Furthermore, the pitch-angle
diffusion coefficient and the jitter radiation spectrum are
intimately related [15,16]. Thus the jitter spectrum offers an
immediate estimate for the pitch-angle diffusion coefficient,
as we will show.

Similarly, electrons undergoing collisions with an ion
background will emit Bremsstrahlung radiation. The emission
coefficient, jω—the radiant power per unit frequency per unit
volume per unit solid angle—is directly proportional to the
collision frequency. For a Maxwellian (thermal) distribution of
electrons in a weakly ionized plasma, the emission coefficient
is [23]

jBrems
ω = Re[n]

(
ω2

pekBTe

8π3c3

)
νei, (8)

where Re[n] is the real part of the plasma’s index of refraction,
ωpe =

√
4πnee2/me is the electron plasma frequency, kB is

the Boltzmann constant, and νei is an electron-ion collision
frequency. Now, taking into account quasicollisions as in
Eq. (7), by substituting νei → νeff in Eq. (8), the latter
introduces a phenomenological definition for the effective
collision frequency.

We may construct the jitter emission coefficient by first
considering the total (dispersion free) jitter power emitted by
a single electron. This is given by the Larmor formula [16],
i.e.,

P
jitter
tot = 2

3
cβ2r2

e γ 2
e 〈δB2

⊥〉 (9)

where re = e2/mec
2 is the classical electron radius. The small-

angle jitter radiation spectrum has a characteristic frequency
known as the jitter frequency,

ωj = γ 2
e kmagβc, (10)

where kmag is the dominant wave number of the (small-scale)
turbulent fluctuations. Next, we may write the spectral power
for a single electron as:

Pjitter(ω) ≡ dP

dω
∼ P

jitter
tot

ωj

. (11)

Substitution of Eq. (10) into Eq. (9), results in the expression:

Pjitter(ω) ∼ 2

3
λssc

B β

(
e4

m2
ec

4

)
〈δB2

⊥〉, (12)

where the relation, k−1
mag ∼ λssc

B , has been employed [16].
Comparing this result to Eq. (2), we find that the power
spectrum is directly proportional to the pitch-angle diffusion
coefficient:

Pjitter(ω) ∼ 2

3

e2

c
γ 2

e β2Dαα. (13)

Next, if we assume isotropic emission by all plasma
electrons, then the jitter emission coefficient may be obtained
from Eq. (13) with the multiplication of ne/4π . Thus:

j jitter
ω ∼ nee

2

6πc
γ 2

e β2Dαα =
(

meω
2
pe

24π2c

)
γ 2

e β2Dαα. (14)

Finally, the emission coefficient for nonrelativistic jitter
(pseudocyclotron) radiation, given a Maxwellian distribution
of electrons, will be:

j jitter
ω ∼ Re[n]

(
ω2

pekBTe

3π3c3

)
Dαα, (15)

where we have reintroduced the index of refraction, and
substituted

βc = 〈|v|〉 =
(

8kBTe

πme

)1/2

. (16)

Comparing Eqs. (15) and (8), we see that they only differ
by a numerical factor. Thus Eqs. (14) and (15) provide an
attractive phenomenological definition for the “jitter” collision
frequency, which may be obtained directly from the small-
angle jitter radiation emission coefficient.

III. MAGNETO-OPTIC EFFECTS IN SMALL-SCALE
MAGNETIC TURBULENCE

To explore the properties of electromagnetic (EM) wave
propagation in quasicollisional, magnetized plasmas, we ex-
amine the components of the dielectric tensor, εij . Consider an
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EM wave of frequency ω and with a wave vector k, propagating
through a “cold” magnetized plasma with an ambient magnetic
field, B0. Choosing a coordinate system with B0 parallel to the
z axis, and k in the x−z plane, the general dispersion relation
is the characteristic equation [24]∣∣∣∣∣∣∣

−n2 cos2 θ+εxx εxy n2 cos θ sin θ + εxz

εyx −n2 + εyy εyz

n2 cos θ sin θ + εzx εzy −n2 sin2 θ + εzz

∣∣∣∣∣∣∣ = 0,

(17)

where θ is the angle between B0 and k, n ≡ kc/ω is the
complex index of refraction, and

εxx = εyy = 1

2
(R + L), (18a)

εxy = −εyx = i

2
(R − L), (18b)

εzz = P, (18c)

εxz = εzx = εyz = εzy = 0. (18d)

As a low-order approximation, collisions may be treated as
drag terms, of the form −νeffv, in the Lorentz equation of
motion for the charged plasma particles. This introduces the
substitution rule: ω → ω + iνeff . Thus, in the cold plasma
approximation, the elements of the collisionless dielectric
tensor generalize to [25]

L = 1 −
∑

s

ω2
ps

ω(ω + iνs − �cs)
, (19a)

R = 1 −
∑

s

ω2
ps

ω(ω + iνs + �cs)
, (19b)

P = 1 −
∑

s

ω2
ps

ω(ω + iνs)
, (19c)

where ωps is the plasma frequency, �ps = qsB0/msc is
the nonrelativistic gyrofrequency, νs ≡ νeff

s is the effective
collision frequency, and the subscript s denotes the plasma
species (e.g., electrons and multiple ions). In our study, we
will assume that only the electron dynamical time scales are
of interest; thus, s = e.

The properties of EM wave propagation through a mag-
netized plasma depend heavily upon the orientation of the
wave vector with respect to the ambient magnetic field, B0.
We will consider two limiting cases. First, we will consider
propagation along the direction of B0. The difference in the
indices of refraction of left- and right-circularly polarized light,
as it propagates along this direction, results in the well-known
Faraday effect. As we will demonstrate, strong collisions
significantly alter the conventional Faraday expressions.

A. Quasicollisional Faraday effect

If the wave vector is aligned with B0, the solution to Eq. (17)
assumes the form

c2k2

ω2
= 1 − ω2

pe

ωσ
(
1 ± �ce

σ

) , (20)

where σ ≡ ω + iνeff , and we have assumed the total collision
frequency given by Eq. (7). The “±” signs refer to the right-
circular and left-circular polarizations, respectively.

Next, we make the standard assumptions that ω � �ce

and ω3 � ω3
pe. The high order of the latter assumption is

needed to keep terms (linearly) proportional to the electron
number density, ne ∝ ω2

pe. Next, we expand Eq. (20) in the
small parameter, σ :

c2k2

ω2
≈ 1 − ω2

pe

ωσ

[
1 ∓ �ce

σ

]
. (21)

Expanding the square root results in the index of refraction
yields

n ≈ 1 − ω2
pe

2ωσ

[
1 ∓ �ce

σ

]
. (22)

Faraday rotation is the result of the discrepancy between
the wave vectors of the two polarizations, �k±. From the real
part of Eq. (22), we get

�k± ≈ ω2
pe�ce

2c
(
ω2 + νeff

2
)2

.

[
ω2 − νeff

2
]
. (23)

The existence of an imaginary part in Eq. (22) indicates the
presence of absorption. The absorption coefficient is given by
the general relation

αabsp ≡ −2
ω

c
Im[n]. (24)

Thus the Faraday quasicollisional absorption coefficient is

αFarad
absp ≡ − ω2

peνeff

c
(
ω2 + νeff

2
)
[

1 ∓ 2�ceω(
ω2 + νeff

2
)
]
. (25)

Finally, the total change in the polarization phase angle,
��, is obtained by the integration of �k± along the path of
the EM wave. Operationally, �ce and ωpe are functions of
position, z, the latter depending, straightforwardly, upon the
electron density, ne(z). There is subtlety in the interpretation of
the gyrofrequency, however. Traditionally, it is defined here as

�ce ≡ eB‖(z)

mec
, (26)

where B‖(z) is the component of the magnetic field, at z,
parallel to k. It is implicitly assumed that B0 is super-Larmor
scale, which is an underlying assumption of the (linear) cold
plasma approximation.

Thus the proper physical interpretation of our result is
that B‖(z) refers only to the large-scale component of the
magnetic field, whereas νeff is the result of small-scale
magnetic fluctuations. Hence, using Eq. (23), we may write the
collision-corrected expression for the Faraday rotation angle as

�� = 2πe3

m2
ec

2

∫
[ω2 − νeff(z)2]

[ω2 + νeff(z)2]2
ne(z)B‖(z)dz. (27)

Formally, the collision frequency may be a function of z,
which is why we have included it in the integrand. To simplify
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FIG. 1. (Color online) Normalized Faraday rotation angle vs the
normalized collision frequency. Notice that at Z ≡ ν�

eff/ω = 1 zero
Faraday rotation occurs. Collisions have effectively nullified Faraday
rotation.

the treatment even further, we assume a constant (or averaged)
collisional frequency ν�

eff throughout the entire plasma. Then,
Eq. (27) can be written as

�� 
 (1 − Z2)

(1 + Z2)2
λ2RM, (28)

where λ = 2πc/ω is the radiation wavelength, Z ≡ ν�
eff/ω is

a normalized collision frequency, and

RM ≡ e3

2πm2
ec

2

∫
ne(z)B‖(z)dz (29)

is the standard collisionless rotation measure.
In the absence of quasicollisions, when Z = 0, Eq. (28)

gives the conventional result. Thus the ratio

��

λ2RM
= (1 − Z2)

(1 + Z2)2
= ��collisional

��collisionless
(30)

illuminates a possible, quasicollisionality-induced, discrep-
ancy.

In Fig. 1, we have plotted Eq. (30) as a function Z. The
curve has a number of interesting properties. First, when Z = 1
(i.e., ω = ν�

eff), zero rotation occurs. Evidently, in this case,
quasicollisions have effectively nullified Faraday rotation.

Secondly, the rotation angle remains negative for Z > 1,
obtaining a minimum value of −1/8 at Z = √

3. Finally, as
Z → ∞, the rotation angle approaches zero.

How much do standard Coulomb collisions affect Faraday
rotation observations and measurements? For example, in the
interstellar medium with density ne ∼ 1 cm−3, the electron-
ion collisional frequency is about νei 
 7 × 10−5 s−1. The
strongest effect is expected at the observation frequency ω ∼
νei , which is well below any viable frequency range for Faraday
polarimetry. Thus, for this reason, Coulomb collisions are gen-
erally neglected in astrophysical environments. Nevertheless,
quasicollisionality may be significant where high-amplitude

electromagnetic turbulence is suspect. Thus the observation
of a Faraday rotation discrepancy (as described above) may
indicate the presence of small-scale magnetic fields.

B. Ordinary and extraordinary mode propagation in
quasicollisional solid-density laser plasmas

In the plane perpendicular to B0, two distinct wave modes
may propagate. The first of these is the ordinary mode (or
O mode), which is equivalent to the electromagnetic wave
solution for a nonmagnetized plasma. The index of refraction
for the O mode, accounting for collisions, is

n2
O = 1 − X

1 + Z2
+ iZ

X

1 + Z2
, (31)

where X ≡ ωpe/ω. Since we cannot safely assume that Z � 1,
Eq. (31) must be solved exactly. This results in a real part [26],

Re[nO] = 1
4

(
εr +

√
ε2
r + ε2

i

)2

, (32)

and an imaginary part,

Im[nO] = 1

2 Re[nO]
εi, (33)

where
√

εr ≡ Re[nO] and
√

εi ≡ Im[nO]. As before, the pres-
ence of an imaginary index of refraction implies absorption.
Consequently, the O-mode absorption coefficient is given by
the substitution of Eq. (33) into Eq. (24).

Notice that Re[nO] > 0, for all ω. This means, physically,
that the mode has no true cutoff frequency. For Z � 1, the
approximate cutoff will be at the plasma frequency, ωpe, that
is where Re[nO] quickly approaches zero. In the general case,
however, an effective cutoff may not be present.

The extraordinary mode (or, X mode) has a considerably
more complicated dispersion relation, the exact solution of
which is [27]

n2
X = 1 − X[(1 − X)(1 − X − Y 2) + Z2]

[1 − X − Z2 − Y 2]2 + Z2[2 − X]2

+ iZ
X[(1 − X)2 + Z2 + Y 2]

[1 − X − Z2 − Y 2]2 + Z2[2 − X]2
, (34)

where Y ≡ �ce/ω and X ≡ ωpe/ω. Due to complexity, we
will not present an analytical analysis of this case.

Now, we will explore the implications of strong quasi-
collisions for O-mode and X-mode propagation in laser-
generated solid-density plasmas. We consider a metal target
irradiated by a laser at normal incidence, with an intensity
of 1018 W cm−2 (the threshold of relativistic intensity). Next,
we estimate the relevant plasma parameters, assuming a fully
ionized aluminium target (Zi = 13) and a laser wavelength of
λl = 800 nm. A decent estimate for the electron temperature
is suggested by [28]

kBTe ∼ Upond ∼ 1 MeV ×
√

Iλ2
l

1019 [W cm−2 μm2]
, (35)

where Upond is the ponderomotive potential of the incident laser
beam. Substitution of our laser parameters gives an electron
temperature of 253 keV.
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Assuming that the small-scale magnetic turbulence is the
result of a Weibel-like instability, the magnetic field will
roughly have the maximum value [29]:

BWeibel
max ∼ meωpec

e
, (36)

which is consistent with the theoretical saturation condition
�ce ∼ ωpe.

Next, we must select a model for the plasma frequency
profile. We suppose an exponential profile for the electron
density in the direction of the laser beam, i.e.,

ne(z) = nce
(z/λl−1), (37)

where nc ≡ meω
2/4πe2 is the collisionless critical electron

density, and z is along k. We furthermore assume that the
density is uniform in the transverse plane. From this profile,
we choose ωpe(z = 0) for substitution into Eq. (36). The result
is a magnetic field, BWeibel

max ≈ 81.2 MG. We will suppose the
existence of a large-scale magnetic field in the metal target. For
simplicity, we assume that this field is approximately uniform,
and that it is situated perpendicular to the angle of normal
incidence, which is typical of the laser-induced (ordered)
Biermann battery fields seen in ICF experiments, although
these fields assume a more complex azimuthal profile [7].

Additionally, we suppose that B0 = BWeibel
max , and treat δB

(the small-scale component) as a free parameter.
Furthermore, the electron-ion collisions are computed using

Eq. (3), that is we ignore any nonuniformity in the electron
temperature.

Lastly, we consider an effective pitch-angle diffusion
coefficient for the entirety of the target. We assume that
λB ∼ λl , since for Weibel magnetic fields: λB ∼ de, where
de = c/ω is electron skin depth at the critical surface. In
practice, the correlation length should be significantly shorter
than the laser wavelength, so that Eq. (5) will hold.

In Fig. 2, five solutions for the O-mode index of refraction
are plotted as a function of the depth into the target (represented
by the electron density). These solutions differ by the assumed
δB. The effective quasicollision frequency is significantly
large for δB ∼ B0: νeff ≈ 3.3 × 1015 s−1, which is comparable
to the laser frequency. This is in stark contrast to the much
weaker electron-ion contribution, νei ≈ 7.1 × 109 s−1, at the
critical surface, nc.

For δB/B0 = 0.001, νei � Dαα , and the expected weakly
collisional dependence is realized. Here, there is a steep drop
in the index of refraction towards zero near nc. Physically,
this indicates that most of the O-mode wave is reflected
back from the critical surface—as, otherwise, anticipated.
As the effective collision frequency increases, the reflectivity
at the critical surface quickly drops. In fact, when δB/B0 = 1,
the entirety of the metal target is virtually transparent.

The steep increase in the index of refraction, for all the
curves, at high density is a result of the density dependence
in Eq. (3). Since the metal target is of limited extent, this
asymptote of the solution may not be experimentally viable.

Next, the X mode has a considerably more complicated
index of refraction. The collisionless dispersion relation
includes two cutoff frequencies and a resonance.
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FIG. 2. (Color online) Index of refraction for the O mode as a
function of depth (in terms of the electron density). Displayed here
are five solutions, all differing by the ratio, δB/B0. Notice that for
δB/B0 = 0.001, νei � Dαα , and the expected weakly collisional
dependence is realized; i.e., a steep approach of the index of
refraction towards zero at nc. In contrast, δB = B0 leads to a
virtually transparent target. Included in this plot is the solution for
νeff = νei—the dashed black line.

The first cutoff,

ωR = 1
2

(
�ce +

√
�2

ce + 4ω2
pe

)
, (38)

is slightly less than ω. Its presence, as the first steep drop in
the index of refraction, can be seen in Fig. 3. Next, a resonance
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FIG. 3. (Color online) Index of refraction for the X mode as
a function of depth (in terms of the electron density). Displayed
here are five solutions, all differing by the ratio, δB/B0. Notice that
for δB/B0 = 0.001, νei � Dαα , and the expected weakly collisional
dependence is realized; i.e., a steep approach of the index of refraction
towards zero at ωR, a resonance at ωUH, and another cutoff at ωL.
Collisions effectively connect the cutoff frequencies to the resonance,
allowing access to ωUH and ωL. Nonetheless, for δB ∼ B0, the cutoffs
and resonance disappear completely. Included in this plot is the
solution for νeff = νei—the dashed black line.
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FIG. 4. (Color online) Index of refraction for the X mode as a
function of depth (in terms of the electron density). Here, three
solutions for which δB/B0 = 0.1 are plotted with a variable B0. As
expected, the solution approaches the O-mode profile for B0 → 0.

occurs at the upper-hybrid frequency, i.e.,

ωUH =
√

ω2
pe + �2

ce. (39)

The upper-hybrid resonance, similarly, occurs slightly prior to
nc (see Fig. 3). Lastly, a second cutoff frequency occurs at

ωL = 1
2

(−�ce +
√

�2
ce + 4ω2

pe

)
, (40)

which is slightly beyond the critical surface, nc.
The behavior similar to the O-mode profile may be

observed in Fig. 3. What is noteworthy here is that collisions
essentially connect the cutoff frequencies to the resonance,
allowing access by ωUH and ωL. Nonetheless, when quasicol-
lisions dominate the dispersion, as they do for δB ∼ B0, the
cutoffs and resonance disappear completely.

Next, the X-mode index of refraction depends upon the
ambient magnetic field via �ce. In Fig. 4, we have plotted three
solutions for which δB/B0 = 0.1, but B0 differs by orders of
magnitude. As expected, the solution approaches the O-mode
profile for B0 → 0.

Finally, the quasicollisional absorption is a very important
consideration as well. Ignoring reflection and refraction, the
intensity, I , falls off exponentially while traversing a lossy
medium, i.e.,

I (z) = I0e
− ∫ |αabsp(z)|dz, (41)

where I0 is the vacuum intensity. In Fig. 5, we have used
Eqs. (24) and (41) to plot the X-mode intensity as a function of
depth for the same conditions as in Fig. 3 (excluding δB/B0 =
0.001).

Despite the relative transparency of the plasma for δB ∼
B0, Fig. 5 shows that the laser intensity quickly decays beyond
the critical surface. Interestingly, the laser intensity is relatively
fixed from ωUH to ωL, for low quasicollisionality, i.e., low Z.
Figure 6 displays the same scenario for the O-mode case.
Once more, we see a relatively fixed laser intensity up to the
critical surface, for low Z. The high-Z (i.e., δB ∼ B0) curve
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FIG. 5. (Color online) X-mode laser intensity as a function of
the target depth (in terms of the electron density). Despite the relative
transparency for δB ∼ B0, the laser intensity quickly decays beyond
the critical surface. Interestingly, the laser intensity is relatively fixed
from ωUH to ωL, for low Z. Additionally, there is initial drop near
ωUH that is not present in the high-Z case. Included in this plot is the
solution for νeff = νei—the dashed black line.

is identical to the X-mode equivalent, thus demonstrating the
dominance of quasicollisions over the “magnetization” effect
from B0 at large δB.

From Figs. 2–6, it is clear that effective quasicollisionality
in solid-density laser plasmas may be significant. Although the
high-Z scenario of δB ∼ B0 is unlikely, the presence of small-
scale magnetic fields (especially near the critical surface) may,
unanticipatedly, impact the reflectivity and absorption. The
effect may be critically important to certain setups, such as the
inertial confinement fusion (ICF) experiments or experiments
that exploit the Cotton-Mouton effect for magnetic field
diagnostics.
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FIG. 6. (Color online) O-mode laser intensity as a function of
the target depth (in terms of the electron density). Once more, we see
a relatively fixed laser intensity up to the critical surface, for low Z.
The high-Z curve is identical to the X-mode equivalent. Included in
this plot is the solution for νeff = νei—the dashed black line.
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IV. CONCLUSIONS

In this paper, we have investigated the implications of
the quasicollisionality induced by small-scale magnetic tur-
bulence in, otherwise, collisionless plasma environments. Our
results demonstrate that radiative transport is dramatically
affected by the presence of strong effective collisions.

Particularly, our analysis shows that sub-Larmor-scale
magnetic fluctuations in magnetized plasmas may sharply
attenuate Faraday rotation measures (RM ). In fact, with the
effective quasicollision frequency on the same order as the
wave frequency, the Faraday rotation effect may be completely
canceled; hence RM = 0. In an unexpected turn, with νeff > ω,
we predict negative RM values in these environments. These re-
sults are crucial for Faraday rotation-based laboratory plasma
diagnostics and interpretation of the results of astronomical
observations of Faraday rotation measures of magnetized
astrophysical and space plasmas, e.g., of the interstellar and
intracluster media.

In the laboratory setting, we find that small-scale turbu-
lence may complicate the propagation of EM waves through
high-intensity laser plasmas, specifically, solid-density laser
plasmas. Namely, the reflectivity and absorption of X and
O modes is largely affected when the plasma is highly
“collisional.” In fact, for sufficiently high quasicollisionality,
the plasma cutoff frequencies cease to exist.

These effects can have crucial implications for the ICF
performance. Indeed, the high quasicollisionality regime oc-
curs when the Weibel instability or other kinetic filamentation
instabilities are excited to produce strong sub-Larmor mag-
netic (or possibly fully electromagnetic) fields. In this regime,
the plasma may happen to be transparent so that the critical
surface ceases to exist. The impulse delivered to the imploding
plasma by radiation pressure halves in the case (cf. reflection
vs absorption), which greatly affects ICF performance. For
the same reason, the absorption coefficient reduces too, so
that the depth through which radiation can penetrate into the
target increases, which changes the energy deposition profile
in the target. How this affects the ICF performance remains
to be seen from dedicated theoretical analyses and numerical
simulations. On the other hand, we stress that the performance,
being affected by quasicollision-induced transparency which
depends on δB/B0, can be controlled by the ambient magnetic
field, B0, both via the Weibel instability suppression (by low-
ering δB) and the reduction of the effective quasicollisionality
of the plasma (by increasing B0 for a fixed δB).

We should also mention that the role of small-scale electric
fields (of the order of the skin depth, as in Langmuir turbulence,

for example) have not been investigated here. However, the
scattering effect of such fields is expected to be similar to the
magnetic fields, although the particle energy may no longer be
constant in scatterings. Thus we expect the electrostatic and
fully electromagnetic fields to result in qualitatively similar
effects, though quantitative predictions may differ.

We propose that quasicollisional magneto-optic effects may
be exploited for diagnostic purposes. Since the effective qua-
sicollision frequency—the pitch-angle diffusion coefficient,
Eq. (2)—is proportional to the magnetic field correlation
length and the square of the small-scale magnetic fluctuations,
it provides a means by which the statistical properties
of the small-scale magnetic turbulence may be identified.
Additionally, the jitter radiation spectrum readily provides
a phenomenological definition for the effective collision
frequency, in the manner of Eq. (14). Jitter radiation may be
directly observable in several of these plasma environments,
e.g., high-intensity solid-density laser plasmas [30].

Our model, nonetheless, has some limitations. In particular,
strong sub-Larmor-scale magnetic fluctuations are not likely
present in all collisionless or weakly collisional plasmas. Lead-
ing candidates for the existence of strong fluctuations include:
collisionless shocks in gamma-ray bursts, early moments of
supernova explosions, high-intensity laser plasmas, turbulent
solar wind, and magnetosphere or magnetotail plasmas. Our
principal assumption that the system spatial scale is much
greater than the small-scale magnetic correlation length seems
to rule out most interstellar and intergalactic plasmas, where
the magnetic correlation lengths are believed to be ∼100 pc
and ∼kpc–Mpc, respectively [31,32]. Allowing for hidden
small-scale components (with smaller correlation lengths) in
these environments requires unrealistically large magnetic
fields to keep the absorption e-folding distance at parsec to
kiloparsec scales; this is required so that a signal may not be
completely absorbed in transit.

To conclude, the obtained results suggest that small-
scale magnetic fluctuations conceal a collisional signature,
which may provide a useful radiative diagnostic of magnetic
micro-turbulence in laboratory, astrophysical, space, and solar
plasmas, as well as significantly affect performance of inertial
confinement fusion and laser plasma experiments.
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Nordlund, Astrophys. J. 737, 55 (2011).
[21] B. Reville and J. G. Kirk, Astrophys. J. 724, 1283 (2010).
[22] Y. Teraki and F. Takahara, Astrophys. J. 735, L44 (2011).
[23] G. Bekefi, Radiation Processes in Plasmas (Wiley, New York,

1966).
[24] S. Sazhin, Whistler-mode Waves in a Hot Plasma (Cambridge

University Press, Cambridge, UK, 1993).
[25] M. Brambilla, Kinetic Theory of Plasma Waves: Homogeneous

Plasmas, International Series of Monographs on Physics Vol. 96
(Clarendon, Oxford, UK, 1998).

[26] J. X. Ma, Phys. Scr. 71, 540 (2005).
[27] A. Yesil, M. Aydogdu, and A. G. Elias, Prog. Electromagn. Res.

Lett. 1, 93 (2008).
[28] S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. John-

son, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W.
Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W.
Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely,
M. A. Stoyer, S. C. Wilks, and K. Yasuike, Phys. Plasmas 7,
2076 (2000).

[29] V. S. Belyaev, V. P. Krainov, V. S. Lisitsa, and A. P. Matafonov,
Phys. Usp. 51, 793 (2008).

[30] B. D. Keenan and M. V. Medvedev, arXiv:1507.05857v1.
[31] R. Beck and R. Grave, Interstellar Magnetic Fields: Observation

and Theory: Proceedings of a Workshop Held at Schloss
Ringberg, 1986 (Springer-Verlag, New York, 1987).

[32] A. Neronov, A. M. Taylor, C. Tchernin, and I. Vovk,
Astron. Astrophys. 554, A31 (2013).

053102-9

http://dx.doi.org/10.1038/nphys3178
http://dx.doi.org/10.1038/nphys3178
http://dx.doi.org/10.1038/nphys3178
http://dx.doi.org/10.1038/nphys3178
http://dx.doi.org/10.1063/1.4920959
http://dx.doi.org/10.1063/1.4920959
http://dx.doi.org/10.1063/1.4920959
http://dx.doi.org/10.1063/1.4920959
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1103/PhysRevLett.80.3077
http://dx.doi.org/10.1103/PhysRevLett.80.3077
http://dx.doi.org/10.1103/PhysRevLett.80.3077
http://dx.doi.org/10.1103/PhysRevLett.80.3077
http://dx.doi.org/10.1086/338325
http://dx.doi.org/10.1086/338325
http://dx.doi.org/10.1086/338325
http://dx.doi.org/10.1086/338325
http://dx.doi.org/10.1086/319080
http://dx.doi.org/10.1086/319080
http://dx.doi.org/10.1086/319080
http://dx.doi.org/10.1086/319080
http://dx.doi.org/10.1086/321346
http://dx.doi.org/10.1086/321346
http://dx.doi.org/10.1086/321346
http://dx.doi.org/10.1086/321346
http://dx.doi.org/10.1086/519277
http://dx.doi.org/10.1086/519277
http://dx.doi.org/10.1086/519277
http://dx.doi.org/10.1086/519277
http://dx.doi.org/10.1103/PhysRevE.88.013103
http://dx.doi.org/10.1103/PhysRevE.88.013103
http://dx.doi.org/10.1103/PhysRevE.88.013103
http://dx.doi.org/10.1103/PhysRevE.88.013103
http://dx.doi.org/10.1103/PhysRevE.92.033104
http://dx.doi.org/10.1103/PhysRevE.92.033104
http://dx.doi.org/10.1103/PhysRevE.92.033104
http://dx.doi.org/10.1103/PhysRevE.92.033104
http://dx.doi.org/10.1086/309374
http://dx.doi.org/10.1086/309374
http://dx.doi.org/10.1086/309374
http://dx.doi.org/10.1086/309374
http://dx.doi.org/10.1088/0004-637X/737/2/55
http://dx.doi.org/10.1088/0004-637X/737/2/55
http://dx.doi.org/10.1088/0004-637X/737/2/55
http://dx.doi.org/10.1088/0004-637X/737/2/55
http://dx.doi.org/10.1088/0004-637X/724/2/1283
http://dx.doi.org/10.1088/0004-637X/724/2/1283
http://dx.doi.org/10.1088/0004-637X/724/2/1283
http://dx.doi.org/10.1088/0004-637X/724/2/1283
http://dx.doi.org/10.1088/2041-8205/735/2/L44
http://dx.doi.org/10.1088/2041-8205/735/2/L44
http://dx.doi.org/10.1088/2041-8205/735/2/L44
http://dx.doi.org/10.1088/2041-8205/735/2/L44
http://dx.doi.org/10.1238/Physica.Regular.071a00540
http://dx.doi.org/10.1238/Physica.Regular.071a00540
http://dx.doi.org/10.1238/Physica.Regular.071a00540
http://dx.doi.org/10.1238/Physica.Regular.071a00540
http://dx.doi.org/10.2528/PIERL07111303
http://dx.doi.org/10.2528/PIERL07111303
http://dx.doi.org/10.2528/PIERL07111303
http://dx.doi.org/10.2528/PIERL07111303
http://dx.doi.org/10.1063/1.874030
http://dx.doi.org/10.1063/1.874030
http://dx.doi.org/10.1063/1.874030
http://dx.doi.org/10.1063/1.874030
http://dx.doi.org/10.1070/PU2008v051n08ABEH006541
http://dx.doi.org/10.1070/PU2008v051n08ABEH006541
http://dx.doi.org/10.1070/PU2008v051n08ABEH006541
http://dx.doi.org/10.1070/PU2008v051n08ABEH006541
http://arxiv.org/abs/arXiv:1507.05857v1
http://dx.doi.org/10.1051/0004-6361/201321294
http://dx.doi.org/10.1051/0004-6361/201321294
http://dx.doi.org/10.1051/0004-6361/201321294
http://dx.doi.org/10.1051/0004-6361/201321294



