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Effect of the vertical component of diffusion on passive scalar transport in an isolated vortex model
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On the basis of the ellipsoidal vortex model and a Monte-Carlo-type diffusion simulation, we examine the
flux and ensuing distribution of passive fluid particles through the boundary of an idealized geophysical vortex.
Our focus is on features that the horizontal and vertical diffusion components introduce into the fluid particle
transport. We examine the concurrent effect of both components, and we compare it with the only horizontal
diffusion impact. We analyze the ellipsoid vortex model in two cases: (i) the steady state when the ellipsoid
is motionless, i.e., there is no variation in its axes’ lengths, and consequently the exterior fluid is not being
stirred; (ii) the perturbed case when the ellipsoid rotates periodically, varying it axes’ lengths, which results in
the appearance of stirred fluid outside the ellipsoid. Influenced by diffusion, a fluid particle is now permitted to
move to another vertical horizon, thus there is an increased possibility that the particle will eventually be located
in the exterior stirred region rather than in the ellipsoid vortex with the regular dynamics. This is because the
area of the horizontal section of the ellipsoid vortex decreases with depth, but the region of stirred exterior fluid
extends significantly deeper. Numerical calculations show that factoring in the vertical component of diffusion
significantly affects scalar spreading in the horizontal plane in the perturbed case, while in the steady state the
vertical component of diffusion only induces dispersion linear growth according to a Gaussian distribution.
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I. INTRODUCTION

Isolated vortices evolving in a sheared environment are
often modeled by the ellipsoidal vortex model [1–3]. This
model is a generalization of the planar Kida vortex model [4]
in that it accounts for a linear distribution of the buoyancy
frequency. Hence, the ellipsoidal vortex model is considered
to be more suitable to look into the dynamics of ocean
vortices. The model has been studied intensely over the past
30 years [1–3,5–9]. However, the recent review [10] on the
ellipsoidal vortex model evidences that there is still sizable
interest among researchers. Part of this interest comes from
the simplicity of the model, whose dynamics reduces to a set
of ordinary differential equations that govern the evolution of
the ellipsoid’s horizontal axes and orientation, and a passive
scalar inside the vortex and in its vicinity. On the other hand,
the model offers interesting effects from the standpoint of
nonlinear dynamics, and it can also be used to characterize
a vast range of phenomena that are intrinsic to the real
geophysical vortices evolving in complex background flows.

The model is based on fluid particles inside a vortex that
always move regularly, with their trajectories coinciding with
the streamlines of the fixed vortex. However, for fluid particles
outside the vortex, that holds true only if the vortex does not
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change its form, thus generating a stationary velocity field.
When moving periodically, the vortex perturbs neighboring
fluid, inducing fluid particles, to diverge exponentially. This
exponential divergence is usually called chaotic advection
[11–13] in hydrodynamics applications, and it is the cause
of effective stirring. Depending on the initial sizes of the
ellipsoid’s axes and its alignment relative to the external strain,
the ellipsoid is known to be able to oscillate, rotate slightly
(changing the lengths of its axes), and elongate infinitely. The
first two regimes are periodic and thus can result in chaotic
advection [9] (analogous effects are well known in the case of
a plane Kida vortex [14–16]).

A significant restriction of the model is that there is no flux
of fluid particles through the vortex’s boundary. The boundary
serves as a barrier ensuring a nonzero vorticity gradient, and as
a result fluid particles are prevented from crossing the bound-
ary due to chaotic advection [17]. In this case, the boundary
plays the role of an impenetrable barrier. Such barriers are
unlikely to be observed in nature as most barriers, in fact, are
penetrable and vary in time and space. A large body of litera-
ture is devoted to studying transport barriers that occur in the
ocean and atmosphere [18–24]. However, these studies mostly
examine real complex velocity fields that do not allow one
to single out the effects of advection or diffusion separately.
Therefore, one needs to employ simplified models to get in-
sights into the influence of advection and diffusion separately.

It is of interest how the interior of the vortex, which often
consists of fluid with sufficiently different features (such as
salinity or temperature), can permeate through the boundary
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and spread in the exterior flow. One way to overcome the el-
lipsoidal vortex model’s restriction on inhibiting fluid particle
transport across the boundary was introduced in Ref. [25]. A
low-scale diffusion process was imposed, thus allowing fluid
particles to jump through the boundary. In this paper, only
horizontal diffusion was considered, as the main goal was
to examine the difference between the steady state with the
ellipsoid not changing the lengths of its axes, and the perturbed
state with the rotating ellipsoid. The present paper generalizes
and extends the results of the previous one in that it incor-
porates the vertical component of diffusion, which permits
fluid particles to jump between vertical horizons. Therefore,
the phenomenon of chaotic advection facilitating diffusion-
induced transport [26–30] must be taken into account.

Without diffusion, the model does not allow any vertical
motion; fluid particles always move at the same horizon, i.e.,
where they originated. The main idea of the present work is that
enabling fluid particles to jump between horizons may increase
the flux through the vortex’s boundary and consequently result
in a peculiar passive scalar distribution.

We investigate the influence of the vertical component
of diffusion on the transport of passive scalars through the
boundary of the ellipsoid vortex evolving in a linear shear
flow. The cooperative impact of the horizontal and vertical
components of diffusion is in question. The vertical and
horizontal components are considered to be proportional as
follows. As with the ellipsoid model, there is a normalizing
factor between the vertical and horizontal length scales.
Provided N is the buoyancy frequency and f is the Coriolis
parameter, the horizontal scale is larger than the vertical one
by N/f , which we further take as 20, which is characteristic
to the middle latitudes, whereas the vertical diffusivity is at the
very least one order smaller than the horizontal one [31,32]
(depending on a region and assumptions, this relation may
span from 10−6 up to 10−1). Hence, we exploit the following
normalized vertical diffusivity: κz = 10−1 N

f
κ = 2κ , where κ

is the horizontal diffusivity. In other words, despite being
some orders of magnitude smaller, vertical diffusion causes
fluid particles to cover, normalized by the vertical ellipsoid
scale, distances in the vertical plane that are comparable to
the horizontal ones, normalized by the ellipsoid’s horizontal
scale. In the end, the chances for a fluid particle to permeate
through the ellipsoid’s boundary in the horizontal direction or
in the vertical one are thus comparable.

II. THE ELLIPSOIDAL VORTEX MODEL IN STEADY
AND PERTURBED STATES

We outline the ellipsoidal vortex model and the governing
equations used (see [1,3,9] for a detailed derivation). Given
the quasigeostrophic approximation on the f plane, a constant
buoyancy frequency, N = const, and an inviscid and incom-
pressible flow occupying a semi-infinite space, an ellipsoid
form varies in time and space induced by a linear shear in
accordance with the governing equations,

da

dt
= ae cos (2θ ),

db

dt
= −be cos (2θ ),

(1)
dθ

dt
= � + γ − a2 + b2

a2 − b2
e sin (2θ ),

where a,b are the horizontal semiaxes, θ is the ellipsoid
orientation against the shear flow, γ is the exterior vorticity, e

is the exterior shear, and

� = (α − γ )abc̃

∫ ∞

0

μdμ

(a2 + μ)(b2 + μ)
√

δ(μ)
. (2)

δ(μ) = (a2 + μ) + (b2 + μ) + (c̃2 + μ), f = const is the
Coriolis parameter, and α = const �= 0 is the vorticity inside
the ellipsoid. The parameter c̃ = c N/f is proportional to the
ellipsoid’s vertical axis c, which does not vary in time.

The velocity field generated by the varying ellipsoid form
ensues from the equations

u = ex − γy + ũ cos θ − ṽ sin θ,
(3)

v = γ x − ey + ũ sin θ + ṽ cos θ,

where the first two terms in both equations are the external flow,
and the last two indicate the ellipsoid influence as follows:

ũ = −(α − γ )
∫ ∞

λ

ỹdμ

(b2 + μ)
√

δ(μ)
,

(4)

ṽ = (α − γ )
∫ ∞

λ

x̃dμ

(a2 + μ)
√

δ(μ)
.

Here, x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ , and λ is
equal to zero inside the ellipsoid, or it should be taken as a
positive root of the equation x̃2

a2+λ
+ ỹ2

b2+λ
+ (z)2

c̃2+λ
= 1. It should

be emphasized that z determines a horizon at which the motion
realizes, as z = 0 corresponds to the surface.

Solving jointly Eqs. (1) and (3), one arrives at trajectories
of fluid particles affected by the ellipsoid changing its form
due to a linear shear. Hereafter, we use the values e = 0.1,
γ = 0, and c̃ = 1. There are parameters that ensure that
the ellipsoid remains stationary, thus creating a stationary
velocity field (3). Given our choice of values, the stationary
configuration is as a(0)

b(0) = 1.0551, θ (0) = π
4 . Figure 1(a)

depicts the streamline structure at the surface, showing the
induced region encompassed by a separatrix (the bold line),
where fluid particles move periodically around the ellipsoid.
The dashed line is the separatrix at depth z = 1.5 indicating
that the closed recirculation zone area decreases with depth
slower than the ellipsoid horizontal section area (the ellipsoid
reaches a depth z = 1).

Given the different initial values of the parameters, the
ellipsoid starts moving when its horizontal axes vary according
to Eq. (1). This variation induces a perturbation to fluid particle
trajectories leading to exponential divergence of initially close
trajectories [33,34]. Figure 1(b) illustrates the exponential
divergence of trajectories [the initial positions are plotted
in Fig. 2(a)]. One of the trajectories starts in the regular
dynamics island, thus moving in a quasiperiodic way. The
other originates in the chaotic sea, completes a few rotations
about the ellipsoid, and eventually escapes to the exterior flow
through the chaotic region established instead of the broken
steady-state separatrix. Actually, a trajectory originating in
the chaotic region may complete a very large number of
revolutions about the ellipsoid, but eventually it always escapes
to the exterior region.

Figure 2 demonstrates Poincaré sections plotted in a period
of the ellipsoid oscillation at the surface, z = 0 [Fig. 2(a)], and
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FIG. 1. (Color online) (a) The steady-state streamline structure.
The filled central region is the stationary ellipsoid horizontal section
at z = 0. The bold line is a separatrix demarcating the closed
recirculation region from the exterior flow at z = 0. The dashed
line indicates the separatrix at depth z = 1.5. (b) Two trajectories
of the perturbed system. One quasiperiodic regular trajectory always
stays near the ellipsoid. The second one is irregular completing a few
revolutions about the core and then escapes to the exterior flow.

at the horizon, z = 1.5 [Fig. 2(b)]. These two sections indicate
that the structure of the Poincaré sections varies significantly
at different horizons. This occurs because the perturbation
introduced by the ellipsoid rotation also changes with depth.
Thereby, there are different perturbation magnitudes (however,
the frequencies stay the same since they are always equal to
the frequency of the ellipsoid’s one full rotation) at different
horizons. Despite being strikingly different at relatively distant
horizons, the structure of the Poincaré sections changes
continuously, as evidenced from Fig. 3. The figure depicts three
Poincaré sections at close horizons; Figs. 3(a), 3(b), and 3(c)
correspond to the horizons z = 0.95, 1, and 1.05, respectively.

III. IMPOSING DIFFUSION PROCESSES

To model turbulent diffusion, we use the following Monte
Carlo procedure [35–38]: Let us assume that the passive scalar
concentration described by a function q(r,t) is subjected to a

FIG. 2. Poincaré sections of the perturbed state as the ellipsoid
rotates varying its horizontal axes. (a) z = 0, (b) z = 1.5. The bold
curves correspond to the steady-state separatrices shown in Fig. 1(a).
The crosses mark the initial positions of the trajectories plotted in
Fig. 1(b).

random velocity field U(r,t). Hence,(
∂

∂t
+ U(r,t)

∂

∂r

)
q(r,t) = κ

∂2

∂r2
q(r,t),

(5)
q(r,0) = q0(r),

where κ is the diffusivity. Now, one can introduce a scalar field
q̃(r) complying with the equation(

∂

∂t
+ U(r,t)

∂

∂r

)
q̃(r,t) = −α(t)

∂

∂r
q̃(r,t),

(6)
q̃(r,0) = q0(r),

where α(t) is a δ-correlated Gaussian process such
as 〈α(t)〉 = 0,〈αi(t)αj (t ′)〉 = 2κδij δ(t − t ′), i,j = 1,2;
〈α3(t)αj (t ′)〉 = 2κzδ3j δ(t − t ′), j = 1,2,3; and δij is the
Kronecker delta, δ(t) is the Dirac function, and t, t ′ are two
instants in time. Taking advantage of the introduced function,
one arrives at the averaged solution [35]

q(r,t) = 〈q̃(r,t)〉α. (7)
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FIG. 3. Continuous change in the Poincaré section structure at
near vertical horizons. (a) z = 0.95, (b) z = c̃ = 1, the limiting point
of the ellipsoid in the vertical direction, and (c) z = 1.05.

The random process α(t) featured in Eq. (6) is the mod-
eled diffusion process depending on the time scale and
diffusivity κ .

Eventually, the equations governing a fluid particle trajec-
tory subjected to the ellipsoid motion and diffusion impact

ensue from (3) as

u = ex − γy + ũ cos θ − ṽ sin θ + αx,

v = γ x − ey + ũ sin θ + ṽ cos θ + αy, (8)

w = αz,

where the αx ,αy terms correspond to the horizontal diffusivity
κ , and αz complies with the vertical diffusivity κz.

IV. MARKER DISPERSION DUE TO DIFFUSION

In this section, we look into how passive scalars move
subjected to the simultaneous effect of chaotic advection and
diffusion. We distribute ∼6 × 103 scalars inside the ellipsoid,
as there are seven layers inside the ellipsoid with evenly
distributed scalars in every layer. Then, we follow scalar
distributions for ∼20 ellipsoid revolutions as both horizontal
and vertical components of diffusion are at work. We carry out
the same routine for 6 × 103 realizations of the random process
α(t) in order to smooth the resulting scalar distributions due
to assumed averaging. Finally, we compare these results with
the ones obtained in the case of only horizontal diffusion [25]
to single out the impact of the diffusion vertical component.

To start, we address the steady state, as the ellipsoid
stays undeformed. This state is illustrated in Fig. 1(a) as
a(0)/b(0) = 1.0551, θ (0) = π/4. The ellipsoid axes remain
unchanged, hence there is no perturbation to exterior fluid
particles. Then, when the diffusion is imposed, fluid particles
are now able to redirect their paths from one streamline to some
other. Therefore, the fluid particles tend to be redistributed in
space in accord with a Gaussian distribution.

Figure 4 clarifies the latter observation. The initial con-
centration field of passive scalars within the ellipsoid is
equal to the number of realizations 6 × 103. Figure 4 shows
the concentration field after 40 dimensionless time intervals
as the horizontal diffusion component is κ = 0.01 and the
vertical component is κz = 2κ . Figure 4(a) corresponds to
the surface layer at z = 0, while Fig. 4(b) corresponds to the
layer comprising the bottom tip of the ellipsoid at z = c̃ = 1.
The figures indicate that, because of the vertical component
of diffusion, the maximal value of the scalar concentration
field varies in space. A higher concentration is observed
outside the ellipsoid [Fig. 4(b)] in comparison with the surface
concentration inside the ellipsoid [Fig. 4(a)].

Figures 4(c) and 4(d) show an analogous scalar concentra-
tion field but without the diffusion vertical component κz = 0.
This configuration was previously investigated in Ref. [25].
Figure 4(c) corresponds to the surface layer z = 0, while
Fig. 4(d) shows the concentration field in the layer comprising
the bottom tip of the ellipsoid. Since scalars are now able to
move only in the horizontal plane, the concentration is much
higher at the surface due to a significantly larger number of
initial scalars (1150) compared to a smaller number in the layer
comprising the ellipsoid bottom tip (216).

Now, we look into the dynamics of the perturbed state
as the ellipsoid changes its form and orientation in time.
Because of the varying lengths of the horizontal axes, a,b, the
ellipsoid stirs the neighboring fluid by periodically perturbing
it, thus causing exponential divergence of initially close fluid
trajectories. This state is illustrated in Fig. 2 as a(0)/b(0) = 2,
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FIG. 4. (Color online) The steady state as a(0)/b(0) = 1.0551, θ (0) = π/4. Passive scalar distributions after 40 dimensionless time intervals
from the initial concentration of 6 × 103 in each node as the diffusion horizontal component is κ = 0.01. (a) κz = 2κ—the surface layer z = 0,
the bold curve marks the steady ellipsoid boundary; (b) κz = 2κ—the layer comprising the bottom tip of the ellipsoid, z = c̃ = 1; (c),(d) the
same as in (a),(b), respectively, except that there is no vertical diffusion κz = 0.

θ (0) = π/4. As the ellipsoid rotates, the phase space shrinks
and elongates periodically. Therefore, to analyze the system
evolution in time, one needs to consider passive scalar
positions only at the moments when the ellipsoid takes on
its original form and orientation. The ellipsoid completes a
full rotation and returns to its initial state in a time interval
Tr = 1.891 65. Hence, 40 time intervals equal 21Tr . Figure 5
illustrates the concentration field after this time interval. The
sequence of the figures is the same as in Fig. 4.

As indicated by the figures, the perturbed state ensures an
enhanced dispersion of the concentration field because along
with the diffusion transport there occurs chaotic advection
facilitating the trajectory spreading. Analogously to the steady
state, the concentration field maximum shifts in the vertical
direction.

V. SCALAR PROBABILITY DENSITY AND DISPERSION

Now, we analyze in detail how the concentration fields
evolve in time and space. As a numerical estimate, we make
use of the following probability density. We single out nested
ellipsoidal rings of equal volume with the same ellipticity
(1.0551 in the steady state, 2 in the perturbed state), and

we calculate the number of scalars that get into some of the
ellipsoidal rings. As a result, we construct a probability density
identifying the scalar concentration change in space. A discrete
analog of a probability density in our case reads

p = N�V

N
, (9)

where N�V is the number of scalars inside an ellipsoidal ring
of a volume �V , and N is the total number of scalars encom-
passed in the total volume V . Scaling of quantity (9) depends
on the volume �V , but it does not impact the shape of the prob-
ability curves, so it was not taken into account. We choose a
rather fine difference �V that allows us to observe sought-after
effects. The only result that occurs from changing �V is that
the curves will be elongated or shrunk along the ordinate axis,
but significant features will remain. Therefore, initially we
have p = 0.2 inside the ellipsoid, since we choose �V equal
to 1/5 of the initial volume, and p = 0 outside the ellipsoid.

Figure 6 illustrates the obtained probability density curves.
Figures 6(a) and 6(b) correspond to the steady state with the
vertical component of diffusion and without it, respectively.
Accordingly, Figs. 6(c) and 6(d) correspond to the perturbed
state with the vertical component of diffusion and without it,
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FIG. 5. (Color online) Perturbed state as a(0)/b(0) = 2, θ (0) = π/4. Passive scalar distributions after 40 dimensionless time intervals from
the initial concentration of 6 × 106 in each node as κ = 0.01. (a) κz = 2κ—the surface layer z = 0, the bold curve marks the steady ellipsoid
boundary; (b) κz = 2κ—the layer comprising the bottom tip of the ellipsoid, z = c̃ = 1; (c),(d) the same as in (a),(b), respectively, except that
there is no vertical diffusion κz = 0.

respectively. Each figure comprises four curves corresponding
to 10, 20, 30, and 40 time intervals. The steady-state figures are
clearly indicative of a Gaussian distribution outside the ellip-
soid, whereas the perturbed ones demonstrate different shapes.

In both steady and perturbed states, accounting for the
vertical component of diffusion results in an intensification
of the scalar transport out of the ellipsoid and saturation of
the exterior region. In the perturbed case, concurrently with
the diffusion there is chaotic advection that increases the flux
through the ellipsoid boundary, resulting in a non-Gaussian
distribution outside the ellipsoid within the chaotic advec-
tion region, which coincides roughly with the unperturbed
separatrix region. In addition to the general intensification
due to simple spreading of scalars in the vertical direction,
the vertical component of diffusion also brings along the
following feature. Since every cross section of the ellipsoid
decreases in area with depth, a scalar starting in some horizon
inside the ellipsoid can move to a deeper horizon but outside
the ellipsoid, where it will be advected due to exponential
divergence. This results in a decreased probability for the
scalar to return inside the ellipsoid. This, in turn, enhances
horizontal spreading. Figure 7(a), which shows the number

of scalars inside the ellipsoid in time normalized by the total
number of scalars, clearly demonstrates this effect. The curves
corresponding to the cases with only horizontal diffusion
components (κz = 0) are similar in the steady (the dashed
lines) and perturbed states (the solid lines); the curves for the
horizontal and vertical diffusion components are also similar,
but they demonstrate more effective scalar spreading outside
the ellipsoid. Figure 7(a) also features analogous curves figured
out in the case κz = κ . The curves indicate that changing
the vertical diffusivity results only in increased or decreased
intensity of the fluid particles emanating from the ellipsoid,
but no additional effects occur.

Another characteristic that can help to assess the structural
deformation of the ellipsoid provided that scalars exchange
with the exterior region is the dispersion of scalars originating
from the ellipsoid. We use the term “dispersion” as a measure
of passive scalar spreading in the directions of the ellipsoid’s
axes in space,

Da = 〈xa(t)2〉, Db = 〈yb(t)2〉,
(10)

Dz = 〈z(t)2〉 − 〈z(t)〉2,
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FIG. 6. (Color online) The probability density p as a function of the ellipsoid horizontal major axis a. Initially p = 0.2 inside the ellipsoid
and p = 0 everywhere outside the ellipsoid. The vertical dashed line marks the boundary of the ellipsoid. Four curves in each part correspond
to given dimensionless time intervals. (a) The steady state with the horizontal and vertical diffusion components, (b) the steady state with only
the horizontal diffusion component, (c) the perturbed state with the horizontal and vertical diffusion components, and (d) the perturbed state
with only the horizontal diffusion component.

FIG. 7. (Color online) (a) The number of scalars inside the ellipsoid normalized by the total number of scalars depending on time. The
dashed lines correspond to the steady states, while the solid lines correspond to the perturbed states. (b) Scalar dispersion components along
the ellipsoid axes. The solid lines correspond to κz = 2κ , the dash-dotted lines correspond to κz = κ , and the dashed lines correspond to no
diffusion vertical component κz = 0.
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where 〈·〉 is the averaging in the coordinate system bound
to the ellipsoid horizontal axes, Da,Db are the dispersion
components along the ellipsoid’s horizontal axes, Dz is the
dispersion component along the vertical axis, and xa,yb are
the projections of a passive scalar position on the a and b axes,
respectively.

In the steady state, which does not have exponential
divergence of close trajectories, the dispersion components
along the ellipsoid axes grow linearly in accordance with
a Gaussian distribution, which is a solution of the station-
ary advection diffusion equation. Figure 7(b) illustrates the
dispersion components along the ellipsoid axes in time. The
steady-state case (not presented in the figure) corresponds to
the linearly increasing lines complying with the equations

〈xa(t)2〉 = 〈yb(t)2〉 = 4κt,
(11)〈z(t)2〉 − 〈z(t)〉2 = 4κzt.

It is clear that Fig. 7(b) maintains these relations for the
dispersion vertical component Dz in the perturbed state as
the vertical motion is simply due to diffusion with no chaotic
advection. Analogous linear dependencies are for all the
dispersion components in the steady state. However, the
dispersion horizontal components along the ellipsoid axes
Da and Db behave differently, as can also be noticed from
Figs. 6(c) and 6(d), which demonstrate apparent non-Gaussian
distributions.

Opposite to the steady state, in the perturbed state the
dispersion horizontal components have some features. First,
the rate at which scalars emanate from the ellipsoid is
considerably higher, and second, this rate decreases in time,
indicating a nonlinear dependence. Accounting for the vertical
diffusion component [the solid lines corresponding to the
diffusivity κz = 2κ and the dash-dotted lines corresponding to
κz = κ in Fig. 7(b)] results in a more distinct saturation effect.
For example, after several tens of ellipsoid rotational periods,
the dependences of the dispersion horizontal components
cease to differ from the ones obtained with no diffusion
vertical component. Based on these observations, we draw
a conclusion that from the beginning, the ellipsoid breakup (in
the sense of losing enough fluid particles from a region with
different vorticity) is determined by advection of the scalars
having been transported through the ellipsoid’s boundary by
diffusion. After the exterior region up to the separatrix region
is properly saturated (distinguishing the closed recirculation
region) further spreading of scalars into the exterior hyperbolic
region is sustained by chaotic advection. The latter process
occurs at rates distinctly slower than the former. Thus,
scalars emanating from the ellipsoid swiftly spread within the
separatrix region due to chaotic advection, but henceforth the
rate at which scalars pass to the hyperbolic outer region will

be significantly slower due merely to the diffusion process.
In general, although the ellipsoid loses scalars, thus inducing
its own breakup, these scalars stay for a significantly longer
time within the separatrix region, decreasing the rate of
decomposition of the whole rotational region, which comprises
the ellipsoid and the surrounding closed recirculation region.

VI. CONCLUSIONS

In this paper, we have analyzed the passive scalar dynamics
in an ellipsoid vortex model evolving in a linear shear flow
subjected to diffusion. Despite being significantly refined, this
model still provides valuable insights into the isolated vortex
dynamics in the ocean [3,10]. With regard to the horizontal
and vertical components of diffusion, we presented evidence
that even though the vertical component of diffusion is several
orders smaller than the horizontal component, it may be just
as important and influential to the scalar transport in vortex
structures in such sheared media.

Comparing the steady and perturbed states, i.e., those for
which the ellipsoid stays still or those for which it rotates
periodically, we have demonstrated that the vertical component
of diffusion has a considerable effect on scalar distribution in
the perturbed state. This is because, in the perturbed state,
the diffusion vertical component can force a scalar to move
between the ellipsoid’s horizontal sections, which differ in area
with depth. Therefore, there are events when scalars initially
located in a regular dynamics horizontal section inside the
ellipsoid find themselves in a lower section already outside the
ellipsoid subjected to chaotic advection. Another noticeable
effect is that, in both cases in the perturbed state, the horizontal
dispersion component ratio Da/Db shown in Fig. 7(b), which
was initially equal to 4, first decreases. This signifies that
the closed recirculation region is being filled with scalars
unevenly, and consequently the filled recirculation region
shape becomes more circular. Furthermore, the dispersion ratio
begins to increase, which means that the scalar patch shape
again becomes more elliptical. The latter might be of interest
since the scalar patch can be associated to some degree with
vorticity inside coherent structures in geophysics. Thus the
vorticity patch is redistributed unevenly resulting in a change
in its ellipticity, which in turn affects the rate of decomposition
of the vortex structure.
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