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Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
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This article presents a calculation of the mean electromotive force arising from general small-scale
magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With
the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic
fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary
result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic
fluctuations can produce large-scale dynamo action—the magnetic analog of the “shear-current” effect. In
addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no
strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due
to shear and rotation, are each of opposing signs and tend to cancel each other.
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I. INTRODUCTION

Explaining the amplification of magnetic fields with cor-
relation lengths larger than the underlying fluid motions has
proven to be a fascinating and rich problem in astrophysics.
From the early days of mean-field dynamo theory it has
been well known that the presence of fluid helicity enables
such behavior [1,2]. This is the so-called α effect, where the
small-scale turbulence creates an electromotive force (EMF),

E = 〈u × b〉,
that is proportional to a large-scale magnetic field, E = αB,
leading to exponential instability in the kinematic regime.
While this simple α effect is now well established and regularly
observed in simulations, a variety of complications exist in
explaining observations. For one, in some situations—for
instance, the inner regions of accretion disks—there is no
reason to expect a helical flow and symmetry arguments
demonstrate that α = 0, yet dynamo action is still observed in
numerical experiments [3,4]. Less obviously, nonlinear effects
caused by the fast buildup of small-scale fields can “quench” α

dynamos before significant mean-field amplitudes are reached
[5,6]. Since the effectiveness of this quenching increases with
the Reynolds numbers, it remains unclear whether mean-field
theory is able to explain the observed field amplitudes in
the nearly dissipation-free plasmas prevalent in astrophysical
environments. For these reasons, it is interesting to consider
other possibilities for mean-field dynamo action, in particular
the effects of velocity gradients and strong homogeneous
magnetic fluctuations.

In this paper, we present a very general theoretical examina-
tion of different mean-field dynamo effects, within the second-
order correlation approximation (SOCA). In particular, we
include the effects of specified large-scale velocity gradients,
rotation, density and turbulence stratification, helicity, and a
bath of strong small-scale magnetic fluctuations (treated in
the same way as the velocity fluctuations). For our primary
inspiration in this work—the accretion disk dynamo—each
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of these effects can be important in some way, and this will
also be the case in a wide variety of other astrophysical
scenarios. Of particular note is the presence of homogeneous
magnetic fluctuations, which have not been included in most
previous theoretical mean-field dynamo investigations (but
see Vainshtein and Kichatinov [7] and Pouquet et al. [8]
for early treatments, as well as Refs. [9–11]). Magnetic
fluctuations should be generically present, at a similar level
to velocity fluctuations, in magnetohydrodynamic (MHD)
turbulence above moderate Reynolds numbers due to small-
scale dynamo action. While SOCA itself cannot capture the
small-scale dynamo, by assuming the presence of the magnetic
fluctuations we can compute expected changes to the EMF, in
particular whether a small-scale magnetic field might suppress,
or enhance, kinematic dynamo effects.

The most important result presented here is an analytic
confirmation of our numerical work related to the “magnetic
shear-current effect” [12,13]. Generically, this type of dynamo
is nonhelical, driven by the interaction of an off-diagonal
turbulent resistivity with a mean shear flow [14–17]. The kine-
matic version of this effect has been somewhat controversial,
with disagreement between early work [15,17] and subsequent
investigations [18,21] over the sign of the crucial transport
coefficient ηyx . Here, we show that the magnetic version of this
effect is much more robust and of the correct sign—not only
is its magnitude substantially larger than the kinematic effect,
but a variety of calculation methods agree on this: SOCA,
the spectral τ approximation [9], quasilinear theory [12,21],
and perturbative shearing wave calculations [22]. With this
array of other calculations, we feel that SOCA calculations are
important, not because they should be more accurate than other
methods, but because they are simple, have a well-understood
range of validity, and allow exploration of expressions across
a range of parameters (e.g., magnetic Prandtl number). This
final consideration is notable since it provides the researcher
with some indication of the robustness of a given effect, for
instance by noting if the sign of a given transport coefficient is
particularly sensitive to slight changes in parameters. Finally,
all of our results related to ηyx have been confirmed through
direct numerical simulations [12,13]. Most important is the
measurement of a marked decrease in ηyx after saturation of
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the small-scale dynamo in sheared turbulence, accompanied
by excitation of a coherent mean-field dynamo [13].

Turbulence and density stratification is invariably signif-
icant in astrophysical scenarios, including in accretion disks
away from the central plane of the disk. With this application in
mind, we also apply our results to the case of stratified rotating
turbulence with strong velocity shear, considering the resulting
α effects. We find that for a Keplerian (or more generally,
anticyclonic) rotation profile, the contributions from shear and
rotation, and those from kinetic and magnetic fluctuations,
are each of opposite signs. The dominant contribution will
depend strongly on the magnetic Prandtl number Pm, as well
as the relative intensities of magnetic and kinetic turbulence.
This is confusing in light of the beautifully coherent “butterfly
diagrams” that are often seen in stratified accretion-disk
simulations [23–26], which would suggest a robust negative
value for αyy . We note that the contributions to these α effects
from velocity shear are at least as strong as those from rotation
and should not generally be neglected.

Before continuing, it seems worth discussing how the
linear transport coefficients presented in this work might be
applied to understanding magnetic field generation observed
in nature or numerical simulation. In particular, since we
assume throughout this work that the mean magnetic field is a
small perturbation to the turbulence, the direct applicability of
results to turbulence in astrophysical objects is limited. This
is particularly true in the presence of magnetic fluctuations,
since the large-scale magnetic field will quickly come into
equipartition with the (strong) small-scale field due to the
finite domain [12], meaning any linear dynamo growth phase
is necessarily of limited duration. Thus, rather than expecting
quantitative applicability, the presence of a dynamo instability
should be taken as an indication that the turbulence will always
be accompanied by large-scale structures, presumably in some
nonlinearly saturated or time-dependent state. For example,
the “butterfly diagram” field migration pattern observed in
stratified shearing box simulations could most simply be ex-
plained as the saturated state of an αω type dynamo, where the
field migration is caused by the imaginary part of the dynamo
growth rate [see Eq. (12)]. However, there is no particular
reason to expect the saturation of the dynamo to be so simple;
because the mean field itself strongly influences the turbulence,
a wide variety of nonlinear effects are possible beyond a
simple dependence of transport coefficients on the mean field,
for instance those related to magnetic helicity transport [27]
or generation of cross helicity [28] (see Sec. V for further
discussion). Similarly, for the magnetic shear-current effect,
the linear theory presented here can in no way hope to explain
cyclic behavior observed in disk simulations [4,26]. Given
their much greater complexity, we leave exploration of these
interesting topics to future work.

The structure of our calculation almost identically follows
that of Rädler and Stepanov [19] (hereafter RS06), with the
additional effects of magnetic fluctuations, density stratifica-
tion (within an anelastic approximation) and net helicity. The
inclusion of such a variety of physical effects leads to a rather
prodigious number of terms, and we have used the VEST
package [29] in Mathematica to carry out the bulk of the
calculations. We start, in Sec. II, by outlining the setup of
the calculation, including the most general form of E allowed

by the symmetries of the problem, as well as the relation of
the transport coefficients in Cartesian domains with velocity
shear to this general form. We also give the perturbation
expansion used, which is a generalization of that in RS06
to include magnetic turbulence at lowest order. In Sec. III, we
outline the procedure used in the calculation itself, skipping
many details for the sake of brevity. Particular focus is placed
on the unstratified shear dynamo—especially the magnetic
shear-current effect—in Sec. IV, while the stratified α effect is
examined in the same geometry in Sec. V. Readers interested
primarily in the application of calculated coefficients to disk
dynamos may wish to skip directly to these sections. Due to
the length of algebraic expressions, the full set of transport
coefficients is given in Appendix B.

II. FUNDAMENTALS OF MEAN-FIELD
ELECTRODYNAMICS

Our starting point, common to most mean-field dynamo
calculations, is the system of compressible MHD equations,

∂ρ

∂t
+ ∇ · (ρUT ) = 0,

ρ
∂UT

∂t
+ ρ(UT · ∇)UT + 2ρ� × UT + ∇p

= BT · ∇BT + ∇ · [ρν(∇UT + (∇UT )T )

+ ρζ̄ δij∇ · UT ] + σ u,

∂ BT

∂t
= ∇ × (UT × BT ) + η∇2 Bt + σ b,

∇ · UT = 0, ∇ · BT = 0. (1)

Here UT and BT are the full velocity and magnetic fields, ν̄

is the kinematic viscosity, ζ̄ is the bulk viscosity (this will not
contribute), and η̄ is the resistivity. We have included the effects
of rotation through a mean Coriolis force (2ρ� × UT ) in the
momentum equation. Before calculating transport coefficients
from Eq. (1), we shall apply an anelastic approximation
[30,31], assuming nearly incompressible fluctuations with
∇ · (ρu) = 0 [see Eq. (2)]. This allows low-order effects due
to a mean density gradient to be retained, while still preserving
most of the simplicity of an incompressible calculation.

Mean-field dynamo theory [1,2] involves splitting fields
into a mean and fluctuating part:

UT = U + u, BT = B + b, (2)

with U = 〈UT 〉, B = 〈BT 〉. The averaging operation 〈·〉
should filter out small scales and satisfy the Reynolds averag-
ing rules (later in the article we will specify 〈·〉 as a horizontal
spatial average). Applying 〈·〉 to the induction equation leads
to the well-known mean-field induction equation

∂t B = ∇ × (U × B) + ∇ × E + ν�B, (3)

where E = 〈u × b〉 is the electromotive force (EMF). The goal
of mean-field theory is to calculate E as a function of B and
other parameters in the problem (i.e., U , �, ∇ ln ρ and the
small-scale turbulence statistics), thereby closing Eq. (3). If
E(B) is such that a small magnetic field will be reinforced by
the small-scale turbulence, a dynamo instability results.
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Before commencing with a full calculation of E , it is worth
examining the symmetries of the problem. Assuming scale
separation between the mean and fluctuating fields, we can
Taylor expand the EMF as

Ei = aijBj + bijkBj,k + · · · (4)

where we use the Einstein summation convention and the
comma denotes a derivative. The tensors aij and bijk are
the transport coefficients determined by the turbulence. In
keeping with the separation of scales assumption, we shall
consider linear B fields (B)i = Bi + Bijxj , velocity fields
(U)i = Uijxj , and density ρ = ρ0 + ρ0 x · ∇ ln ρ (the con-
stant velocity part can be removed by Galilean transformation).
As in RS06, to cleanly separate different dynamo effects into
scalar coefficients, it is helpful to split ∇U and ∇B into
symmetric and antisymmetric parts,

Uij = Dij − AU
ij = Dij − 1

2εijkWk,

Bij = (∇B)(s)
ij − AB

ij = (∇B)(s)
ij − 1

2εijkJk, (5)

where Dij and (∇B)(s)
ij are the symmetric parts of Uij and

Bij respectively (similarly AU
ij and AB

ij are the antisymmetric
parts), W = ∇ × U is the background vorticity, and J = ∇ ×
B is the mean current. Due to the assumption ∇ · U = 0 in
our calculation, we have implicitly assumed U · ∇ρ = 0, a
requirement that could easily be relaxed if desired.

We consider general inhomogeneous background turbu-
lence in both u and b, modified by mean velocity gradients,
rotation, and density stratification. The density stratification is
assumed to be aligned with the turbulence stratification in the
direction ĝ, but we allow their magnitudes and signs to differ;
that is, defining

∇ ln ρ = χρ ĝ, ∇ ln ū = χū ĝ, ∇ ln b̄ = χb̄ ĝ (6)

(where ū = 〈u2
0〉1/2, b̄ = 〈b2

0〉1/2), we allow χρ �= χū �= χb̄.
For completeness, we include both nonhelical and helical
contributions to the turbulence1 but neglect the effects of
inhomogeneity on the helical part.2 We assume that the
EMF due to the background turbulence vanishes, 〈u × b〉0 =
0 (note that, due to the statistical average, this does not
necessarily restrict the turbulent cross helicity 〈u · b〉0). Such
a B independent contribution could be important in some
situations (see, for example, Yoshizawa and Yokoi [32]) and
the method applied here can be used to calculate well-known
effects of this type if desired, for instance the cross-helicity
effect [28]. In addition, we do not calculate the components of
the Reynolds stress, which would force a mean-field velocity
U . This is not justified for any particular reason other than our
primary interest in the magnetic field dynamics. While it is

1Our primary reasoning for including the helical part of the
correlation here has been to check that standard results, e.g., α(0) ∼
〈u · ∇ × u〉 − 〈b · ∇ × b〉 [8], are obtained using this method.

2Stratification of helical turbulence would presumably provide a
host of contributions to the resistivity tensor that would likely be
much smaller than contributions from the nonhelical fluctuations, due
to being higher order. Given the rather immense size of the calculation
without such effects, it seemed prudent to ignore these.

possible that there are important interactions between U and
B that lead to other instabilities [33], we leave their systematic
study to future work.

A careful consideration of the symmetry properties of the
system leads to the general representation of E in terms of a
set of scalar transport transport coefficients (see RS06 for a
full explanation)

E = − α
(0)
H B − α

(D)
H DijBj − γ

(�)
H � × B − γ

(W )
H W × B

− α
(�)
1 ( ĝ · �)B − α

(�)
2 [( ĝ · B)� + (B · �) ĝ]

− α
(W )
1 ( ĝ · W )B − α

(W )
2 [( ĝ · B)W + (B · W ) ĝ]

− α(D)(εilmDlj ĝm + εjlmDli ĝm)Bj

− (γ (0) + γ (�) ĝ × � + γ (W ) ĝ × W + γ (D)Dij ĝj ) × B

− β(0) J − β(D)DijJj − (
δ(W )W + δ(�)�

) × J

− (
κ (W )W + κ (�)�

)
j
(∇B)(s)

ji − 2κ (D)εijkDkr (∇B)(s)
jr .

(7)

Here we have conformed to the sign conventions in RS06
and use the Einstein summation convention. The subscript
·H denotes a coefficient that is only allowed by the helical
part of the turbulence, while all other coefficients arise only
through the nonhelical part. In addition, since we assume
small-scale fluctuations in both u and b, we further split
each transport coefficient into these contributions; e.g., κ (W ) =
(κ (W ))u + (κ (W ))b. Since we work with SOCA in the linear
regime (where B is small), these are always additive and can be
calculated separately from the u and b turbulent contributions.

A. Cartesian domains

In Sec. IV we shall give specific results for the numer-
ically convenient Cartesian shear dynamo with nonhelical,
unstratified background turbulence. This is essentially a
generalization of the unstratified shearing box that is often used
in accretion-disk simulations. In this case, mean fields depend
only on z, U = −Sx ŷ (giving W = −S ẑ), � = � ẑ, and the
mean-field average is defined as an average over x and y,
〈·〉 = (LxLy)−1

∫ · dxdy. The mean-field equations simplify
to

∂tBx = −ηyx∂
2
z By + ηyy∂

2
z Bx,

∂tBy = −SBx − ηxy∂
2
z Bx + ηxx∂

2
z By, (8)

where the ηij are defined to be the relevant components of bijk

that are nonzero for the chosen average and mean field. For
Bi = Bi0e

ikze�t a coherent dynamo is possible if

� = k
{−Sηyx + k2

[
ηxyηyx + 1

2 (ηxx − ηyy)2
]}1/2

−k2(ηxx + ηyy) (9)

has a real part greater than 0. One can neglect the term
multiplying k2 in the square root in Eq. (9) since S is presumed
to be large compared to all transport coefficients. This gives
η21S < 0 as a necessary condition for instability. Computing
the relationship between Eqs. (7) and (8) shows

ηyx = −S
[
δ(W ) − 1

2

(
κ (W ) − β(D) + κ (D)

)]
+�

(
δ(�) − 1

2κ (�)
)
,
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ηxy = S
[
δ(W ) − 1

2

(
κ (W ) + β(D) − κ (D))]

−�
(
δ(�) − 1

2κ (�)
)
, (10)

and ηxx = ηyy = β(0). Note that Eq. (9) only describes the
growth due to a coherent dynamo process and fluctuations in
α or η that arise in any finite system can cause a dynamo in and
of themselves [12,34,35]. We shall specialize to the Cartesian
case in Sec. IV and keep U general for the calculation of the
transport coefficients listed in Eq. (7).

In Sec. V we give results specific to the case of stratified
sheared rotating turbulence. This is motivated by consideration
of the upper (or lower) portions of an accretion disk. Again,
mean fields depend only on z, U = −Sx ŷ, � = � ẑ, and ĝ =
ẑ. We neglect off-diagonal resistivity contributions and use
ηxx = ηyy = β(0). The mean-field equations simplify to

∂tBx = −ayx∂zBx − ayy∂zBy + β(0)∂2
z Bx,

(11)
∂tBy = −SBx + axy∂zBx + axx∂zBy + β(0)∂2

z By.

With axy = −ayx , considering Bi = Bi0e
ikze�t , one obtains

the growth rate

� =(
ikSayy/2 + k2ayyaxx

)1/2 + ikaxy − k2β(0). (12)

Again, S is presumed large in comparison to all transport
coefficients, so we see that any nonzero ayy can lead to
instability at sufficiently long wavelength. Of course, in
practice there will be a minimum k possible in the system,
particularly since ayy arises from a stratification, so a finite ayy

will be necessary to overcome the turbulent resistivity. The
coefficients in Eq. (11) are related to those in Eq. (7) through
axy = −ayx = γ (0) and

ayy = S
(
α

(W )
1 − α(D)) − �α

(�)
1 ,

(13)
axx = S

(
α

(W )
1 + α(D)

) − �α
(�)
1 .

B. Perturbation expansion to describe the fluctuations

For the calculation of E we use the second-order corre-
lation approximation (SOCA), which involves solving linear
equations for the fluctuations by neglecting third-order and

higher correlations. As such, this is rigorously valid only
at low Reynolds numbers where dissipation dominates over
nonlinearities for the fluctuations [SOCA can also be valid in
the small Strouhal number limit [Eq. (31)]; see Brandenburg
and Subramanian [36] for a more thorough discussion]. In
addition, we choose to include the shear, rotation, and density
stratification perturbatively [17,19], considering only the linear
response of transport coefficients to these effects. An analytic
calculation with shear included at zeroth order can be found
in [21], and some examples of calculations that include
nonlinear contributions from other effects can be found in
Refs. [9,10,30,31,37]. In a very general calculation, Pipin [11]
nonlinearly includes all effects discussed here (although the
approach, the “minimal τ approximation,” has a somewhat
unknown range of validity). We have also computed the
magnetic dynamo transport coefficients with nonperturbative
shear and rotation using statistical simulation in the shearing
box [12].

Following Rüdiger and Kichatinov [31], Kichatinov and
Rüdiger [30], and Rüdiger [37], we start by making an anelastic
approximation to the full compressible equations, ∇ · (ρu) =
0. This should be valid for weakly compressible turbulence
and allows the inclusion of a weak density stratification into
the problem, which is important in a wide variety of mean-
field dynamos. We shall assume that the large-scale flow is
incompressible, since our primary application is to shear flows.
It is then more convenient to work in terms of the small-
scale momentum [30,31], m ≡ ρu, since the calculation for m
proceeds in a similar manner to the incompressible case.

In retaining both strong homogenous velocity and magnetic
fluctuations, denoted u0 (or m0) and b0 respectively, we
must treat the momentum and induction equations on the
same theoretical footing. We start from Eq. (1) by split-
ting into mean-field and fluctuation equations, applying the
anelastic approximation followed by the change of variables
u0 = m0/ρ. We then linearize the small-scale equations and
expand m = m0 + m(0) + m(1) . . . , b = b0 + b(0) + b(1) . . . ,
to perturbatively find the change to the background turbulence
caused by the shear, rotation, and stratification. This leads to
the SOCA equations that will be used to calculate all transport
coefficients:

(∂t − ν�)m(0) = −[m0 · ∇U + U · ∇m0 − (gρ · U)m0] − ∇p(0) − 2� × m0 + (
b0 · ∇B + B · ∇b(0)

) − νgρ · ∇m0

(∂t − ν�)m(1) = −[
m(0) · ∇U + U · ∇m(0) − (gρ · U)m(0)

] − ∇p(1) − 2� × m(0) + (
b(0) · ∇B + B · ∇b(0)

) − νgρ · ∇m(0)

(∂t − η�)b(0) = ρ−1
[
(gρ · m0)B − m0 · ∇B + B · ∇m0 − (gρ · B)m0

] + b0 · ∇U − U · ∇b0,

(∂t − η�)b(1) = ρ−1[(gρ · m(0))B − m(0) · ∇B + B · ∇m(0) − (gρ · B)m(0)] + b(0) · ∇U − U · ∇b(0), (14)

along with divergence constraints for each m(0), b(0), m(1), and b(1). Here gρ ≡ χρ ĝ and we have neglected second derivatives
of U and ρ, as well as products of ∇B with χρ [these contributions should vanish in the transport coefficients, since Eq. (7)
illustrates that there is no contribution to the resistivity due to ĝ at linear order]. In addition, we shall neglect any terms that
involve quadratic products of U , �, and χρ [e.g., (gρ · U)m0], and expand all terms to linear order to take the Fourier transport
of Eq. (14) (see Appendix A).

While it may seem surprising that one requires terms two orders higher than m0 and b0, it is straightforward to see that only
considering m(0) and b(0) will not lead to contributions to E that depend on products of B with U or � (these are the interesting
terms in the dynamo, describing the effect of rotation or velocity). With this in mind, the EMF is calculated as

Eij = 〈
uibj

〉 = 〈
ρ−1m0ib0j

〉 + 〈
ρ−1m0ib

(0)
j

〉 + 〈
ρ−1m0ib

(1)
j

〉 + 〈
ρ−1m

(0)
i b0j

〉 + 〈
ρ−1m

(1)
i b0j

〉 + 〈
ρ−1m

(0)
i b

(0)
j

〉
. (15)
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Despite the fact that all the terms in Eq. (15) give some
contribution, there are also a large number of terms that contain
quadratic products of Uij , �i , χρ , or B, which are neglected.
As is evident, with background turbulence in both u and b
there will be contributions to E from the Maxwell stress
(B · ∇b + b · ∇B) that one would expect to be of a similar
magnitude to the standard kinematic dynamo arising from
the Lorentz force [∇ × (u × B)]. This choice of perturbation
expansion is the natural generalization of RS06 to the case with
b0 fluctuations (although note that u(1) in RS06 has become u(0)

in our notation such that u and b are treated on equal footings).
Our results for the kinematic dynamo (b0 = 0) without density
stratification agree with RS06 aside from a single numerical
coefficient (see Appendix B).

III. OUTLINE OF THE CALCULATION OF E

Our calculation follows the methods and notation in RS06
and a full explanation is given there. Here we give a very
brief outline, in particular the choices involved, with final
results given in Appendix B. We have carried out the entire
calculation in Mathematica using the VEST package [29]
to handle abstract tensor manipulations using the Einstein
summation convention.

The two-point correlation of two fields v and w is defined
as

φ
(vw)
ij

(
x1,t1; x2,t2

) = 〈
vi(x1,t1)wj (x2,t2)

〉
. (16)

It is convenient to write such quantities in the variables

R = (x1 + x2)/2, r = x1 − x2,
(17)

T = (t1 + t2)/2, t = t1 − t2,

giving

φ
(vw)
ij (R,T ; r,t) =

〈
vi

(
R + r

2
,T + t

2

)

× wj

(
R − r

2
,T − t

2

)〉
. (18)

One then Fourier transforms in the small-scale variable r to
obtain

φ
(vw)
ij (R,T ; r,t) =

∫
dk dω φ̃

(vw)
ij (R,T ; k,ω)ei(k·r−ωt), (19)

with

φ̃
(vw)
ij (R,T ; k,ω) =

∫
d K d�

〈
[v̂]+[ŵ]−

〉
ei(K ·R−�T ), (20)

where v̂ = v̂(k,ω) and ŵ = ŵ(k,ω) denote the Fourier trans-
forms of v and w, and we use the [·]± notation of RS06,

[f̂ (k,ω)]± = f̂ (±k + K/2, ± ω + �/2). (21)

As in RS06 we shall calculate

Eij (R,T ; 0,0)

=
∫

dk dω Ẽ ij (R,T ; k,ω)

=
∫

d K d�dk dω 〈[ρ−1m̂i]+[b̂i]−〉ei K ·R−i�T

=
∫

d K d�dk dωρ−1
0

× 〈
[m̂i − igρj ∂kj

m̂i]+[b̂i]−
〉
ei K ·R−i�T , (22)

setting R, T → 0 only after extracting the coefficients of Bi

and Bij (i.e., the transport coefficients aij , bijk).
With these notations defined, the starting point of the

calculation is the substitution of the linear forms for U , ρ,
and B and into Eq. (14), followed by a Fourier transform. This
leads to Eqs. (A2)–(A5). One then substitutes m̂

(0)
i and b̂

(0)
i

into m̂
(1)
i and b̂

(1)
i to form explicit expressions for ûi and b̂i in

terms of û0i and b̂0i . Defining

m̃ij = 〈[m̂0i]+[m̂0j ]−〉,
b̃ij = 〈[b̂0i]+[b̂0j ]−〉,

to specify the statistics of u0 and b0, this allows one to form
Eq. (15) in terms of m̃ij and b̃ij , neglecting all terms that
contain UijUrs , Uij�j , �i�r , Uijχρ,�iχρ, (∇ ln ρ)2, or any
products of Bi and Bij . Recall that we have assumed 〈u0b0〉 =
0, implying that all terms in the expansion of Eij contain
Bi or Bij . In keeping with the expansion to linear order
in background quantities, it is necessary to expand [f (k)]±
to first order in K in those terms that contain Bi (i.e., α

coefficients). These lead to terms involving the gradient of the
turbulence intensity. Note that [f (k)]± → f (±k) for resistive
terms (coefficients of Bij ). Some useful identities in the above
procedure are given in RS06 Eqs. (33)–(35), which are needed
to remove ∂/∂ki derivatives from u0i and b0i . Similarly, we
apply the identities

kim̃ij = −Ki

2
m̃ij , kim̃ji = Ki

2
m̃ji (23)

(and similarly for b̃j i), which arise from the divergence
constraints on m̂i and b̂i .

Extracting the coefficients of Bi and Bij in the expression
for Ei = εijkEjk(0,0), at this stage we have large integral
expressions for aij and bijk in terms of m̃ij and b̃ij and
their spatial derivatives [for example, RS06 Eqs. (39)–(40)].
Without further interpretation, such expressions are nearly
useless, and it is helpful to insert explicit forms for m̃ij and
b̃ij . Assuming isotropy in the limit of vanishing mean flow and
rotation, we insert

m̃ij = 1

2

[
δij − kikj

k2
− 1

2k2
(kiKj − kjKi)

]
Wm(K ; k,ω)

− iεij l

kl

k2
Hu(k,ω),

b̃ij = 1

2

[
δij − kikj

k2
− 1

2k2
(kiKj − kjKi)

]
Wb(K ; k,ω)

− iεij l

kl

k2
Hb(k,ω), (24)

where k = |ki |. Here Wm,b represents a nonhelical part and
Hm,b a helical part of the background turbulence [30,31]. This
form for Wm is particularly convenient since it can be shown
that to first order in the scale of density variation

Wm(x; k,ω) = ρ2(x)Wu(x; k,ω), (25)
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where Wu(x; k,ω) is a similar function specifying the statistics
of u and Wm(x; k,ω) = ∫

d Kei K ·xWm(K ; k,ω) [30]. In this
way,

∇Wm(x; k,ω) = ĝ(2χρ + 2χū)Wm(x; k,ω), (26)

separating the effects due to density and turbulence stratifica-
tion. Similarly, for the magnetic fluctuations

∇Wb(x; k,ω) = 2 ĝχb̄Wb(x; k,ω). (27)

It transpires that all terms now depend on k only through k,
and all of the integrals can be substantially simplified using∫

dk kikjf (k) = 1

3
δij

∫
dk k2f (k),∫

dk kikj kkklf (k) = 1

15

(
δij δkl + δikδjl + δilδjk

)
×

∫
dk k4f (k), (28)

where the integrals over k on the right-hand side of
Eq. (28) are taken from k = 0 → ∞. One then splits Uij and
Bij using Eq. (5), putting Ei in the form given by Eq. (7).
One can straightforwardly read off the transport coefficients
α

(0)
H , . . . ,α(�), . . . ,β(0), . . . , as integrals of the form

(
α

(·)
H

)
u,b

= 4π

∫
dk dω k2α̃

(·)
H (k,ω)Hu,b(k,ω),

(
α(·))

u,b
= 4π

∫
dk dω k2α̃(·)(k,ω)Wu,b(k,ω), (29)

(
β(·))

u,b
= 4π

∫
dk dω k2β̃(·)(k,ω)Wu,b(k,ω).

The full list of coefficients α̃
(0)
H , . . . ,α̃(�), . . . ,β̃(0), . . . is given

in Appendix B.
Finally, it is possible to carry out the integrals of the

form in Eq. (29) for a specific form of W and H , leading
to explicit expressions for the transport coefficients in terms
of the physical parameters. A convenient form for examining
expressions and plotting is the Gaussian W used in RS06,

Wu = u2
rms

2λ3
cτc

3(2π )5/2

(kλc)2e−(kλc)2/2

1 + (ωτc)2 , (30)

with a similar definition of Wb. With this choice, all integrals
can be carried out explicitly without further approximation.
As in RS06, we shall write such expressions in terms of the
nondimensional variables (and ρ0)

ε = brms/urms, p = λ2
c/ντc, q = λ2

c/ητc, Pm = ν/η,

Re = urmsλc/ν, Rm = urmsλc/η, St = urmsτc/λc. (31)

Here Pm, Re, Rm, and St are respectively the magnetic Prandtl
number, the fluid Reynolds number, the magnetic Reynolds
number, and the Strouhal number. p and q are the ratio of
diffusion times, λ2

c/ν and λ2
c/η, to the correlation time τc.

Thus q → 0 denotes the low conductivity limit, while q → ∞
denotes a high conductivity limit (with a similar result for p

and fluid diffusivity). A sufficient condition for the validity
of SOCA (i.e., neglect of nonlinear terms in the correlation
equations) is Rm � 1 in the limit q → 0, and St � 1 in the
limit q → ∞; see Brandenburg and Subramanian [36] and

Rädler and Stepanov [19] for more discussion of these validity
regimes. In addition, we require that Uij and �i be a small
perturbation to the background turbulence. In practice, we
shall use these nondimensional variables [Eq. (31)] for plotting
transport coefficients.

We have carried out the full sequence of steps detailed
above in Mathematica using the VEST package [29] to enable
straightforward manipulation of tensors in index notation. This
has the obvious advantage of handling the very long expres-
sions with ease and making the calculation straightforward
to generalize or modify. The sequence of steps is essentially
the same as that detailed above. We first define m(0), m(1),
b(0), and b(1), insert m(0) and b(0) into m(1) and b(1), then only
later remove products that are quadratic in Uij , �, or χρ . It is
then straightforward to define [·]± operators, their associated
product rules, and methods to expand in K . This allows the
construction of the entirety of E in one step. Insertion of
the explicit forms for m̃ij and b̃ij [Eq. (24)] and the partial
integration using isotropy [Eq. (28)] is easily carried out using
replacement rules. Finally, we decompose products of Bij

with Uij , �, and ĝ into the form given in Eq. (7), allowing
the coefficients listed in Appendix (B) to be straightforwardly
extracted from the total expression. Finally, if so desired, these
can be directly integrated with the specific form of W [Eq. (30)]
by carefully substituting the dimensionless variables [Eq. (31)]
and using Mathematica’s native Integrate function. For the
interested reader, we include the full calculation notebook in
the Supplemental Material [38].

Agreement with previous works

Our results agree with related works of other authors in
special limits, including those utilizing different calculation
methods. As discussed throughout the work, all results of
RS06 are recovered in the limit ∇ ln ρ = 0 [aside from
one discrepancy, in (β(D))u]. This agrees with Rüdiger and
Kitchatinov [18], many results of Pipin [11], including his
magnetic contributions (see his Appendix B), as well as
the quasilinear methods in Sridhar and Subramanian [39]
and Singh and Sridhar [21]. As is well known, there is a
discrepancy between these kinematic quasilinear results and
those obtained using the τ approximation [9,17], possibly due
to a change in sign of ηyx with Rm [20]. As seen in Eq. (32) of
Pipin [11], his conclusions regarding the kinetic and magnetic
contributions to the shear-current effect (with rotation) are are
similar to ours. Our results also compare favorably to previous
works without velocity gradients, but including magnetic
fluctuations. As expected, the helical magnetic α effect has the
opposite sign to the kinematic effect, and there is no change to
β(0) due to the addition of magnetic fluctuations. In addition,
the signs of δ(�)

u and δ
(�)
b agree with the τ approximation

calculation of Rädler et al. [10] (δ(�)
u < 0, δ

(�)
b > 0, although

there is not an exact cancellation at ū = b̄ as in Rädler et al.
[10]).

The α effects arising through stratification and inhomo-
geneity also show broad agreement with previous works. Be-
cause of the linearity of the expansion in ∇ ln ρ, U , and �, the
density stratification contributes very little to the coefficients,
aside from directly through ∇Wm [Eq. (26)]. This means χρ

generally appears together with the turbulent gradient χū.
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The one exception to this is the “turbulent diamagnetism”
term, γ (0), which interestingly depends only on the turbulence
gradient, not the density gradient, due to a cancellation (this
is in agreement with Kichatinov and Rüdiger [30]). Again
our results without mean velocity broadly agree with the τ

approximation magnetic turbulence results given in Rädler
et al. [10], for instance, the fact that (γ 0)b = −(γ 0)u and
the opposing signs of the rotational kinematic and magnetic
diagonal α effects (α�

1 )u,b, with |(α�
1 )u| > |(α�

1 )b| (although
we see a strong dependence of these parameters on Pm;
see Sec. V).

IV. SPECIFIC RESULTS FOR UNSTRATIFIED
SHEAR DYNAMOS

In this section we discuss the results pertinent to our primary
motivation for this work, the shear dynamo in a Cartesian box.
As shown in Eq. (8), in this geometry with a horizontal mean-
field average, the number of transport coefficients reduces
significantly. We are particularly interested in the sign of the
ηyx coefficient, which should be most important for dynamo
growth due to its coupling with the shear [Eq. (9)]. Here we
outline the contribution to ηyx from velocity and magnetic
fluctuations in the presence of shear, both with and without
rotation. This geometry is particularly relevant for the central
regions of accretion disks, where there is strong flow shear,
stratification may be subdominant, and there is no obvious
source of helicity in either velocity or magnetic fluctuations
[4].

Utilizing Eq. (10) and the results in listed in Appendix B,
one obtains after some impressive cancellations

(ηyx)Su =
∫

dω dk
32πk2Wu(k,ω) ω2η̃2

15(η̃2 + ω2)2(ν̃2 + ω2)
, (32)

(ηyx)Sb =
∫

dω dk 8πk2ρ−1Wb(k,ω)

(
4ω4

15(ν̃2 + ω2)3

−2η̃ν̃3 + η̃2ν̃2 + 2ω2η̃2 + 3ω4

15(η̃2 + ω2)(ν̃2 + ω2)2

+ 4ω2η̃ν̃

15(η̃2 + ω2)2(ν̃2 + ω2)

)
, (33)

(ηyx)�u = −
∫

dω dk
64πk2Wu(k,ω)ω2η̃2

15(η̃2 + ω2)2(ν̃2 + ω2)
, (34)

(ηyx)�b = −
∫

dω

× dk
8πk2ρ−1Wb(k,ω)(ν̃4 − 12ω2ν̃2 + 3ω4)

15(ν̃2 + ω2)3
. (35)

Here ν̃ = νk2, η̃ = ηk2, integration over ω is from −∞ to ∞
and over k is from 0 to ∞. We have defined each coefficient
such that

ηyx = S
[
(ηyx)Su + (ηyx)Sb

] + �
[
(ηyx)�u + (ηyx)�b

]
, (36)

to keep all signs consistent. Recall from Eq. (9) that with our
definition of S, ηyxS < 0 is required for a growing dynamo
(note that this is the reverse of RS06). For Keplerian rotation,

(a)

(b)

(c)

FIG. 1. (Color online) Transport coefficients (ηyx)Su (solid, blue),
(ηyx)�u (dashed, blue), (ηyx)Sb (solid, orange), and (ηyx)�b (dashed,
orange) as a function of q for (a) Pm = 1, (b) Pm = 10, and (c)
Pm = 1/10 (lines also labeled on each plot). Each coefficient has been
calculated using the form given in Eq. (30) for W , and normalized
by (β (0))u with the magnetic diffusion time, λ2

c/η, held constant
(equivalently τc = 1/q). (Note that this choice is necessary because
the coefficients have different units, and is chosen purely for plotting
purposes, since it reduces the variation of coefficients with q.)

� = 2S/3, since vorticity and rotation are opposite (i.e.,
anticyclonic) when S and � have the same sign.

Let us first examine the coefficients for a kinematic
dynamo, i.e., with strong homogeneous velocity fluctuations
[the coefficients (ηyx)u, Eqs. (32) and (34)]. First, we note that
the contributions from S and � have identical forms, and that
the integrands are positive definite3; see Fig. 1. Thus, as is

3We have found a different result for (ηyx)Su from RS06, in particular
only obtaining the first part of their Eq. (D5), and are currently unsure
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well known, we see that (ηyx)Su , the “shear-current effect,” has
the incorrect sign for dynamo action within this quasilinear
approximation. Although the basic � × J effect (also known
as the Rädler effect) is well known, the explicit calculation
of transport coefficients including shear and rotation seems to
have been mostly ignored, although there is much discussion
in early literature on the subject (e.g., Krause and Rädler
[2], Moffatt and Proctor [14]). Given the identical forms of
Eqs. (32) and (34), we can immediately write down the result

(ηyx)u = (S − 2�)�, (37)

where � is the (positive) integral in Eq. (32). Thus, we find that
the addition of Keplerian rotation (� = 2S/3) (as relevant to
turbulence in accretion disks for example) will change the sign
of ηyx to slightly negative and a coherent dynamo instability
should be possible. Indeed, this is seen in our recent simulation
work [12], where we observe increasing coherency and a larger
growth rate as the rotation is increased in the anticyclonic
direction.

Turning to the coefficients for magnetic fluctuations we find
the interesting possibility of a magnetically driven dynamo.
In particular, as shown in Appendix (C) and Fig. 1, the
coefficient (ηyx)b is consistently negative and generally larger
than the other contributions. This implies that a dynamo can
be excited by magnetic fluctuations, themselves presumably
arising from a small-scale dynamo process, or perhaps an
MHD instability of some sort. Since the small-scale dynamo
is usually considered harmful to mean fields [5], this is an
interesting possibility—a buildup of magnetic noise on small
scales may cause a coherent large-scale dynamo to develop.
Interestingly, the u fluctuations that allow for this magnetic
shear-current effect arise solely through the pressure response
of the fluid; i.e., the ∇p term in Eq. (14). This can be seen
by redoing the calculation with only the pressure response
included in the m equations, which leads to identical results
for (ηyx)b. We note that the fluid pressure is also fundamental
for the vanishing of the magnetic contribution to the diagonal
turbulent resistivity (β0)b [Eq. (B21)], which is only zero
because of an exact cancellation between a term arising
through the pressure response and a term of a similar form
to (β(0))u [6]. Thus the magnetic shear-current effect is related
to the well-known lack of β quenching (i.e., (β(0))b = 0), but
arises in the off-diagonal resistivity due to the presence of a
large-scale shear flow.

The addition of rotation renders the effect of magnetic
fluctuations more complex, and no simple result seems
possible. In particular, the sign of the (ηyx)�b coefficient
depends on the parameters, and is generally negative for
large ν, η and positive at lower dissipation, although smaller
in magnitude than (ηyx)Sb . This change in sign is also seen
in quasilinear calculations [12]; however, given that the
quasilinear approximation becomes less valid in this limit, it

from where this discrepancy arises. We have one difference in the
full transport coefficients (in the β (D) term; see Appendix B), but this
difference alone does not fix the discrepancy. In any case, the main
conclusion—that (ηyx)Su has the incorrect sign for dynamo action—is
unchanged. Our expressions for (ηyx)�u are identical.

would be unwise to draw any conclusions about the high-Rm
limit from this behavior.

Finally, we note the possible relevance of this dynamo
to the central regions of accretion disks. In self-sustaining
turbulence simulations in this geometry, magnetic fluctuations
are generally substantially stronger than velocity fluctuations.
Such conditions seem ideal for excitation of a coherent dynamo
driven by the magnetic shear-current effect. We note that cyclic
behavior, as often observed in self-sustaining simulations
[4,26], seems to be quite generic in the nonlinear development
of the magnetic shear-current effect, and we have observed
this in low-Rm simulations with a forced induction equation
[12]. In addition, it is worth noting that Lesur and Ogilvie
[4] concluded that ηyx was the primary dynamo driver from
analysis of their numerical simulations. While more work is
obviously needed to explore this possibility in detail, it seems
reasonable to conclude that the magnetic shear-current effect
is playing a fundamental role.

V. SPECIFIC RESULTS FOR STRATIFIED
ACCRETION DISKS

In this section we briefly outline how our results apply to
stratified sheared rotating turbulence. Our primary motivation
is consideration of the upper and lower regions of accretion
disks, where the turbulence is stratified in density and intensity
by the vertical gravity, perpendicular to the velocity shear.
Self-sustaining turbulence simulations in this geometry (for
instance with shear-periodic boundary conditions in the radial
direction) exhibit a very coherent dynamo, with quasi-time-
periodic behavior in By and Bx creating a “butterfly diagram”
[24,25]. Large-scale magnetic structures are seen to emanate
from the central portion of the disk, migrating upwards into
the lower density regions and becoming more intense as they
do so [26]. This migration behavior would be characteristic
of a dynamo driven by αyy above and below the midplane:
as shown in Eq. (12), growth of this type of “αω” dynamo
is always accompanied by dynamo waves since � is complex.
Note that a negative imaginary part of � is required for upwards
migration of mean-field structures with ĝ = ẑ. This occurs for
ayy < 0, axy < 0, (ayx > 0) [40].

Utilizing Eq. (13) with the results listed in Appendix B, and
setting Pm = 1 here for simplicity, one obtains

(ayy)Su = 8πχρū

∫
dω dk

k2Wu(k,u)ν̃2(5ν̃2 + ω2)

15(ν̃2 + ω2)3
, (38)

(ayy)Sb= − 4πχb̄

∫
dω dk ρ−1Wb(k,u)k2 7ν̃4−4ω2ν̃2−3ω4

15(ν̃2 + ω2)3
,

(39)

(ayy)�u = − 64πχρū

∫
dω dk

k2Wu(k,u)ν̃2(ν̃2 + 5ω2)

15(ν̃2 + ω2)3
, (40)

(ayy)�b = − 64πχb̄

∫
dω dk

ρ−1Wb(k,u)k2ω2(ω2−3ν̃2)

15(ν̃2+ω2)3
. (41)

Finally, for the off-diagonal component, γ (0) = axy = −ayx ,
one has

(γ (0))u = 4πχū

∫
dω dk

k2Wu(k,u)η̃

3(η̃2 + ω2)
, (42)
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(γ (0))b = −4πχb̄

∫
dω dk

k2ρ−1Wb(k,u)η̃

3(η̃2 + ω2)
. (43)

Here we use the notation χρū = |∇ ln(ρū)|, and again signs
are defined such that

ayy = S
[
(ayy)Su + (ayy)Sb

] + �
[
(ayy)�u + (ayy)�b

]
(44)

for anticyclonic rotation, e.g., Keplerian rotation is � = 2/3S.
It is first worth noting the sign of each coefficient given in

Eqs. (38)–(43). With χρū, χb̄ > 0 it can be shown easily from
the above expressions that

(ayy)Su > 0, (ayy)Sb < 0, (ayy)�u < 0, da1(ayy)�b > 0.

(45)
(Note that for the b components, it is necessary to integrate by
parts over ω; see Appendix C). The relations in Eq. (45) appear
to also hold for Pm �= 1 (although we have a proof of this
only for the � coefficients). This consistent difference in sign
between contributions is rather inconvenient for the application
of SOCA results to stratified accretion disks. Since one expects
χρū < 0, χb̄ < 0 (although possibly χū > 0) [25,41], we are
left with the situation where not only do the α effects due to
u and b partially cancel, but also those due to rotation and
velocity shear! What is more, as shown in Fig. 2, the relative
contribution of each depends strongly on Pm. In particular,
we see a dominance of (ayy)u over (ayy)b for Pm � 1, but this
can reverse at low Pm. Similarly, the relative contributions
due to velocity shear and rotation for the magnetic effect
vary substantially with Pm, although the effect of shear seems
generally more substantial. While the ratio of kinematic shear
and rotation contributions may be somewhat more robust, the
two are roughly equal in magnitude, (ayy)Su ∼ −(ayy)�u , and
will approximately cancel for Keplerian rotation. Finally, it is
worth noting that to complement these uncertainties, the signs
of γ (0) seem to predict the opposite field migration pattern
to the upwards transport seen in simulation. In particular,
for χb̄ < 0, χū > 0, the kinematic and magnetic contributions
both enforce γ (0) > 0, leading to Im � > 0. However, in our
use of the anelastic approximation, buoyancy effects are not
included and these would be expected to change this aspect
of the calculation substantially [40,42,43], potentially through
large-scale instability [44].

Where does this leave us for understanding the dynamo
in stratified accretion disks? We see that aside from perhaps
the transport term γ (0), claims that SOCA predictions are
incorrect for the stratified regions of accretion disks are
unfounded. More accurately, one could say that SOCA
predictions themselves are completely inconclusive, even in
the kinematic regime, since each contribution—kinematic,
magnetic, rotation, and velocity shear—has a tendency to
cancel its partner. Such uncertainty seems at odds with the
robust dynamo “butterfly diagram” seen across a wide variety
of accretion disk simulations.

Of course, one possibility is that the SOCA calculation
carried out here, keeping only the linear contributions due to
�, S, and stratification, is not up to the task of calculating
these coefficients, and in reality there is a robust α effect.
For instance, in Rüdiger and Pipin [40], the authors find that
αyy has the correct sign (αyy < 0) for magnetic fluctuations
in a compressible turbulence model for Keplerian shear and

(a)

(b)

(c)

FIG. 2. (Color online) Transport coefficients (ayy)�u (solid, blue),
(ayy)Su (dashed, blue), (ayy)�b (solid, orange) and (ayy)Sb (dashed,
orange) as a function of q for (a) Pm = 1, (b) Pm = 10, and (c)
Pm = 1/10 (lines also labeled on each plot). Each coefficient has
been calculated using the form given in Eq. 30 for W , and normalized
by (β (0))u with the magnetic diffusion time, λ2

c/η, held constant
(equivalently τc = 1/q). The dotted (black) curve in each plot shows
the total ayy with equal kinetic and magnetic turbulence levels for
Keplerian rotation, � = 2/3S [Eq. (44)], to illustrate the variability
in these predictions.

moderate Pm [this is the sign opposite to Eq. (39) but
since their effect vanishes in the incompressible limit, one
should have no reason to expect agreement]. Similarly, the
calculations presented in Donnelly [45] go well beyond the
accuracy of SOCA for the specific case of Keplerian shear
through nonperturbative inclusion of several extra physical
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effects; however, it is unclear from their (rather complicated)
expressions whether the theory predicts a specific sign for αyy .
While certainly feasible, it would seem a little bizarre that a
behavior that appears so robustly in simulation could show so
much variability across different calculation methods or rely
on nonlinear behavior of transport coefficients with �, S, or
the stratification. In addition, recent (quasikinematic) test-field
calculations in self-sustaining stratified turbulence [46] have
shown αyy to be robustly positive, although interestingly the
dynamo period (as a function of S) nicely matches that inferred
from |αyy |.

A variety of other mechanisms to create a butterfly diagram
are imaginable, for instance a dynamo driven primarily by
the magnetic shear-current effect up to relatively far from
the midplane (Sec. IV), with upwards transport above this
caused by large-scale buoyant instability (not included here
due to the anelastic approximation). Another possibility could
be that upwards field transport is caused by a small-scale
magnetic helicity flux [47,48] from the central shear-current
dynamo, which would create a (helical) magnetic α effect.
Such a process could look rather similar to a more standard
α effect, although the basic cause of the dynamo would be
entirely different [25]. Note that magnetic helicity fluxes have
been found to play a significant role in unstratified global
MRI turbulence [49], providing some indication that such a
process could be important. It is also worth noting that spatial
variation in transport coefficients and quenching can lead to
some interesting possibilities for dynamo action [50,51], and
similar effects may prove important at the boundary between
the stratified and unstratified regions of disks. Overall, it
seems that the underlying cause for the “butterfly diagram” in
stratified disks remains unclear and more work will be needed
to arrive at robust mean-field models of the process.

VI. DISCUSSION AND CONCLUSIONS

In this work we have theoretically studied the dynamo in
systems with mean velocity gradients, rotation, net helicity,
and stratification, using perturbative calculations within the
second-order correlation approximation. In addition to the
standard kinematic dynamo, we have considered the possibility
of a dynamo driven by small-scale magnetic fluctuations, as
might arise from the small-scale dynamo or an instability.
Our main finding is that an off-diagonal resistivity coupled
to the shear can cause a dynamo instability in the presence
of magnetic fluctuations. This effect—the magnetic analog
of the “shear-current effect” [9,17]—raises the interesting
possibility of the small-scale dynamo enhancing the growth
of a large-scale field. In some sense, this possibility is
the reverse of large-scale quenching [5,27]; rather than the
small-scale magnetic fluctuations inhibiting the large-scale
field growth, they could actively aid field generation, with
large-scale growth eventually halting due to nonlinear changes
to the transport coefficients, possibly influenced by secondary
quenching effects [52].

Importantly, our prediction that the magnetic shear-current
effect is able to excite a dynamo agrees with other transport
coefficient calculation methods and simulations. In particular,

the τ approximation predicts the linear magnetic effect to
be much stronger than the kinematic effect (see Fig. 3 of
Rogachevskii and Kleeorin [9]), just as was found in this
work using SOCA (Fig. 1). In addition, agreement is found
with quasilinear calculations [12] (the magnetic version of
the calculations in Singh and Sridhar [21]), as well as
perturbative inhomogeneous shearing wave calculations [22].
This suggests that the effect may be more robust than the
kinematic shear-current effect and/or have less dependence on
Reynolds numbers.

The work presented in this article was primarily motivated
by gaining improved understanding of the fundamental dy-
namo mechanisms in accretion disks. Consistent with the idea
that two dynamo mechanisms might operate in disks [53], their
inner regions seem well suited to be explained by the magnetic
shear-current effect [4]—magnetic fluctuations are generally
stronger than kinetic fluctuations, rotation has the correct
sign to enhance the kinematic dynamo, and the turbulence is
essentially unstratified and nonhelical. Concurrent nonlinear
direct numerical simulations of unstratified shear dynamos in
Cartesian boxes [12,13] have confirmed all results discussed
in Sec. IV for the low-Rm regime [12,54]. First, we see a
qualitative change in the kinematic dynamo with the addition
of rotation, due to the change in sign of the ηyx transport coeffi-
cient [12]. Second, we observe the magnetically driven shear-
current effect, both through direct driving of the induction
equation [12], and at higher magnetic Reynolds number where
magnetic fluctuations arise self-consistently though excitation
of a small-scale dynamo [13]. The nonlinear saturation of
these magnetically driven large-scale dynamos exhibits a
pleasing resemblance to self-sustaining unstratified accretion
disk turbulence simulations, with quasicyclic behavior of the
large-scale By field.

Less clear have been our findings regarding the α effect,
as relevant to the stratified regions of accretion disks. In
particular, we find that α coefficients arising from rotation and
shear, and those arising from kinetic and magnetic fluctuations,
are each of opposite signs for anticyclonic rotation (� and
∇ × U antiparallel), and thus would tend to cancel. Further-
more, predictions about which of these terms dominate (thus
determining the sign of the total α effect), depend strongly on
the magnetic Prandtl number and the relative levels of kinetic
and magnetic turbulence. We thus conclude that perturbative
SOCA calculations give no useful predictions regarding the
primary driver of the so-called “butterfly diagram” pattern
of large-scale field evolution seen in self-sustaining stratified
accretion disk simulations. Whether this is simply due to the
inaccuracies of SOCA or there is some other more exotic effect
operating (e.g., a helicity flux [49]) remains to be seen.
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APPENDIX A: EQUATIONS FOR u(0), u(1), b(0), b(1) IN FOURIER SPACE

Here we give the set of perturbation equations for u and b in Fourier space, as result from the Fourier transform of
Eq. (14). The method is outlined in RS06, so we give very little detail here. Since we assume Ui(x) = Uijxj , ρ = ρ0 + χρĝixi ,

and Bi(x) = Bi + Bijxj the Fourier transforms can be carried out exactly using ̂xk∂lbj = −δlkb̂j − kl∂kk
b̂j (where ·̂ denotes

the Fourier transform). We have also neglected products of χρ with Bij . In the momentum equations, the projection operator
δij − kikj /k2 is applied so as to remove the pressure.

Defining, as in RS06,

Nν = 1

iω − νk2
, Eη = 1

iω − ηk2
, (A1)

the Fourier space equations are as follows:

m
(0)
i = Nν

[
−Uilm0l + Ulkkl

∂m0i

∂kk

+ 2
kikj

k2
m0lUjl − iνkrχρĝrm0i + iν

kikj kr

k2
χρĝrm0j + 2

kr�r

k2
εijkm0j kk + ikrBrb0i

−ikrBr

kikj

k2
b0j + Bilb0l − Blkkl

∂b0i

∂kk

− 2
kikj

k2
b0lBjl

]
, (A2)

m
(1)
i = Nν

[
−Uilm

(0)
l + Ulkkl

∂m
(0)
i

∂kk

+ 2
kikj

k2
m

(0)
l Ujl − iνkrχρĝrm

(0)
i + iν

kikj kr

k2
χρĝrm

(0)
j + 2

kr�r

k2
εijkm

(0)
j kk + ikrBrb

(0)
i

−ikrBr

kikj

k2
b

(0)
j + Bilb

(0)
l − Blkkl

∂b
(0)
i

∂kk

− 2
kikj

k2
b

(0)
l Bjl

]
, (A3)

b
(0)
i = Eη

[
ρ−1

0

(
ikrBrm0i − Bijm0j − Bjkkj

∂m0i

∂kk

+ Biχρĝrm0r + χρĝrBjkj

∂m0i

∂kr

)
+ Uijb0j + Ujkkj

∂b0i

∂kk

]
, (A4)

b
(1)
i = Eη

[
ρ−1

0

(
ikrBrm

(0)
i − Bijm

(0)
j − Bjkkj

∂m
(0)
i

∂kk

+ Biχρĝrm
(0)
r + χρĝrBjkj

∂m
(0)
i

∂kr

)
+ Uijb

(0)
j + Ujkkj

∂b
(0)
i

∂kk

]
. (A5)

Here m0i , b0i , etc., refer to the Fourier space variables for simplicity of notation. As a first step in the calculation, Eqs. (A2) and
(A4) are inserted into Eqs. (A3) and (A5) and expanded, neglecting those terms that contain UijUrs, Uij�r,�i�j , Uij χρ,�χρ ,
χ2

ρ , BiBj , BiBij , and BijBrs as higher order in this perturbation expansion.

APPENDIX B: LIST OF ALL TRANSPORT COEFFICIENTS

In this Appendix we list all transport coefficients α(0)β(0), δ(�), . . . in the form of integrals over the isotropic velocity and
magnetic correlation functions, Wu(R,k,ω),Hu(k,ω), Wb(R,k,ω), Hb(k,ω). This parallels Appendix B in RS06 and there is
some overlap; however, for completeness we list all coefficients.

Analogous to the relations in Sec. IV for the Cartesian case and RS06, we list here the coefficient of 4πk2Wu,b or 4πk2Hu,b

in the integrand of each transport coefficient; that is α̃
(·)
H , α̃(·) or β̃(·) in

(
α

(·)
H

)
u,b

= 4π

∫
dk dω k2α̃

(·)
H

(
k,ω

)
Hu,b(k,ω),

(
α(·))

u,b
= 4π

∫
dk dω k2α̃(·)(k,ω)Wu,b(k,ω),

(β(·))u,b = 4π

∫
dk dω k2β̃(·)(k,ω)Wu,b(k,ω). (B1)

We use the notation η̃ = k2η, ν̃ = k2ν, and ∇ ln a ≡ χa ĝ (e.g., ∇ ln ρ + ∇ ln ū = χρū ĝ).

1. Nonhelical α coefficients

(γ (0))u = χūη̃

6(η̃2 + ω2)
, (B2)

(γ (0))b = − χb̄ν̃

6ρ(ν̃2 + ω2)
, (B3)

(γ (�))u = − χρūω
2

3(η̃2 + ω2)(ν̃2 + ω2)
, (B4)

(γ (�))b = χb̄(ω2 − ν̃2)

6ρ(ν̃2 + ω2)2
, (B5)
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(
α

(�)
1

)
u

= 4χρūη̃[2ω2η̃(ν̃2 + ω2) + η̃2(3ω2ν̃ + ν̃3) + ω2ν̃(ν̃2 + 3ω2)]

15(η̃2 + ω2)2(ν̃2 + ω2)2
, (B6)

(
α

(�)
1

)
b

= 4χb̄ω
2(ω2 − 3ν̃2)

15ρ(ν̃2 + ω2)3
, (B7)(

α
(�)
2

)
u

= χρū

15
[2ω2η̃ν̃(ω2 − 3ν̃2) + 3ω2η̃2(ν̃2 + ω2) + 2η̃3ν̃(ω2 − 3ν̃2) − 5ω4(ν̃2 + ω2)](η̃2 + ω2)−2(ν̃2 + ω2)−2, (B8)(

α
(�)
2

)
b

= χb̄(3ω4 − 24ω2ν̃2 + 5ν̃4)

30ρ(ν̃2 + ω2)3
, (B9)(

α
(W )
1

)
u

= χρū

120
[4η̃5(11ω2ν̃ + 5ν̃3) + 4η̃(11ω6ν̃ + 5ω4ν̃3) + 8η̃3(11ω4ν̃ + 5ω2ν̃3) + η̃4(12ω2ν̃2 − ν̃4 + 13ω4)

−4η̃2(5ω4ν̃2 + 3ω2ν̃4 + 2ω6) + 5ω4ν̃4 − 5ω8] (η̃2 + ω2)−3(ν̃2 + ω2)−2, (B10)(
α

(W )
1

)
b

= χb̄

120
[4ω2η̃ν̃(ν̃2 + ω2)2 + η̃4(ν̃4 − 36ω2ν̃2 + 11ω4) − 4η̃3ν̃(ν̃2 + ω2)2 + 4η̃2(−11ω4ν̃2 + 5ω2ν̃4 + 8ω6)

−8ω6ν̃2 + 19ω4ν̃4 + 21ω8](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1, (B11)(
α

(W )
2

)
u

= χρū

240
[−4η̃5(3ω2ν̃ + 5ν̃3) − 4η̃(3ω6ν̃ + 5ω4ν̃3) + η̃4(44ω2ν̃2 + 13ν̃4 + 31ω4) − 8η̃3(3ω4ν̃ + 5ω2ν̃3)

−28η̃2(5ω4ν̃2 + 3ω2ν̃4 + 2ω6) + 5(8ω6ν̃2 + 3ω4ν̃4 + 5ω8)](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B12)(
α

(W )
2

)
b

= χb̄

240
[28ω2η̃ν̃(ν̃2 + ω2)2 − 28η̃3ν̃(ν̃2 + ω2)2 + η̃4(−12ω2ν̃2 + 7ν̃4 − 3ω4) − 4η̃2(17ω4ν̃2 − 5ω2ν̃4 + 14ω6)

−56ω6ν̃2 + 13ω4ν̃4 − 53ω8](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1, (B13)

(α(D))u = χρū

120
[12ω2η̃2ν̃2(ν̃2 + ω2) + 12η̃5ν̃(ω2 − ν̃2) + 4ω4η̃ν̃(ν̃2 + 7ω2) + 8η̃3(5ω4ν̃ − ω2ν̃3) + 5ω4ν̃4 − 5ω8

−η̃4(20ω2ν̃2 + 9ν̃4 + 11ω4)](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B14)

(α(D))b = χb̄

120
[−4ω2η̃ν̃(6ω2ν̃2 + ν̃4 + 5ω4) − η̃4(12ω2ν̃2 − 5ν̃4 + ω4) + 4η̃3ν̃(6ω2ν̃2 + 5ν̃4 + ω4)

+4η̃2(−3ω4ν̃2 + 3ω2ν̃4 + 2ω6) + 7ω4ν̃4 + 9ω8](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1, (B15)

(γ (W ))u = −χρū

120
[−8ω6η̃ν̃ − 16ω4η̃3ν̃ − 8ω2η̃5ν̃ − η̃4(8ω2ν̃2 + ν̃4 + 7ω4) − 4η̃2(7ω4ν̃2 + 3ω2ν̃4 + 4ω6)

+12ω6ν̃2 + 5ω4ν̃4 + 7ω8](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B16)

(γ (W ))b = χb̄

120
[4η̃2(−3ω4ν̃2 + 2ω2ν̃4 + 3ω6) − 8ω2η̃ν̃(ν̃2 + ω2)2 + η̃4(−12ω2ν̃2 + 3ν̃4 + ω4)

+ 5ω4ν̃4 + 11ω8](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1, (B17)

(γ (D))u = −χρū

120
[9η̃4(ω4 − ν̃4) + 8η̃5(5ω2ν̃ + 6ν̃3) + 8η̃(3ω6ν̃ + 4ω4ν̃3) + 16η̃3(4ω4ν̃ + 5ω2ν̃3)

+ 4η̃2(13ω4ν̃2 + 3ω2ν̃4 + 10ω6) + 5ω4(4ω2ν̃2 + ν̃4 + 3ω4)](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B18)

(γ (D))b = χb̄

120
[−16ω2η̃ν̃(3ω2ν̃2 + ν̃4 + 2ω4) + η̃4(12ω2ν̃2 + 19ν̃4 − 23ω4) − 8η̃3(3ω4ν̃ + 4ω2ν̃3 + ν̃5)

+ η̃2(52ω4ν̃2 + 56ω2ν̃4 − 36ω6) + 40ω6ν̃2 + 37ω4ν̃4 − 13ω8 ](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1. (B19)

2. β coefficients

(β(0))u = η̃

3(η̃2 + ω2)
, (B20)

(β(0))b = 0, (B21)

(δ(�))u = − ω2

3(η̃2 + ω2)(ν̃2 + ω2)
, (B22)

(δ(�))b = ν̃2 − ω2

6ρ(ν̃2 + ω2)2
, (B23)

053101-12



ELECTROMOTIVE FORCE DUE TO . . . PHYSICAL REVIEW E 92, 053101 (2015)

(δ(W ))u = η̃2 − ω2

12(η̃2 + ω2)2
, (B24)

(δ(W ))b = ν̃2 − ω2

12ρ(ν̃2 + ω2)2
, (B25)

(κ (�))u = 2ω2(11η̃2 − 5ω2)

15(η̃2 + ω2)2(ν̃2 + ω2)
, (B26)

(κ (�))b = 9ν̃4 − 48ω2ν̃2 + 7ω4

15ρ(ν̃2 + ω2)3
, (B27)

(κ (W ))u = η̃4(23ω2 − ν̃2) + 12η̃2(ω4 − ω2ν̃2) + 5ω4(ν̃2 + ω2)

30(η̃2 + ω2)3(ν̃2 + ω2)
, (B28)

(κ (W ))b = 3η̃2(−12ω2ν̃2 + ν̃4 + 3ω4) − 20ω4ν̃2 + 15ω2ν̃4 + 13ω6

30ρ(η̃2 + ω2)(ν̃2 + ω2)3
, (B29)

(β(D))u = 1

30
[2η̃5ν̃(5ν̃2 + ω2) + 16ω2η̃3ν̃3 + 5ω4(ν̃2 + ω2)2 + η̃(6ω4ν̃3 − 2ω6ν̃) − η̃4(10ω2ν̃2 + 3ν̃4 + 7ω4)

−2η̃2(8ω4ν̃2 + 3ω2ν̃4 + 5ω6)](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B30)

(β(D))b = 1

10
[4η̃3ν̃3(ν̃2 + ω2) + 4η̃2(ω6 − 3ω4ν̃2) − 4ω2η̃ν̃(3ω2ν̃2 + ν̃4 + 2ω4) − 6ω6ν̃2 − ω4ν̃4 + 3ω8

+η̃4(−6ω2ν̃2 + ν̃4 + ω4)](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1, (B31)

(κ (D))u = 1

30
[2η̃5ν̃(5ν̃2 + ω2) + 16ω2η̃3ν̃3 + η̃(6ω4ν̃3 − 2ω6ν̃) + η̃4(10ω2ν̃2 + 3ν̃4 + 7ω4) + 2η̃2(8ω4ν̃2 + 3ω2ν̃4 + 5ω6)

−5ω4(ν̃2 + ω2)2](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B32)

(κ (D))b = 1

30
[−4η̃3ν̃3(ν̃2 + ω2) + 4ω2η̃ν̃(3ω2ν̃2 + ν̃4 + 2ω4) + η̃4(−6ω2ν̃2 − 3ν̃4 + 5ω4) + 4η̃2(−7ω4ν̃2 − 4ω2ν̃4 + ω6)

−ω4(22ω2ν̃2 + 13ν̃4 + ω4)](η̃2 + ω2)−2(ν̃2 + ω2)−3ρ−1. (B33)

3. Helical α coefficients

(
α̃

(0)
H

)
u

= 2η̃

3(η̃2 + ω2)
, (B34)

(
α

(0)
H

)
b

= − 2ν̃

3ρ(ν̃2 + ω2)
, (B35)

(γ (�))u = 0, (B36)

(γ (�))b = 0, (B37)

(
γ

(W )
H

)
u

= η̃2(ν̃2 + 3ω2) − ω2ν̃2 + ω4

6(η̃2 + ω2)2(ν̃2 + ω2)
, (B38)

(
γ

(W )
H

)
b

= η̃2(ω2 − ν̃2) − ω2(3ν̃2 + ω2)

6ρ(η̃2 + ω2)(ν̃2 + ω2)2
, (B39)

(
α

(D)
H

)
u

= − 1

15
[3η̃4(ω4 − ν̃4) + 4η̃5(5ω2ν̃ − 3ν̃3) − 8ω2η̃3ν̃(ν̃2 − 7ω2) + 4ω4η̃ν̃(ν̃2 + 9ω2)

+ 4η̃2(11ω4ν̃2 + 6ω2ν̃4 + 5ω6) − 5ω4(4ω2ν̃2 + ν̃4 + 3ω4)](η̃2 + ω2)−3(ν̃2 + ω2)−2, (B40)

(
α

(D)
H

)
b

= − 1

15ρ
[η̃4(−24ω2ν̃2 + 7ν̃4 + ω4) − 4η̃3(3ω4ν̃ + 2ω2ν̃3 − ν̃5) + 4η̃2(−11ω4ν̃2 + 2ω2ν̃4 + 3ω6)

−4η̃(11ω6ν̃ + 18ω4ν̃3 + 7ω2ν̃5) + ω4(−20ω2ν̃2 + ν̃4 + 11ω4)](η̃2 + ω2)−2(ν̃2 + ω2)−3. (B41)

All of the listed kinematic transport coefficients agree with those given in RS06, with one exception. This is the (β(D))u
coefficient, which contains a factor 1/30, rather than 1/60.
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APPENDIX C: THE SIGN OF (η yx)S
b

In this Appendix we argue that the sign of (ηyx)Sb is always
negative, given reasonable assumptions about the form of
Wb(k,ω). We have not been able to find a general proof
that this is the case due to the complexity of the expression
Eq. (33), but instead analyze the cases Pm = 1, Pm � 1, and
Pm � 1 separately. In addition, plotting (ηyx)Sb for Gaussian
Wb [Eq. (30)] across a range of Pm (e.g., Fig. 1) leads
us to the same conclusion for this specific Wb. [Note that
(ηyx)Sb depends nontrivially only on Pm and q when written
in the dimensionless variables given in Eq. (31), meaning it is
straightforward to observe positivity by plotting (ηyx)Sb against
q over a range of Pm.]

1. Pm = 1

Inserting ν = η into Eq. (33) leads to

(ηyx)Sb =
∫

dω dk k2Wb(k,ω)
8π (ω2 − η̃2)(3η̃2 + ω2)

15(η̃2 + ω2)3
.

(C1)

An integration by parts in ω yields

(ηyx)Sb =4π

15

∫
dω dk

[
1

η
tan−1

(
ω

η̃

)
dWb

dω

+ 5η̃2 + 3ω2

(η̃2 + ω2)2
ω

dWb

dω

]
. (C2)

Under the reasonable assumptions that ω dW/dω � 0 and
tan−1 (ω)dW/dω � 0, each term in the integral must be
negative. [Note that the tan−1 (ω)dW/dω � 0 condition,
although it may appear less familiar, is just as restrictive as
ω dW/dω � 0, given the odd nature of the tan−1 function.]

2. Pm � 1

Inserting η = ν/Pm into Eq. (33), we carry out a series
expansion about Pm−1 = ∞ of the resulting expression. The
reason for this expansion (rather than the more obvious
expansion about Pm = 0) is that we wish to explore that low
Pm limit with large η rather than that with ν → 0, since SOCA
loses applicability as ν,η → 0. The series expansion to first
order in 1/Pm−1 is

(ηyx)Sb ≈ −8π

15

∫
dωdk Wbk

2

(
3ω2ν̃2ν̃4 − 2ω4(

ν̃2 + ω2
)3 (C3)

+ 4ν̃2

15(ν̃2 + ω2)2

1

Pm−1 + . . .

)
. (C4)

The first term is independent of Pm, persisting as η → 0,
and the existence of this is not surprising given the fact
that the dynamo can arise from the B · ∇b + b · ∇B term
in the induction equation. This term can be shown to be
negative using the same integration by parts method used to
obtain Eq. (C2), with the requirement ω dW/dω � 0. The
Pm dependent second term is obviously negative due to the
positive definiteness of the integrand.

3. Pm � 1

Inserting ν = Pm η into Eq. (33), and carrying out a series
expansion about Pm = ∞ (see the previous section), one
obtains

(ηyx)Sb ≈ 16π

15

∫
dωdk Wbk

2

(
1

Pm

(ω2 − η̃2)

(η̃2 + ω2)2
+ . . .

)
.

(C5)
As expected, there is no ν = 0 contribution to the transport.
Again using integration by parts, it is easy to prove negativity
of the integral provided ω dW/dω � 0.
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[19] K.-H. Rädler and R. Stepanov, Phys. Rev. E 73, 056311 (2006).
[20] A. Brandenburg, K. H. Rädler, M. Rheinhardt, and P. J. Käpylä,
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