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This article analyzes the status of two classical one-particle probability density function (PDF) descriptions
of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the
process made up by particle position and velocity Zp = (xp,Up) and is represented by its PDF p(t ; yp,Vp) which
is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem.
The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity
seen by particles Zp = (xp,Up,Us), and, consequently, handles an extended PDF p(t ; yp,Vp,Vs) which is the
solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter
category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck
equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked
out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by
starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same
assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid
seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals
that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute
incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically
ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process
retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that
well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical
systems and guidelines are formulated to emphasize the key role played by the notion of slow and fast variables.
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I. INTRODUCTION

As indicated by their name, polydisperse two-phase tur-
bulent flows refer to a two-phase flow regime characterized
by the presence of one phase as a set of discrete elements
or “particles” having a range of diameters (or typical sizes)
and embedded in a flow that is usually turbulent. This regime
is always met when the discrete phase is made up by solid
particles but is also desirable for droplets and bubbles since
it allows to increase the surface to volume ratio and enhance
transfer processes between the two phases. Disperse two-phase
flows are ubiquitous in industrial and environmental flows,
which explains that there is considerable impetus to develop
modeling approaches for simulating these complex flows.

In most laboratory, industrial or environmental flows, the
Kolmogorov scale (the scale of the smallest eddies in a
turbulent flow) is in the range of [50 μm, 1 mm]. This means
that small particles or droplets having a diameter of less than,
say, 30 μm are usually well below Kolmogorov scales and that
a pointwise approximation, whereby these discrete elements
are treated as points moving in the fluid flow, is reasonable.
This is less the case for bubbly flows as bubbles tend to
have larger sizes. In the present work, we consider statistical
descriptions in which this pointwise approximation is made.
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From a physical point of view, this indicates that we are
essentially dealing with small particles or droplets dispersed
by turbulent flows while the instantaneous fluid flow fields are
still regarded as existing at the particle positions. Moreover,
we leave out any possible change in the particle or droplet
volumes (inert particles) and, therefore, phenomena such
as coalescence and breakup (for droplets) or agglomeration
and fragmentation (for solid particles) are not considered.
Actually, PDF methods are precisely attractive when complex
physics, such as chemical reactions, polydisperse particles
with evolving diameters, etc., is to be accounted for (see
Refs. [1–3] for single-phase flows and Refs. [4–6] for disperse
two-phase flows). Yet, though they are not necessary for the
developments to follow, the above assumptions are made for
the sake of simplicity and in order to concentrate on the
treatment of particle dynamics in PDF approaches.

Not surprisingly, disperse two-phase flow modeling can
be addressed from different standpoints corresponding to
different levels of description that can be classified as mi-
croscopic, mesoscopic, and macroscopic. This is a classical
terminology of statistical physics where it is usually associated
to spatial coarse-graining procedures when one goes from
atomistic to hydrodynamical descriptions. It was carried out to
two-phase flow statistical modeling in Ref. [4] with the caveat
that the coarse-graining procedure has to be understood as a
reduction of the available information through a reduction
of the degrees of freedom that are explicitly simulated in
each formulation. Since then, this classification has proved
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an adequate reference system to bring out the articulation of
various statistical models [6–8]. At one end of the spectrum
of possible descriptions, microscopic approaches correspond
to formulations where all the degrees of freedom of the carrier
turbulent fluid flow Ndf

f plus all the degrees of freedom
associated to the chosen description of the set of particles
Ndf

p are explicitly computed. In that case, the total number of
degrees of freedom is Ndf

f + Ndf
p , where Ndf

f scales as Re9/4

with Re the characteristic Reynolds number of the fluid flow
and Ndf

p is, for example, equal to 6Np with Np the total number
of particles if a description in terms of particle positions xp

and velocity Up is retained for each particle. This represents
a full direct numerical simulation (DNS) of the fluid and
particle system. At the other end, macroscopic approaches
consist in describing two-phase flows by a few statistical
moments (such as the particle mean velocity or concentration
fields). These macroscopic descriptions are usually referred
to as “two-fluid models” and appear as the counterparts of
traditional descriptions of single-phase turbulent flows derived
by direct application of Reynolds averaging [2,4,9,10]. A
direct formulation of the closed set of moments that make
up a two-fluid model, following the classical approach to
single-phase turbulent flows that leads to models such as
the well-known k-ε and Reynolds-stress models (RSM), has
proved difficult especially for polydisperse particles for which
characteristic response times vary over a wide range of values
[4,6]. In between these two limits, mesoscopic approaches
are typically made up by probabilistic descriptions where the
exact dynamics of two-phase flows is replaced by a stochastic
model (or its probabilistic formulation in the corresponding
sample space). These formulations are called PDF models
since they attempt to simulate the probability density function
of the variables regarded as relevant to describe two-phase
flows. PDF approaches have a twofold interest. First, they
provide a direct possibility to simulate two-phase flows (this
will be referred to as a “stand-alone PDF description” in the
rest of the paper). Second, they represent a consistent way to
derive realizable macroscopic models by integration over the
sample space variables from which closed two-fluid models
can be safely obtained [2,4,9,10]. Though a few models have
been proposed for a PDF description of both the fluid and
particle phases [4,10], a more practical approach is to follow
an hybrid approach where the turbulent fluid flow is described
by a macroscopic formulation (a moment approach) while the
probabilistic approach is limited to the particle phase. In the
present work, we retain this hybrid method and only consider
probabilistic descriptions of the disperse phase.

However, what probabilistic formulation should we choose
to describe the dynamics of small particles in turbulent flows
when only limited information (which consists in a few
statistical moments) is available for the fluid flow? Quite
interestingly, the choice of such a PDF model involves not
one but two hierarchies (see a detailed discussion in Ref. [4]).
The first one corresponds to the choice between one-particle,
two-particle, etc., or Np-particle PDF descriptions. This is the
famous Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
of statistical physics [11,12], where single-particle dynamics
is described by the same set of variables [typically with a
particle state vector Zp made up by particle position and
velocity Zp = (xp,Up)]. For wall-bounded inhomogeneous

turbulent flows, one-particle PDF remains a relevant choice as
two-particle (or N -particle) PDF models have not yet reached
a mature level for this general case. For this reason, we adopt a
one-particle PDF description which corresponds to a one-point
statistical description for the resulting (Eulerian) moments of
the disperse phase, in line with what is currently achieved for
the fluid phase. This first hierarchy is compounded by a second
one related to the choice of the variables used to describe
particle dynamics: should we retain only particle positions in
the particle state vector (i.e., Zp = [xp(t)]) or include particle
position and velocity [i.e., Zp = (xp(t),Up(t))] or particle
position, velocity, and acceleration, etc.? Note that, since only
limited statistical information is available on the fluid flow,
this latter choice amounts to include fluid-related variables
“seen” by particles in the particle state vector (this point will be
exemplified with the governing equations through the typical
drag force expression). The issue of selecting the particle state
vector in PDF descriptions of particle in turbulent flows is at
the core of present considerations.

At the moment, two such one-particle PDF descriptions
have been proposed in the literature. The first one retains a
particle state vector made up by particle location and velocity,
that is, Zp = (xp,Up). This model is developed in sample
space through the derivation of an evolution equation for the
corresponding PDF p(t ; yp,Vp) [where yp and Vp designate
the sample space variables corresponding to the random
variables xp(t) and Up(t) respectively]. In this approach, the
fluid velocity is treated as an external field “noise” and a closed
PDF equation in sample space is proposed by resorting to the
Furutsu-Novikov theorem. Given the particle state vector, this
model is referred to as a “kinetic PDF model.” In the second
PDF description, the particle state vector is extended to include
the fluid velocity “seen” by particles along their trajectories,
whereby we have now Zp = (xp,Up,Us) for the particle state
vector. This model is essentially developed in physical space
through the formulation of a stochastic diffusion process for Zp

and is often called a Langevin approach since Langevin models
are typically used to describe the evolution of the fluid velocity
seen Us [4–6,13]. As we are dealing with weak approaches
where only the law of stochastic processes is approximated
[4,8,14,15], the formulation in terms of stochastic differential
equations is equivalent to a Fokker-Planck equation for the
corresponding density p(t ; yp,Vp,Vs). Given this state vector
and that particle accelerations are explicitly treated, this second
model is referred to as a “dynamic PDF model.”

The question of the choice of the variables entering the
particle state vector has been discussed in some works [4,6,13],
mostly in connection with the selection of the fluid velocity
seen as a relevant particle variable in high-Reynolds-number
turbulent fluid flows and in relation with the formulation of a
Langevin model for this variable. To the best of the authors’
knowledge, no such explicit discussion has ever been proposed
in the works devoted to the development of kinetic PDF models
[16–19]. This is perhaps due to the fact that Zp = (xp,Up)
appears as the direct extension of the “natural choice” made in
molecular dynamics studies. However, it is worth emphasizing
that the selection of the particle state vector is indeed a
choice when we do not consider particles (or molecules) in
void but discrete elements embedded in random continuous
media, in our case particles carried by turbulent fluid flows.
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Thus, a comparative evaluation of the different choices of the
particle state vector is needed. Furthermore, these two PDF
descriptions are proposed in different formulations and it is of
great interest to assess whether they correspond to intrinsically
different models or are not two sides of the same coin. For
example, since a kinetic PDF p(t ; yp,Vp) is always retrieved
as the marginal of a dynamic one p(t ; yp,Vp,Vs) by integration
over the fluid seen variable Vs , is the kinetic-based PDF
model obtained with Furutsu-Novikov-type closure obtained
as the marginal of a dynamic-based PDF model closed with
Langevin-type models?

The purpose of this article is to analyze the differences
and relations between kinetic-PDF and dynamic-PDF models.
More precisely, drawing on the issues brought out in the
previous paragraph, the aims of the present work are to provide
answers to the following questions:

(i) When can we consider that a PDF model constitutes a
complete probabilistic description?

(ii) When can we regard a given PDF model as being well
posed and an acceptable description?

(iii) Are present kinetic PDF models retrieved as the
marginal of current dynamic PDF ones?

(iv) What are the specific assumptions made in each
formulation and how can their range of validity be assessed?

(v) Is the selection of the particle state vector a free choice
or are there constraints to respect?

In spite of the mathematical flavor of some of the above
points, these questions are directly connected to physical
issues. In particular, it will be shown that they lead to a new,
and arguably simpler, derivation of the kinetic PDF equation
while revealing the physical content of the dispersion tensors.
Furthermore, well-based PDF approaches are essential for
future developments and answers to point (v) are of central
interest for physically oriented concerns. Indeed, as mentioned
above, proper formulations are needed both to ensure that
stand-alone simulations can be run and also to assess the
validity of the closed two-fluid models derived from such PDF
descriptions.

To that effect, the article is organized as follows. The
governing fluid and particle equations are first recalled in Sec.
II. The salient aspects of probabilistic descriptions needed
for present considerations are recalled in Sec. III, with the
definition of the criteria used to assess well-based PDF models
stated in Sec. III E. The kinetic and dynamic PDF models are
presented in Sec. IV. In Sec. V, a new derivation of the kinetic
PDF is obtained which reveals that kinetic-based formulations
are retrieved as marginals of dynamic PDF models and a
new interpretation of the dispersion tensors is worked out. An
in-depth analysis of the kinetic-based PDF equation is detailed
in Sec. VII that brings out shortcomings as a stand-alone PDF
description. General guidelines are developed in Sec. VIII
where it is demonstrated that well-posedness is essentially
related to the choice of the particle state vector rather than to a
specific closure method. Finally, conclusions and propositions
for future works are given in Sec. X.

II. GOVERNING EQUATIONS

In this work, we consider incompressible fluid flows and
the fluid phase is described by the continuity and Navier-

Stokes equations which, for constant-property flows, have the
following form:

∂Uf,k

∂xk

= 0, (1a)

∂Uf,i

∂t
+ Uf,k

∂Uf,i

∂xk

= − 1

ρf

∂Pf

∂xi

+ νf

∂2Uf,i

∂xk∂xk

, (1b)

where Uf (t,x) is the fluid velocity field, ρf its density, νf its
dynamical viscosity, and Pf (t,x) the fluid pressure. Source
terms can be added to account for momentum exchange
between the fluid and the discrete particles when two-way
coupling (whereby particles influence the fluid phase) is
deemed important. However, for dilute flows these source
terms are not significant and we do not consider them in the
rest of the present work. This is done for the sake of simplicity
and to concentrate on the probabilistic treatment of the particle
momentum equation.

For particle diameters of the same order of magnitude as
the Kolmogorov length scale, the particle momentum equation
involves the well-known pressure-gradient, drag, added-mass,
and Basset forces [20,21]. In the case of particles smaller than
the Kolmogorov scale and heavier than the fluid (droplets in a
gas, solid particles in a gas or liquid), the particle momentum
equation can be simplified to the following form which retains
only the drag and external forces (other forces can be added
but this is sufficient for the present discussion):

dxp

dt
= Up, (2a)

dUp

dt
= 1

τp

(Us − Up) + Fext. (2b)

In Eq. (2b), Fext is the acceleration due to some external field
forces (typically, Fext = g, where g is the gravity acceleration)
and it is seen that the drag force is written with the particle
relaxation time τp defined as

τp = ρp

ρf

4dp

3CD|Ur| , (3)

where ρp is the particle density and dp its diameter and
where the local instantaneous relative velocity between the
fluid and the particle velocity is Ur = Us − Up. The drag
coefficient CD is usually expressed as a nonlinear function of
the particle-based Reynolds number, Rep = dp|Ur|/νf , based
on empirical formulas [22]. For example, an often-retained
formula is [22,23]

CD =
{

24
Rep

[
1 + 0.15Re0.687

p

]
if Rep � 1000,

0.44 if Rep � 1000.
(4)

In the Stokes regime, that is, when the particle-based Reynolds
number Rep is small (say, Rep � 1), the drag coefficient CD

can be safely approximated by CD � 24/Rep. In that case, the
particle relaxation time τp tends towards the Stokes expression
τ st
p and we retrieve the well-known formula that

τ st
p = ρp

ρf

d2
p

18νf

. (5)
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In Eq. (2b) and in the expression of the particle relaxation time
scale in Eq. (3), the central variable for the present concerns
is Us = (Uf (t,xp(t)),t � 0) which is the “fluid velocity seen,”
i.e., the fluid velocity sampled along the particle trajectory xp

as it moves across a turbulent flow [4,13].
At this point, two remarks can be made. First, though the

velocity of the fluid is defined from the fluid velocity field
(or, in other words, from a Eulerian field), it is a Lagrangian
property attached to each particle [a time series of Us(t) is
only meaningful along a certain particle trajectory]. Second,
it is seen that, apart from the Stokes regime when τp is a
constant, the particle relaxation time is actually a function of
both the instantaneous particle and fluid velocities which we
can express by writing τp = F(Up,Us), where F stands for
the function on the right-hand side of Eq. (3) and with the
specific expressions given in Eq. (4).

III. THE PDF FRAMEWORK

The theory of stochastic processes is by now well estab-
lished and can be found in mathematical reference works
[24–27]. Over the past few decades, it has also been sum-
marized in physics textbooks [14,15,28,29] for physically
oriented readers with a view towards applications, as well
as in comprehensive review articles for PDF approaches to
single-phase and two-phase flow modeling [1,4]. For this
reason, we limit ourselves to recalling only the key aspects
that are of direct interest in the developments to follow. At the
core of present considerations are the question of the complete
law of a stochastic process, the physically important issue
of Markovian and non-Markovian processes, and the relation
between Markovian character and so-called “colored-noise”
or “white-noise” in dynamical systems. The latter point was
the subject of constant interrogation in physics [28,30] but
clarifications have emerged in recent years. On this debate, we
refer in particular to an interesting and pedagogical paper by
Van Kampen [31] that addresses these questions for physicists.
These reminders are helpful to bring out specific criteria that
are used to assess whether a given probabilistic description is
complete and well posed. This is done in Sec. III E.

A. The law of a stochastic process

A stochastic process, noted as Z or [Z(t),t � 0], is a
family of random variables indexed by a parameter which
is usually time (with t ∈ T where T is a time interval). We
consider vector-valued stochastic processes whose values (in
the corresponding sample space which is typically �d where
d is the dimension) are noted z. Simply speaking, knowing the
law of a stochastic process is equivalent to the knowledge of
the joint PDF p(t1,z1; t2,z2, . . . ; tN ,zN ) for any set of N times
and for any values of the chosen times (t1; t2, . . . ; tN ). It is thus
clear that the amount of information required is huge and, in
particular, much larger than the sole access to the one-time
PDF p(t,z).

B. Markovian processes

Loosely speaking, a Markov process is a stochastic process
for which “knowledge of the whole past” or “knowledge of
the present” amounts to the same for predicting the future (in a

probabilistic sense). This notion is actually the direct extension
of classical deterministic mechanics where the knowledge of
an initial condition and of the rate of change is enough to
predict the future of a dynamical system. A rigorous definition
requires adapted-σ algebras [15,25] but for our purpose it
is sufficient to illustrate the Markov property of a stochastic
process in a discrete setting by writing that

p(tn+1,zn+1|(tn,zn; tn−1,zn−1; . . . ; t1,z1))

= p(tn+1,zn+1|(tn,zn)), (6)

where tn+1 stands for the future, tn for the present, and
(tn−1, . . . ,t1) for the past while zi represents the value of the
process at t = ti [i.e., Z(ti) = zi].

It is important to note that the above condition, which is
simply written as (tn,zn) in the right-hand side of Eq. (6),
represents in fact the whole information known at the present
time t = tn. For example, if we consider a system upon
which an external action is exerted, then this action must be
fully determined by the knowledge of (tn,zn) for the Markov
property to be valid. This point is essential in the choice of the
treatment of “external noises” and will resurface in Sec. VII A.

The fundamental property of Markov processes is that the
law of the stochastic process can be completely determined
from the knowledge of only two functions: p(t0,z0), which
represents an initial PDF condition, and p(t,z|(t0,z0)), which
is the conditional or transition PDF from a state z0 at t = t0
to a state z at a later time t . This transition PDF plays the
role of the time rate of change in classical mechanics and is
the central quantity. Then, all the N -time PDFs are easily
reconstructed by application of the Chapman-Kolmogorov
equation (or chain-rule) [14,15,29] which indicates that the
complete law of the process is indeed simulated. This means
that any evolution equation for the transition PDF lives up to
its name of a master equation (ME) [28,31]. If we introduce the
operator L as the generator of the Markov stochastic process
Z, the master equation is the forward-Kolmogorov equation
that can be written as

∂p(t,z|(t0,z0))

∂t
= L⊥[p(t,z|(t0,z0))], (7)

where L⊥ is the adjoint of the operator L. For a stochastic
diffusion process, the forward Kolmogorov equation takes the
form of the well-known Fokker-Planck equation

∂p(t,z|(t0,z0))

∂t
= −∂[Aip(t,z|(t0,z0))]

∂zi

+ 1

2

∂2[Dijp(t,z|(t0,z0))]

∂zi∂zj

, (8)

where A = (Ai)i=1,d is a drift vector and D = (Dij )i,j=1,d is a
symmetric definite-positive diffusion matrix.

C. Non-Markovian processes

When the Markov property is not satisfied, not much can be
said about a stochastic process. It is of course always possible
to consider the one-time PDF p(t,z) of the random variable
Z(t), or the transition PDF p(t,z|(t0,z0)), from which one-time
statistical moments can be derived (through the definition of
the related distribution function). However, it is not possible to
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reconstruct further information on the stochastic process from
this single PDF and, therefore, it is not possible to simulate
the complete law of the stochastic process. Similarly, one can
construct an evolution equation for the one-time PDF (or the
transition one) p(t,z), for example, of the form

∂p(t,z)

∂t
= G[p(t,z)], (9)

where G is an operator, but this equation cannot be considered
as the equivalent of a ME [31].

D. To be Markovian or not

It is worth emphasizing that the Markovian property is not
related to a physical system but to how we choose to describe
it. In other words, this is not an intrinsic characteristic of a
physical system but a reflection of the modeling standpoint
that we adopt. A classical example illustrates that point and
helps to anticipate on the discussions to follow in Sec. VII
(see detailed accounts in Refs. [28,30,31], for example, about
the historical Kramers equation). We consider a 1D stochastic
process Z whose trajectories evolve according to

dZ

dt
= A(t,Z) + B(t,Z)ξ (t), (10)

where ξ is an external noise acting on Z (with A and B given
functions), for instance, a stationary Gaussian process. If ξ

takes independent values, then ξ corresponds to a “Gaussian
white-noise” whose integration over a small time interval can
be written as the increment of the Wiener process W , leading
to the usual (and mathematically correct) formulation of a
stochastic differential equation (SDE) in the Itô sense [15,25],

dZ = A(t,Z) dt + B(t,Z) dW (t). (11)

In that case, the increments dW (t) of the “external noise” are
independent: The future can be predicted based on present
values and, thus, Z is a Markov process. On the other hand,
if ξ has a nonzero correlation time τ (a so-called Gaussian
colored noise), then it is clear that Z is no longer a Markov
process. Yet such a colored Gaussian noise is easily simulated
as a stationary Ornstein-Uhlenbeck (OU) process [14] of the
form

dξ (t) = −ξ (t)

τ
dt +

√
2〈ξ 2〉

τ
dW (t). (12)

It is then immediate to see that, while Z is not Markovian,
the joint process (Z,ξ ) does make up a Markovian process
[14,28,29].

E. Criteria for complete and well-posed PDF descriptions

From the above reminders on stochastic processes, we
can put forward two criteria. The first one (C1) is that a
PDF description is complete if it allows the complete law
of the stochastic process to be simulated. With the results
of Sec. III B, it is seen that the derivation of the transition
PDF of a Markov process, for example, as the solution of an
evolution equation of the form Eq. (7), plus an initial PDF is
enough to guarantee that this PDF description is complete. For
a non-Markovian process, the same amount of information is
not enough and, in that case, the PDF description is said to

be incomplete. Note that for a non-Markovian process a PDF
description can still be complete but this requires additional
sources of information on the process. This first criteria is
only meaningful if the evolution equations, such as Eq. (7) or
Eq. (9), are well-posed stand-alone equations. We raise this as
the second criterion (C2) to express that a given PDF model
corresponds to a well-based PDF description. These criteria
will be at play in Sec. VII.

IV. KINETIC AND DYNAMIC PDF DESCRIPTIONS
FOR DISPERSE TWO-PHASE FLOWS

In this section, we present the main characteristics of
the kinetic and dynamic PDF models as found in published
works. This is useful to introduce the rationale behind each
approach and to outline the physical assumptions made in
each derivation. Only the relevant aspects and key formula
that are of direct interest for the developments in Sec. V and
for the discussions in Sec. VII are recalled. Note that notations
sometimes differ from those in the original works but this is
done to make the connection between the two PDF descriptions
easier to read (connections with the original notations are made
whenever necessary).

A. The kinetic-based PDF approach

Over the past 20 years, several derivations of a kinetic-based
PDF equation have been proposed. Yet, in the following, we
refer essentially to a recent study [18] that discusses these
attempts and proposes an updated derivation based on the
Furutsu-Novikov theorem (therefore, historical references can
be found in Ref. [18]).

As mentioned in the Introduction, the kinetic PDF model
retains only particle position and velocity in the particle state
vector, which means that we are dealing with Zp = (xp,Up)
and its corresponding PDF p(t ; yp,Vp). Note that we explicitly
use different notations to distinguish between the random
variables at a given time t and their possible values in sample
space: for that reason, we use yp for the sample space value
of the random variable xp(t) (regrettably, the same notation x
is often used in PDF derivations which can lead to confusion,
especially when Lagrangian PDFs where x is a variable and
Eulerian PDFs where x is a parameter are to be manipulated)
and Vp for the random variable Up(t) at time t .

The PDF equation is usually derived from the governing
equations Eqs. (2) by manipulation of the fine-grained PDF
P(t ; yp,Vp) = δ(xp(t) − yp)δ(Up(t) − Vp) since we have that
p(t ; yp,Vp) = 〈P(t ; yp,Vp)〉. In this description, the velocity
of the fluid seen Us(t) is an external variable. From the particle
momentum equation Eq. (2a), it is then clear that the drag
force term induces unclosed terms in the corresponding PDF
equation due to the velocity of the fluid seen but also to the
particle relaxation time [since τp = F(Up,Us) as discussed at
the end of Sec. II]. The exact unclosed PDF equation has the
following general form [4]:

∂p

∂t
+ ∂[Vp,ip]

∂yp,i

= −∂[Fext,ip]

∂Vp,i

+ ∂

∂Vp,i

[〈
Vp,i

τp

|(yp,Vp)

〉
p

]
− ∂

∂Vp,i

[〈
Us,i

τp

|(yp,Vp)

〉
p

]
. (13)
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It is worth noting that the complete expression of the particle
relaxation time formulated in Eqs. (4) cannot be exactly
accounted for in the kinetic PDF description. In practice, one
has to approximate τp by a constant, that is, assume that
particles remain in the Stokes regime so τp � τ st

p with the
Stokes time scale expressed in Eq. (5).

With this approximation, the unclosed kinetic PDF equation
is written as

∂p

∂t
+ ∂[Vp,i p]

∂yp,i

= −∂[Fext,ip]

∂Vp,i

+ ∂

∂Vp,i

[
Vp,i

τ st
p

p

]
− ∂

∂Vp,i

[
1

τ st
p

〈Uf,i〉p
]

− ∂

∂Vp,i

[
1

τ st
p

〈u′
s,i |(yp,Vp)〉p

]
, (14)

where the velocity of the fluid seen has been decomposed as
Us = 〈Uf 〉(t,xp(t)) + u

′
s . This is the form given in Ref. [18]

(cf. Eq. (4) in Ref. [18]) where the notation fi corresponds
to fi(t,xp(t)) = uf,i(t,xp(t))/τ st

p = u
′
s,i/τ

st
p [where uf (t,x) =

Uf (t,x) − 〈Uf (t,x)〉 is the fluctuating velocity field of the
fluid] and since we have that

〈Pfi〉 = 1

τ st
p

〈u′
s,i |(yp,Vp)〉p(t ; yp,Vp). (15)

From the above equations, we can note that the original
derivation handles both a Lagrangian PDF p(t ; yp,Vp) and an
external (Eulerian) field since the velocity of the fluid seen is
treated as the value of the field f(t,x) at the particle location.
As a consequence, it is essential to remark that in Eq. (14) the
velocity of the fluid seen has been decomposed with respect to
the mean value of the fluid velocity field at the particle position,
namely 〈Uf 〉(t,xp(t)). However, if we can say that at a given
point x we have of course that 〈fi(t,x)〉 = 0 which follows
from the very definition of its (Eulerian) mean value since
fi(t,x) = 1/τ st

p (Uf,i(t,x) − 〈Uf,i(t,x)〉), it cannot be said that
〈fi(t,xp(t))〉 = 0 even for particles located at a given point.
The distinction between the parameter x and the variable xp(t)
is here at play. The usually nonzero value of 〈u′

s,i〉 is called
the drift velocity and will be shown to play an important role
in Sec. V.

Closure of the flux in the kinetic sample space due to
the velocity of the fluid seen is obtained by resorting to the
Furustsu-Novikov theorem [which is also called the Furutsu-
Novikov-Donsker (FND) relation [32–35], a terminology that
we retain in the following]. The explicit derivation is detailed
in Ref. [18] (see in particular the appendix in Ref. [18]) and is
not repeated here. It is, however, useful to state the form of the
FND relation which was applied as well as an equivalent form
for particle-based functionals. Following the above remarks,
the FND relation is written to express the correlation between
a Gaussian field with zero mean and an arbitrary functional of
that field. It is applied here by assuming that the fluctuating
velocity field (uf (t,x)) is indeed a random Gaussian field and
writing for an adapted functional F [t ; uf ] of that Gaussian

field

〈uf,i(t,x)F [t ; uf ]〉

=
∫ t

0

∫
x′

Rik(t,x; t ′,x′)
〈

δF [t ; uf ]

δuf,k(t ′,x′)

〉
dx′dt ′, (16)

where Rik(t,x; t ′,x′) = 〈uf,i(t,x) uf,k(t ′,x′)〉 is the fluid two-
point two-time correlation (this corresponds to Eq. (A1) in
Ref. [18] with uf,i = τ st

p fi). Yet, for particle variables which
are expressed as a functional Fp of the field uf (t,x) (for
example, Fp = P), only functional derivatives at points x′
corresponding to previous particle locations contribute to the
integral and we have

δFp

δuf,k(t ′,x′)
= δFp

δuf,k(t ′,xp(t ′))
δ(xp(t ′) − x′), (17)

which yields the practical form of the FND relation for such
functionals Fp

〈uf,i(t,x) Fp〉 =
∫ t

0

〈
Rik(t,x; t ′,xp(t ′))

δFp

δuf,k(t ′,xp(t ′))

〉
dt ′.

(18)

This form is identical to Eqs. (A3) and (A5) in the appendix of
Ref. [18]. Then, by applying these formulas to the fine-grained
PDF P , the following closure for the flux in sample space
〈Pfi〉 is obtained [18]:

〈Pfi〉 = κi p − ∂[λij p]

∂yp,j

− ∂[μij p]

∂Vp,j

. (19)

In this equation, λij (t ; yp,Vp), μij (t ; yp,Vp), and κi(t ; yp,Vp)
are referred to as the “dispersion tensors” and are derived by
further manipulation of the above relations [see Eqs. (6)–(8)
in Ref. [18] where, for a fixed i, the notation λki is used]. As
the expressions for λij and μij play an important role in the
new approach developed in Sec. V, they are repeated here

λij = 1

τ st
p

∫ t

0
〈�jk(t,t ′)Rik(t,yp; t ′,xp(t ′))〉(yp,Vp) dt ′, (20a)

μij = 1

τ st
p

∫ t

0
〈�̇jk(t,t ′) Rik(t,yp; t ′,xp(t ′))〉(yp,Vp) dt ′, (20b)

where the notation 〈.〉(yp,Vp) indicates the averaged value
conditioned on the particle trajectory that “arrive” at (yp,Vp) at
time t , which explains that the dispersion tensors are functions
of (yp,Vp) even if the eventual dependence on Vp is often
neglected. In these equations, �jk(t,t ′) stands for the response
function

�jk(t,t ′) = δxp,j (t)

δuf,k(t ′,xp(t ′))
, (21)

that measures the effect of a perturbation of the fluctuating
fluid velocity seen at an earlier time on the particle position
xp(t) at time t , and �̇ = ∂

∂t
�.

B. The dynamic-based PDF approach

In dynamic PDF models, the particle state vector is
extended to include the velocity of the fluid seen, Zp =
(xp,Up,Us), and the PDF becomes p(t ; yp,Vp,Vs), where Vs
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is used to denote the sample space variable corresponding to
the stochastic process Us . With this extension of the particle
state vector, it is seen that the particle momentum equation
Eq. (2b) is now treated without approximation even with the
complete formula for the particle relaxation time in Eqs. (4).
This means that the corresponding terms in the PDF equation
appear in a closed form. Indeed, a straightforward derivation
of the evolution of p(t ; yp,Vp,Vs) yields [4]

∂p

∂t
+ ∂[Vp,i p]

∂yp,i

= − ∂

∂Vp,i

[(
Vs,i − Vp,i

τp

)
p

]
− ∂

∂Vs,i

[〈s,i |(yp,Vp,Vs)〉p], (22)

which is still an unclosed equation but where the closure
issue has been shifted to the conditional average of the
“acceleration” of the fluid seen dUs/dt = �s which is now
to be modeled. The change from the open kinetic-based PDF
equation Eq. (13) to the open dynamic-based PDF equation
in Eq. (22) illustrates the second hierarchy mentioned in the
Introduction.

The derivation of the closed dynamic PDF equation is
developed essentially in physical space by considering the
evolution equation for the trajectories of the process Zp

dxp

dt
= Up, (23a)

dUp

dt
= 1

τp

(Us − Up) + Fext, (23b)

dUs

dt
= �s(t). (23c)

The key modeling step consists in decomposing the accelera-
tion into slow and fast variations such as

�s(t) = As + Bsξ s(t), (24)

with As and Bs functions of the system and where ξ s stands
for a rapidly varying noise which, from Kolmogorov theory
[2,35,36], has an integral time scale of the order of the
Kolmogorov time scale τη. Then, for high-Reynolds-number
turbulent flows, the fast part of the fluid acceleration can be
replaced by a white-noise term when the system is observed
at times larger than τη. The rationale behind the model and
comprehensive discussions of the modeling steps as well as
detailed presentations of the construction of the model have
already been given [4–6,13,37]. For our present purpose,
it suffices to express that the exact particle equations in
Eqs. (23) are modeled by the following SDEs:

dxp = Up dt, (25a)

dUp = 1

τp

(Us − Up) dt + Fext dt, (25b)

dUs = As(t,Zp,〈F[Zp]〉) dt + Bs(t,Zp,〈G[Zp]〉) dW, (25c)

where dW is a vector of independent Wiener processes and
where a complete notation has been introduced in the drift
vector As and the diffusion matrix Bs to indicate that, in
general, these coefficients depend not only on the particle state
vector but also on some statistics of the process (this is known
as McKean SDEs [38]).

In the physics literature, these equations [and in particular
Eq. (25c)] are referred to as Langevin equations, which is
justified by the fact that the drift vector contains usually a
return-to-equilibrium term [37]. In a weak sense, whereby
we are only interested in approximating the law of stochastic
processes (see definitions in Refs. [15,25]), the modeled SDEs
are equivalent in sample space to the well-known Fokker-
Planck equation

∂p

∂t
+ ∂[Vp,i p]

∂yp,i

= − ∂

∂Vp,i

[(
Vs,i − Vp,i

τp

)
p

]

− ∂[As,i p]

∂Vs,i

+ 1

2

∂2
[(

BsB
T
s

)
ij

p
]

∂Vs,i∂Vs,j

. (26)

From a physical point of view, two remarks are in order.
First, it is seen that this model relies on the shift from a fast but
still colored noise [ξ s in Eq. (24)] to a white-noise term in Eq.
(25c). Second, since the increments of a Wiener process are
normally distributed, there is also a Gaussian hypothesis built
into the model. However, it is important to note that it is only
the conditional acceleration of the velocity of the fluid seen,
which we can write as dUs |(Zp(t) = zp), that is assumed to
be Gaussian. As emphasized repeatedly [4,6,8], the resulting
process Zp can deviate from Gaussianity when the drift is
nonlinear or when the diffusion matrix Bs is space dependent
and thus nonconstant in inhomogeneous flows. Numerical
examples of such deviations, which can be marked depending
on the choice of the stochastic process, can be found, for
instance, in Ref. [2, Sec. 12] and a discussion of this question
has recently been given in Ref. [6, Sec. 4.3.1].

C. Consistency issues between PDF descriptions

At this stage, a natural question is whether the marginal PDF
(over Vs) derived from a dynamic PDF model is equivalent to a
kinetic one. In order to distinguish between PDFs arising from
different modeling approaches, we note pkm(t ; yp,Vp) (where
the superscript km stands for kinetic model) for the kinetic PDF
model, that is, the solution of the kinetic PDF equation Eq. (14)
with Eq. (19), and pdm(t ; yp,Vp,Vs) (where the superscript
dm stands for dynamic model) for the solution of the dynamic
PDF model, that is, the solution of Eq. (26). Indeed, since
we can always extract a kinetic-based PDF description from a
dynamic one by integration over the extra variable

pdm(t ; yp,Vp) =
∫

pdm(t ; yp,Vp,Vs)dVs (27)

and that we can obtain the flux closure 〈Pfi〉 at the level of
the kinetic PDF description as

1

τ st
p

〈u′
s,i |yp,Vp〉pdm(t ; yp,Vp)

= 1

τ st
p

∫
[Vs,i − 〈Uf,i〉(t ; yp)]pdm(t ; yp,Vp,Vs)dVs,i (28)

it can be wondered whether we have

pkm(t ; yp,Vp)
?=
∫

pdm(t ; yp,Vp,Vs)dVs , (29)
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which is equivalent to asking whether we retrieve the same
flux closure, that is,

1

τ st
p

〈u′
s,i |yp,Vp〉pdm(t ; yp,Vp)

?= κip
dm − ∂[λij pdm]

∂yp,j

− ∂[μij pdm]

∂Vp,j

. (30)

If Eq. (30) is satisfied with dispersion tensors that have
the same form as those given in Eqs. (20a) and (20b),
then pdm(t ; yp,Vp) follows the same evolution equation as
pkm(t ; yp,Vp) from which it can be expected that the two PDFs
are identical. This represents the consistency issue between the
two modeling approaches.

V. THE KINETIC PDF IS THE MARGINAL
OF THE DYNAMIC PDF

To investigate the consistency issue presented in Sec. IV C,
we start with a dynamic PDF model and we limit ourselves
to the case of a constant particle relaxation time scale, i.e.,
τp = τ st

p , since general expressions of τp cannot be treated in
the kinetic PDF approach.

For the sake of clarity, the notation Zp is kept to refer to
the dynamic-PDF particle state vector, i.e., Zp = (xp,Up,Us),
while Zr

p = (xp,Up) (where r stands for reduced) is used for
the kinetic-PDF one. Conversely, zp = (yp,Vp,Vs) is used
to denote the sample space values of Zp while zr

p = (yp,Vp)
represents samples space values of the reduced state vector Zr

p.
As seen in Sec. IV B, the dynamic PDF description follows a
full Lagrangian approach where the velocity of the fluid seen
is treated as a particle-attached variable. By integrating the
closed FPE in Eq. (26) over all the sample space values Vs ,
we retrieve the open kinetic PDF equation under the form

∂pr

∂t
+ ∂[Vp,i pr ]

∂yp,i

= −∂[Fext,ip
r ]

∂Vp,i

+ ∂

∂Vp,i

[
Vp,i

τ st
p

pr

]

− ∂

∂Vp,i

[
1

τ st
p

〈Us,i |zr
p〉pr

]
(31)

and the closure issue is to derive a closed formula for
1/τ st

p 〈Us,i |zr
p〉pr .

For the developments to follow, it is useful to introduce
specific notations to clarify the meaning of the variables that
are manipulated and of the hypotheses that are made. Indeed,
the notion of the velocity of the fluid seen contains a “double
randomness”: One is related to the intrinsic turbulence of
the fluid velocity field and the other one to the random particle
positions. These two sources of randomness are of course
related since random particle locations are induced by the
cumulative effects of the fluctuating fluid velocities seen, as
emphasized by the compact notation used for the velocity of the
fluid seen Us(t) = Uf (t,xp(t)). Note that, in the dynamic PDF
approach, we do not have access to the whole law of the field
(t,x) 	−→ Uf (t,x) but only to the law of Uf along particles
trajectories, that is, only to the law of Uf (t,yp) conditionally
on the event {xp(t) = yp}.

As in the derivation of the kinetic PDF approach, we
therefore assume that we are given a covariance function
Rij (t,x; t ′,x′) (which is the fluid two-time two-point corre-

lation as in Sec. IV A) and the mean velocity field 〈Uf 〉(t ; x).
Then, using the same strong “kinetic assumption” that the
fluid velocity field is Gaussian, we can reconstruct (t,x) 	−→
Uf (t,x) from these two moments. It is generally assumed
that the correspondence between the first two moments of
Us coming from a dynamic PDF model and the correlations of
the fluid velocity field is expressed by

〈Us(t)|xp(t) = x〉 = 〈Uf 〉(t,x) + Ud (t,x), (32a)

〈us,i(t)us,j (t ′)|xp(t) = x, xp(t ′) = x′〉 = Rij (t,x; t ′,x′), (32b)

with us,i(t) = Us,i(t) − 〈Us,i(t)|xp(t) = x〉. In Eq. (32a), it is
essential to remark that the mean value of the fluid velocity
seen by particles at a given point is not equal to the local
mean value of the fluid velocity field, with the difference being
the so-called drift velocity written as Ud (see Refs. [5,9,37])
and already introduced in Sec. IV A. This point was recently
raised as one criterion used to assess stochastic models [37]
(see in particular a discussion of the different definitions
of “fluctuations” for particle-attached fluid quantities in
Section V.A.3 in Ref. [37]). It is worth stressing that these
relations express simply how field properties are derived
from a set of instantaneous particle variables (see detailed
presentations in Refs. [2,4,6]).

We can now introduce a set of deterministic functions
ω[t,zr

p] that arrive at zr
p at time t and consider the fluid process

along these sample bridges

U
ω[t,zr

p]
f (t ′) = Uf (t ′,ω[t,zr

p](t ′)), t ′ � t. (33)

It is important to note that, thanks to the kinetic assumption,
this construction is defined independently from the particle
state vector. Then, the closure of the kinetic PDF equation
relies on the tower property of conditional expectations:〈
Us(t)

∣∣Zr
p(t) = zr

p

〉 = 〈Uf

(
t,yr

p

)∣∣Zr
p(t) = zr

p

〉
, (34)

= 〈〈Uω[t,zr
p]

f (t)
∣∣Zr

p = ω
[
t,zr

p

]〉〉
ω[t,zr

p], (35)

where the second expectation on the right-hand side is taken
over all the sample bridges ω[t,zr

p] arriving at zr
p at time t .

With this equation, it is seen that the stochasticity of U
ω[t,zr

p]
f is

essentially due to the turbulence of the underlying fluid along
that sample bridge. Note that this second averaging is written
as 〈.〉(yp,Vp) in Eqs. (20a) and (20b) but the notation 〈.〉ω[t,zr

p]

is kept in Eq. (35) for consistency reasons to emphasize the
meaning of this second averaging operator with respect to
the first one. Based on these notations and on the Gaussian
hypothesis for the fluid velocity field, two equivalent roads
lead to a closed kinetic PDF equation.

The first road is somewhat similar to the one followed in
Ref. [18] but makes use of the FND relation in a Lagrangian
framework [33]. This formulation states that the correlation
between a Gaussian centered process ζ and an adapted
functional of that process F [t ; ζ ] is given by

〈ζi(t)F [t ; ζ ]〉 =
∫ t

0
〈ζi(t)ζk(t ′)〉

〈
δF [t ; ζ ]

δζk(t ′)

〉
dt ′. (36)

This relation is similar to the one given in Eq. (18). However,
in Sec. IV A we were handling fields and following a Eulerian
point of view for the fluid seen [treated as a field noise equal
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to τ st
p f(t,x)], whereas here we are adopting a Lagrangian

viewpoint. To apply Eq. (36) to the velocity of the fluid seen on

a possible particle bridge, the Gaussian process U
ω[t,zr

p]
f must

be first centered. This is done by decomposing

U
ω[t,zr

p]
f,i (t) = 〈Uω[t,zr

p]
f,i (t)

〉+ u
ω[t,zr

p]
f,i (t), (37)

where u
ω[t,zr

p]
f,i is now a centered Gaussian process. We are thus

led to compute

1

τ st
p

〈
U

ω[t,zr
p]

f,i (t)
∣∣zr,ω[t,zr

p]
p

〉
= 1

τ st
p

〈
U

ω[t,zr
p]

f,i (t)
〉+ 1

τ st
p

〈
u

ω[t,zr
p]

f,i (t)
∣∣zr,ω[t,zr

p]
p

〉
, (38)

where z
r,ω[t,zr

p]
p stands for the event {Zr

p = ω[t,zr
p]}. By

applying Eq. (36) to P taken as a functional of the process

u
ω[t,zr

p]
f we deduce that〈

u
ω[t,zr

p]
f,i (t)

∣∣zr,ω[t,zr
p]

p

〉
pr
(
t,z

r,ω[t,zr
p]

p

)
=
∫ t

0

〈
u

ω[t,zr
p]

f,i (t) u
ω[t,zr

p]
f,k (t ′)

〉〈 δP
δu

ω[t,zr
p]

f,k (t ′)

〉
dt ′ (39)

or, conversely, that〈
u

ω[t,zr
p]

f,i (t)
∣∣zr,ω[t,zr

p]
p

〉
pr
(
t,z

r,ω[t,zr
p]

p

)
=
∫ t

0
Rik(t,ω[t,zr

p](t); t ′,ω[t,zr
p](t ′))

〈
δP

δu
ω[t,zr

p]
f,k (t ′)

〉
dt ′.

(40)

The functional derivative of P is obtained with the usual
manipulations of fine-grained PDFs which give

δP
δu

ω[t,zr
p]

s,k (t ′)
= −�jk(t,t ′)

∂P
∂yp,j

− �̇jk(t,t ′)
∂P

∂Vp,j

(41)

with the response tensor �jk(t,t ′) as in Eq. (21). Finally,
plugging back (41) in (40) and integrating over all the sample
space trajectories that arrive at zr

p at time t , we obtain that

1

τ st
p

〈
Us,i

∣∣zr
p

〉
pr = 1

τ st
p

〈〈
U

ω[t,zr
p]

f,i (t)
〉〉

ω[t,zr
p] p

r

− λr
ij

∂pr

∂yp,j

− μr
ij

∂pr

∂Vp,j

, (42)

where λr
ij and μr

ij are given respectively by

λr
ij

(
t ; zr

p

) = 1

τ st
p

∫ t

0

〈
�jk(t,t ′)

×Rik

(
t,ω
[
t,zr

p

]
(t); t ′,ω

[
t,zr

p

]
(t ′)
)〉

ω[t,zr
p]dt ′

(43)

and by
μr

ij

(
t ; zr

p

) = 1

τ st
p

∫ t

0

〈
�̇jk(t,t ′)

×Rik

(
t,ω
[
t,zr

p

]
(t); t ′,ω

[
t,zr

p

]
(t ′)
)〉

ω[t,zr
p]dt ′.

(44)

These formulas for the dispersion tensors can be expressed
with a simpler notation as

λr
ij

(
t ; zr

p

) = 1

τ st
p

∫ t

0

〈
�jk(t,t ′)Rik(t,yp; t ′,xp(t ′))

∣∣zr
p

〉
dt ′, (45)

μr
ij

(
t ; zr

p

) = 1

τ st
p

∫ t

0

〈
�̇jk(t,t ′)Rik(t,yp; t ′,xp(t ′))

∣∣zr
p

〉
dt ′, (46)

where 〈·|zr
p〉 is a more compact notation to represent an average

on particle sample bridges such that Zr
p(t) = zr

p. Using the
equivalence between the notations used in the present section
and in Sec. IV A [whereby 〈.〉ω[t,zr

p] ≡ 〈·|zr
p〉 ≡ 〈.〉(yp,Vp)], it is

thus seen that the two expressions for λr
ij and μr

ij in Eqs. (43)
and (44), or in Eqs. (45) and (46), are strictly identical to the
ones in Eqs. (20a) and (20b) in Sec. IV A.

The first term on the right-hand side of Eq. (42) represents
the conditional mean velocity of the fluid seen at a given
location and we can use the decomposition in Eq. (32a) to
write it as the sum of the local mean fluid velocity plus the
drift term Ud . This gives the expression of the flux closure as

1

τ st
p

〈
Us,i

∣∣zr
p

〉
pr = 1

τ st
p

〈Uf,i〉(t,yp)pr + κr
i pr

− ∂
[
λr

ij pr
]

∂yp,j

− ∂
[
μr

ij pr
]

∂Vp,j

(47)

with λr
ij and μr

ij as in Eqs. (43) and (44) and where

κr
i (t ; zr

p) = 1

τ st
p

Ud,i + ∂λr
ij

∂yp,j

+ ∂μr
ij

∂Vp,j

. (48)

Furthermore, it can be observed that using Eq. (32b), which
basically states that the Lagrangian two-time correlation (the
correlation between fluid velocities seen conditioned on a
given particle bridge) is equal to the Eulerian two-point and
two-time correlation along that trajectory, λij and μij take the
simplified forms

λij

(
t ; zr

p

) = 1

τ st
p

∫ t

0

〈〈us,i(t)us,k(t ′)|yp〉�jk(t,t ′)
∣∣zr

p

〉
dt ′,

(49a)

μij

(
t ; zr

p

) = 1

τ st
p

∫ t

0

〈〈us,i(t)us,k(t ′)|yp〉�̇jk(t,t ′)
∣∣zr

p

〉
dt ′.

(49b)

The second road towards a closed kinetic PDF equation
from a dynamic-PDF one is simpler in that it avoids functional
calculus. This approach is still based on the FND relation but
formulated as a Gaussian integration by parts between random
variables (it is interesting to note that this is the form of the
FND relation given in Frisch’s book [35]). In that formulation,
the FND relation states that for a centered jointly Gaussian
vector of random variables (Zi)i=1,d and for a function �(Z)
we have

〈Zi�(Z)〉 = 〈Zi Zk〉
〈
∂�(Z)

∂Zk

〉
. (50)

This second derivation is still based on the decomposition
in Eq. (35) by considering first the effect of fluid velocities
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U
ω[t,zr

p]
f (t ′) along sample bridges and then averaging over all

possible such sample bridges. Since the particle relaxation
time is taken as a constant (i.e., τp = τ st

p ), it is seen from
the particle governing equations Eqs. (2a) and (2b) that
Zr

p = (xp,Up) is obtained as a linear transformation of Us .

Thus, the assumption that (U
ω[t,zr

p]
f (t ′)) is a Gaussian process

implies that the joint process

Z
ω[t,zr

p]
p (t ′) = (xω[t,zr

p]
p (t ′), U

ω[t,zr
p]

p (t ′), U
ω[t,zr

p]
f (t ′)

)
, (51)

which is the solution of the system

dx
ω[t,zr

p]
p

dt
= U

ω[t,zr
p]

p , (52a)

dU
ω[t,zr

p]
p

dt
= 1

τp

(
U

ω[t,zr
p]

f − U
ω[t,zr

p]
p

)
, (52b)

forms a jointly Gaussian random vector at any time t ′ � t .
With these clarifications, the simplified version of the FND
relation in Eq. (50) can be applied to the fine-grained PDF P
which yields that at time t :

1

τ st
p

〈
Uf,i(t,yp)

∣∣Zr,ω[t,zr
p]

p (t) = zr
p

〉
pr,ω[t,zr

p]

= 1

τ st
p

〈
U

ω[t,zr
p]

f,i

〉
pr,ω[t,zr

p] − λ̃
r,ω[t,zr

p]
ij

∂pr,ω[t,zr
p]

∂yp,j

− μ̃
r,ω[t,zr

p]
ij

∂pr,ω[t,zr
p]

∂Vp,j

, (53)

where pr,ω[t,zr
p] is the PDF of the particle vector Z

r,ω[t,zr
p]

p and

where λ̃
r,ω[t,zr

p]
ij and μ̃

r,ω[t,zr
p]

ij are given by

λ̃
r,ω[t,zr

p]
ij

(
t,zr

p

) = 1

τ st
p

〈
uf,i(t,yp) x

ω[t,zr
p]

p,j (t)
〉
, (54a)

μ̃
r,ω[t,zr

p]
ij

(
t,zr

p

) = 1

τ st
p

〈
uf,i(t,yp) U

ω[t,zr
p]

p,j (t)
〉
. (54b)

At the moment, distinct notations are used for λ̃r
ij and μ̃r

ij

compared to λr
ij and μr

ij in Eqs. (43) and (44) but a connection
with the previous derivation can be worked out. This is done
by a complementary development in which, to illustrate the
above reasoning with a more physical standpoint, we consider
the integration of the particle equations still using the fact that
τ st
p is constant. By integrating Eqs. (52) we get for the particle

position x
ω[t,zr

p]
p (t)

x
ω[t,zr

p]
p,j (t) = x

ω[t,zr
p]

p,j (0) + τ st
p [1 − e−t/τ st

p ]U
ω[t,zr

p]
p,j (0)

+
∫ t

0
[1 − e(t ′−t)/τ st

p ]U
ω[t,zr

p]
f,j (t ′) dt ′ (55)

and for the particle velocity U
ω[t,zr

p]
p (t)

U
ω[t,zr

p]
p,j (t) = U

ω[t,zr
p]

p,j (0) e−t/τ st
p

+ e−t/τ st
p

τ st
p

∫ t

0
et ′/τ st

p U
ω[t,zr

p]
f,j (t ′) dt ′. (56)

Using the expression of the response function �jk(t,t ′) =
τ st
p [1 − e(t ′−t)/τ st

p ]δjk gives

λ̃
r,ω[t,zr

p]
ij = 1

τ st
p

∫ t

0
〈uf,i(t,yp)u

ω[t,zr
p]

f,k (t ′)〉�jk(t,t ′)dt ′

= 1

τ st
p

∫ t

0
Rik(t,yp; t ′,ω[t,zr

p](t ′))�jk(t,t ′)dt ′,

(57a)

μ̃
r,ω[t,zr

p]
ij = 1

τ st
p

∫ t

0
Rik(t,yp; t ′,ω[t,zr

p](t ′))�̇jk(t,t ′)dt ′.

(57b)

Then, integrating with respect to all sample space bridges that
arrive at zr

p at time t , we recover the closed expression of the
flux as

1

τ st
p

〈
Us,i

∣∣zr
p

〉
pr

= 1

τ st
p

〈〈
U

ω[t,zr
p]

f,i (t)
〉〉

ω[t,zr
p]p

r − λ̃r
ij

∂pr

∂yp,j

− μ̃r
ij

∂pr

∂Vp,j

,

(58)

where λ̃r
ij = 〈̃λr,ω[t,zr

p]
ij 〉ω[t,zr

p] and μ̃r
ij = 〈μ̃r,ω[t,zr

p]
ij 〉ω[t,zr

p] are the

averaged values of λ̃
r,ω[t,zr

p]
ij and μ̃

r,ω[t,zr
p]

ij over all possible
particle bridges ω[t,zr

p]. From Eqs. (57), it is then obvious
that λ̃r

ij and μ̃r
ij are the same as λr

ij and μr
ij given in Eqs. (43)

and (44). As in the first derivation, the final step is obtained by
expressing the local value of the mean fluid velocity seen at the
given location xp(t) = yp with Eq. (32a) and in switching λr

ij

and μr
ij into the partial derivatives. Therefore, we retrieve the

flux closure as in Eq. (47) and in Eq. (19), with κi as in Eq. (48).
A first interesting outcome of these two derivations is to

yield that κr
i �= ∂λr

ij /∂yp,j with the difference being precisely
the drift velocity [see Eq. (48)] when the assumption that
∂μr

ij /∂Vp,j = 0 is made. This shows that κr
i = ∂λr

ij /∂yp,j for
fluid particles or when the so-called well-mixed condition is
assumed but a nonzero difference is retrieved in the general
case. This is indeed the result of the analysis carried out in
Ref. [18].

A second interesting outcome is provided by the second
derivation which brings out a new result for the dispersion
tensors. Indeed, integrating directly Eqs. (54) over all sample
space bridges, the dispersion tensors λr

ij and μr
ij can also be

written as

λr
ij

(
t ; zr

p

) = 1

τ st
p

〈〈
uf,i(t,yp)x

r,ω[t,zr
p]

p,j (t)
〉〉

ω

[
t,zr

p

], (59a)

μr
ij

(
t ; zr

p

) = 1

τ st
p

〈〈
uf,i(t,yp)U

r,ω[t,zr
p]

p,j (t)
〉〉

ω

[
t,zr

p

]. (59b)

These new formulations open the way for a clearer physical
interpretation of the dispersion tensors appearing in the kinetic
PDF equation. In physical terms, they express that λr

ij (t ; zr
p)

and μr
ij (t ; zr

p) represent the averaged values, over all possible
particle paths arriving at time t at a given point zr

p in sample
space, of the correlations between the fluid velocity seen along
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these paths and the positions and velocities of particles subject
to these driving forces.

In homogeneous situations where the statistics of the
velocity of the fluid seen are no longer space dependent, we
obtain constant values of λr

ij and μr
ij which are now simply

expressed as the correlations between particle positions and
velocities and the variable that is eliminated from the reduced
PDF description, that is, the velocity of the fluid seen:

λr
ij = 1

τ st
p

〈us,i(t) xp,j (t)〉, (60a)

μr
ij = 1

τ st
p

〈us,i(t) Up,j (t)〉. (60b)

This was the form derived in Ref. [4, Sec. 7.5.7] but where the
derivation was made only for such homogeneous situations,
whereas it has now been extended to the general case with the
expressions in Eqs. (59a) and (59b). These formulations of the
dispersion tensors will be shown to be useful in Sec. VIII B.

A third interesting outcome is that these two derivations
are helpful to bring out the difference between two ways
to address the closure issue at the level of the kinetic PDF
equation. In the first derivation, the standpoint is to fix a value
of the reduced particle state vector Zr

p and then try to work
out where the trajectories of the velocity of the fluid seen
come from. Note that this implies a “time-backward point of
view” in the kinetic PDF approach that compounds the already
hybrid Lagrangian-Eulerian description (since (xp,Up) are
simulated in a Lagrangian formulation while (Uf (t ; x)) is
treated as a Eulerian external field). In the second derivation,
the standpoint is more to consider Gaussian copies of the
velocities of the fluid along trajectories arriving at a given
point zr

p and analyze how particle positions and velocities
respond to that fluid [see Eqs. (59a) and (59b)]. Though this
second standpoint is already one step towards a formulation
that is typical of dynamic PDF models, it is clear that present
attempts at closing the kinetic PDF equation implies to mix a
time-forward approach [for (xp,Up)] with a time-backward
one (for Us). This point is at the core of the difficulties
encountered by the kinetic PDF equation and will resurface
in Sec. VII B.

From these developments, a threefold conclusion can be
drawn:

(a) it is demonstrated that, under the same assumption of a
Gaussian process for the conditional velocity of the fluid seen
by particles, the marginal of the dynamic PDF pr = ∫ pdVs

satisfies the same equation as the kinetic PDF one. In other
words, it has been shown that, under the kinetic assumption of
Gaussian fields, the kinetic PDF model may be recover from
the dynamic PDF model or, using the notation introduced in
Sec. IV C, that we have pdm(t ; yp,Vp) = pkm(t ; yp,Vp);

(b) the derivation of a kinetic PDF equation starting from a
dynamic-PDF one leads to new expressions for the dispersion
tensors in Eqs. (59a) and (59b) that allow new physical
interpretations. A noteworthy result is that the dispersion
tensors appearing in the kinetic PDF equation correspond to
the correlations between the variables kept in the particle state
vector [here (xp,Up)] with the one treated as an external noise
and eliminated (here Us).

(c) Using, for example, Eqs. (49a) and (49b), an important
aspect is also worth emphasizing: A dynamic PDF model
yields directly nonlocal closures of the dispersion tensors.
Indeed, the correlation of the velocity of the fluid seen is a
result of a dynamic PDF description which already contains
spatial effects in the present model used to simulate Us(t) [cf.
Eq. (25c)]. In a recent study [19], it was shown that such
nonlocal closures are needed in kinetic PDF descriptions.
However, such effects must be input, which was done by
assuming a backward Gaussian spread of particle positions
in Ref. [19]. However, it can be seen that this induces
a lack of consistency between the exact treatment of the
particle convection equation [in Eq. (2a)] used in the very
derivation of the kinetic PDF equation and this additional
assumption of a Gaussian spread of the particle location
bridge (xp(t ′))t ′∈[0,t]|Zr

p(t) = zr
p to input spatially dependent

expressions of the correlations of the velocity of the fluid seen
〈us,i(t) us,k(t ′)|zr

p〉. On the other hand, these space-dependent
quantities are handled consistently at the dynamic-PDF level
of description.

The correspondence between the two PDF levels of
description has been studied here for the special case of a
Gaussian process for the fluid velocity seen. When the resulting
equations are proposed as models for the general case, the
status of the different PDF descriptions must be analyzed.
This is done in the next two sections.

VI. ANALYSIS OF THE DYNAMIC PDF MODEL
AS A STAND-ALONE PDF DESCRIPTION

The dynamic PDF model presented in Sec. IV B can be
addressed from a trajectory point of view, in which case it
consists in the SDEs in Eqs. (25) plus an initial condition
for Zp(t = 0), or from a PDF point of view, in which case
it consists in the evolution equation for its transition PDF
in Eq. (26) plus the initial PDF p(0; zp(0)). In the evolution
equations for the particle state vector in Eqs. (25), the external
noise is represented by the increments of the Wiener process in
Eq. (25c). Since these increments are independent, it follows
that the particle state vector Zp is a Markov process. From
the theory recalled in Sec. III B, it is then clear that such
a dynamic-PDF description allows the complete law of the
stochastic process to be reconstructed. Thus, criterion (C1) of
Sec. III E is fulfilled.

To assess criterion (C2), we need to study whether the FPE
is well posed. To be more precise, well-posedness means here
that the Cauchy problem is satisfied (there is a solution to
the initial-value problem) for any initial condition and also
that the solutions of the FPE corresponding to different initial
conditions tend towards the same result as t → ∞. This is
indeed an essential characteristic to respect as it ensures that a
solution of the modeled equation reflects the modeled terms in
the evolution equation, and thus the model itself, rather than
the choice of an initial condition.

Detailed studies of the FPE can be found in dedicated
textbooks [14,15,29] and also in the mathematical literature
(see, for example, Ref. [39]) where the criterion (C2) has been
positively assessed for FPEs. For our present purpose, it is,
however, important to bring out the main lines of the analysis
of the approach of a limit solution. The analysis is carried
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out in terms of the “relative entropy” between two solutions
p1(t ; zp) and p2(t ; zp) of a model PDF equation corresponding
to two different initial conditions, and which is defined as

H (p2|p1) = −
∫

ln

(
p2

p1

)
p1(t ; zp)dzp. (61)

The functional H (p2|p1) is always positive and is known
as the “information gain” or “Kullback-Leibler divergence”
in information theory where it quantifies the information
lost when p2 is used instead of p1 to describe the system
represented by Zp. It acts as a pseudomeasure to control the
distance between two PDFs since we have [39,40]

1

2
||p1 − p2||2L1 � H (p2|p1). (62)

As a result, the relative entropy H (p2|p1) serves as a Lyapunov
functional to control the march towards a unique limit solution.
In the following, we use the essential result (see the detailed
derivation in Sec. 6.1 in Ref. [29]) that for an evolution
equation of the “FPE form” and written as

∂p

∂t
= −∂[Ai(t ; zp)p]

∂zp,i

+ ∂2[Dijp]

∂zp,i∂zp,j

, (63)

where the matrix D = (Dij )i,j=1,d can be any second-order
tensor, we have that

Ḣ (p2|p1) = −
∫

p1Dij

∂ ln(R)

∂zp,i

∂ ln(R)

∂zp,j

dzp, (64)

with R = p1/p2. For a genuine FPE, the second-order diffu-
sion matrix (Dij )i,j=1,d is positive definite which entails that
Ḣ (p2|p1) � 0 and, thus, that a unique solution is obtained
[since H (p2|p1) → 0 as t → ∞]. This is the expected result
as there should be no information gain or loss in the long-time
limit when we switch between two solutions corresponding to
two different initial conditions.

In the case of the dynamic PDF model represented by
the FPE in Eq. (26), the general diffusion matrix (Dij )i,j=1,d

corresponding to Zp is not strictly positive definite [it is
actually degenerate for the components corresponding to the
variables xp and Up since there are no white-noise explicit
terms in Eqs. (25a) and (25b)] but the same conclusion applies
(note that the situation is similar to the Kramers equation
studied with the same approach in Sec. 6.1 in Ref. [29]).
This results guarantees that for the dynamic PDF model two
solutions corresponding to two different initial conditions tend
towards the same limit solution and, consequently, that this
limit solution manifest properties related to the model and not
to the choice of an initial PDF. In that sense, the FPE is well
posed and the criterion (C2) is fulfilled.

From these results, we conclude that dynamic PDF models
constitute complete PDF stand-alone descriptions of particle
dynamics in turbulent fluid flows.

VII. ANALYSIS OF THE KINETIC PDF MODEL AS A
STAND-ALONE PDF DESCRIPTION

As presented in Sec. IV A, the kinetic PDF model is only
formulated in sample space where it consists of Eq. (14) with
Eq. (19). The status of this PDF description is now addressed.

A. A non-Markovian particle state vector

The particle state vector is reduced to Zr
p = (xp,Up) and the

velocity of the fluid seen Us(t) = Uf (t ; xp(t)) is an external
variable. To assess the status of that particle state vector, the
remark made in Sec. III B about the nature of the “information
known at the present time” is of direct application. Indeed, if
the whole instantaneous fluid velocity field Uf (t ; x) is known
at each instant, then Us(t) is completely determined by the
knowledge of the particle positions xp(t) at the present time t ,
which means that the particle evolution equations Eqs. (2) are
closed. This corresponds to the situation where the fluid flow is
obtained from a DNS and, in that case, Zr

p is a Markov process.
However, in the general situation where only statistics of the
fluid velocity field are available (such as the mean values,
time and space correlations, etc.), then clearly Us(t) cannot
be determined by the sole knowledge of the particle position
and velocity. This is due to the nonzero time correlation of
the velocity of the fluid seen which is treated as an external
noise (this corresponds exactly to the example put forward in
Sec. III D).

From the discussions in Sec. III C, it is seen that the solution
of such a kinetic PDF equation does not allow the complete
law of the stochastic process to be reconstructed. In that sense,
the criterion (C1) is not respected and it is concluded that
the kinetic PDF approach is an incomplete stand-alone PDF
description of particle dynamics in turbulent fluid flows.

B. An ill-posed PDF equation

If the main objective of a PDF approach is to derive one-
point statistical moments, failure to meet the criterion (C1)
is not necessarily a major obstacle. Far more relevant are the
issues related to the criterion (C2). To analyze these aspects
for the kinetic PDF model, Eq. (14) and Eq. (19) are combined
into the compact form

∂p

∂t
= − ∂

∂Zr
l

[
AKE

l p
]+ 1

2

∂2

∂Zr
l ∂Zr

m

[
BKE

lm p
]
, (65)

where the components of the drift vector (AKE
l )l=1,6 are

AKE
l =

⎧⎨⎩
Vp,l l = 1,3,

Fext,l−3 + 〈Uf,l−3〉 − Vp,l−3

τ st
p

+ κl−3 l = 4,6.

(66)
and where the symmetrical matrix in the second-order deriva-
tive (BKE

lm ) is (using a bloc notation with i,j = 1,3)

BKE =
⎛⎝ 0 | (λij )

−− − − −
(λji) | (μij ) + (μji)

⎞⎠. (67)

At first sight, Eq. (65) looks like a classical convection-
diffusion equation. However, it is straightforward to show
that the symmetrical matrix (BKE

lm ) is actually negative def-
inite. Indeed, the determinant of the matrix is det(BKE) =
−(det(λ))2 < 0 and, consequently, the matrix BKE has always
at least one negative eigenvalue. This point was put forward
in Ref. [13] where it was qualitatively connected to an
“antidiffusive” behavior and to the non-Markovian nature of
the reduced state vector Zr

p. These aspects are taken up here
and further investigated.
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For the analysis of the well-posed nature of Eq. (65), it
suffices to consider the 1D case where Zr

p = (xp,Up) and
constant values of λ = λ11 and μ = μ11 (physically speaking,
this corresponds for instance to the isotropic stationary
turbulence case). Note that κ = κ1 is either zero when drift
velocities are neglected or enters the drift term where it does
not play any significant role in the resulting properties. Thus,
BKE is now the (2 × 2) matrix

BKE =
(

0 λ

λ 2μ

)
, (68)

whose two eigenvalues ev1 and ev2 are

ev1 = μ +
√

μ2 + λ2 � 0, (69a)

ev2 = μ −
√

μ2 + λ2 � 0. (69b)

We set xp = (xp,0) and Up = (0,Up). The two eigenvectors,
noted here Z1 and Z2, are

Z1 = 1√
1 + λ2/e2

v1

(
λ

ev1
xp + Up

)
, (70a)

Z2 = 1√
1 + λ2/e2

v2

(
λ

ev2
xp + Up

)
. (70b)

This suggests introducing the two random variables Z1 and Z2

obtained by the combination of xp and Up as

Z1 = 1√
1 + λ2/e2

v1

(
λ

ev1
xp + Up

)
, (71a)

Z2 = 1√
1 + λ2/e2

v2

(
λ

ev2
xp + Up

)
. (71b)

Using these transformed variables, the kinetic PDF equation
Eq. (65) becomes for p̃(t ; z1,z2)

∂p̃

∂t
= − ∂(Ã1p̃)

∂z1
− ∂(Ã2p̃)

∂z2
+ 1

2
ev1

∂2p̃

∂z2
1

− 1

2
|ev2|∂

2p̃

∂z2
2

, (72)

where Ã1 and Ã2 are the transformed drift coefficients (see the
transformation rules for instance in Ref. [29]) and where the
second-order derivatives have been re-expressed to bring out
the antidiffusion coefficient written as −|ev2|. A first remark is
that the usual terminology of “dispersion tensors” used for
λij and μij is thus inappropriate, though, for the sake of
convenience, these names will be retained in the rest of the
paper (this restriction is indicated by keeping the apostrophes).

At this stage, the question of the physical origin of
such an antidiffusive behavior can be raised. The answer to
that question is provided by using that λ = 〈xp Us〉/τ st

p and
μ = 〈Up Us〉/τ st

p and by considering the correlations of the
transformed variables Z1 and Z2 with the velocity of the fluid
seen. With Eqs. (69) and Eqs. (71), we get

1

τ st
p

〈Z1 Us〉 = 1√
1 + λ2/e2

v1

√
μ2 + λ2 > 0, (73a)

1

τ st
p

〈Z2 Us〉 = −1√
1 + λ2/e2

v2

√
μ2 + λ2 < 0. (73b)

In the kinetic description, the velocity of the fluid seen is
eliminated but since (Z1,Z2,Us) forms a jointly Gaussian
process with Z2 negatively correlated with Us , the effect of
the elimination appears as an “antidiffusion” for Z2.

To bring further physical insight into that point and in
anticipation of the more detailed developments presented in
Sec. VIII B, it is interesting to make the following remark:
If we could regard λ as a small parameter (actually, λ/μ is
equal to the time scale of the eliminated variable, that is, the
velocity of the fluid seen, see the demonstration in Sec. VIII B),
then by taking the limit λ → 0 we would have 〈Z2 Us〉/τ st

p �
−λ/2 � 1 while 〈Z1 Us〉/τ st

p � μ remains finite so, in the
limit of vanishing λ, this antidiffusive behavior disappears.
Note that μ has been treated as a positive coefficient. Indeed,
a simple equilibrium argument from the particle momentum
equation and the drag force term, cf. Eq. (2b), shows that
τ st
p μ = 〈Up Us〉 � 〈U 2

p〉 > 0 (similarly, λ is also positive).
These arguments are pursued in Sec. VIII B.

To analyze the status of the kinetic PDF equation, Eq. (65),
we consider the equation satisfied by the marginal PDF
p̃r (t ; z2) = ∫ p̃(t ; z1,z2)dz1 which is obtained from Eq. (72)⎧⎪⎨⎪⎩

∂p̃r

∂t
= −∂(Ãr

2p̃r )

∂z2
− 1

2
|ev2|∂

2p̃r

∂z2
2

,

p̃r (0; z2) = φ(z2),

(74)

where φ(z2) is the initial condition for the time-forward
equation for p̃r (t ; Z2). We then rewrite Eq. (74) as

∂p̃r

∂t
+ Ãr

2
∂p̃r

∂z2
+ 1

2
|ev2|∂

2p̃r

∂z2
2

+ ∂Ãr
2

∂z2
p̃r = 0, (75)

where we can use the celebrated Feynman-Kac formula. This
is done by introducing a terminal condition p̃r (T ; z2) = �(z2)
at a time T , which translates the fact that this equation is
actually associated with the backward Kolmogorov equation
of a stochastic diffusion process [15,25]. In that sense, it be can
already be guessed that present difficulties with Eq. (74) come
from the attempt to treat as a forward equation what is basically
a backward one. The application of the Feynman-Kac formula
[41, Sec. 5.7] shows that the initial condition associated to
Eq. (74) cannot be any function but should be of the special
following form:

p̃r (0; z2) = 〈I [T ; X]�(X(T ))|(X(0) = z2)〉, (76)

with I [T ; X] given by

I [T ; X] = exp

[∫ T

0

∂Ãr
2

∂z2
(s,X(s))ds

]
(77)

and where X is the properly defined stochastic diffusion
process whose trajectory equations are

dX = Ãr
2(X) dt +

√
|ev2| dW. (78)

Basically, this says that Eq. (74) can only be solved if the
initial condition p̃r (0; z2) can be written as the “end solution”
(at a given later time T ) of the stochastic process X defined
in Eq. (78). Clearly, the Cauchy problem is not respected,
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apart from some very special classes of initial conditions,
which demonstrates that Eq. (74) is an unstable and ill-posed
equation. This is actually a typical example of such ill-posed
problems (see, for instance, the survey in Ref. [42]). Since this
is obtained as the marginal of the initial kinetic PDF equation,
these shortcomings are also associated with the original PDF
equation. Consequently, the criterion (C2) is not met and it is
concluded that the kinetic PDF equation is ill posed and cannot
be solved (apart from some special cases).

The ill-posed nature of the kinetic PDF equation has been
demonstrated in the general case but can be exemplified in
the specific case considered here. Indeed, using Eqs. (71), the
transformed drift term Ãr

2 is given by

Ãr
2(z2) = −αZ2

(
λ

|ev2| + 1

τ st
p

)
×{αZ1 |ev2|z2 + αZ1ev1〈Z1|z2〉

}
, (79)

where αZ1 and αZ2 stand for

αZ1 = 1√
1 + λ2/e2

v1

, αZ2 = 1√
1 + λ2/e2

v2

. (80)

For centered Gaussian joint random variables, we can use that
〈Z1|z2〉 = 〈Z1Z2〉/〈Z2

2〉z2, from which Ãr
2 becomes

Ãr
2(z2) = −αZ2

(
λ

|ev2| + 1

τ st
p

)

×
{

αZ1 |ev2| + αZ1ev1
〈Z1Z2〉
〈Z2

2〉
}
z2, (81)

In the long-time limit, it is clear from Eqs. (71) that 〈Z1Z2〉
and 〈Z2〉 are governed by 〈x2

p〉 (in the diffusive regime 〈x2
p〉

increases linearly in time whereas 〈U 2
p〉 and 〈xpUp〉 tend to

constant values). Then, simple calculations show that Ãr
2 = 0.

This means that, in the present situation, the PDF equation
for the marginal p̃r (t ; z2) in Eq. (74) becomes the “anti-heat-
diffusion” equation⎧⎪⎨⎪⎩

∂p̃r

∂t
= −1

2
|ev2|∂

2p̃r

∂z2
2

,

p̃r (0; z2) = φ(z2),

(82)

which is one of the canonical examples of an ill-based
equation, see Ref. [42, p. 333]. More precisely, this equation
can only be “solved” on a finite-time interval, say, [0,T ], and
when the initial condition is of the special form where it is
expressed as

p̃r (0; z2) =
∫

g(y)
1√

2π |ev2|T
exp

[
− (z2 − y)2

2|ev2|T
]

dy, (83)

with g(y) a PDF so g(y) � 0 with
∫

g(y) dy = 1. In particular,
we have the T -dependent bound

p̃r (0; z2) � 1√
2π |ev2|T

,

which implies that the initial condition should be very flat
if one wants a solution that exists on a large time interval.
In particular, letting T → +∞, we deduce that the only

solution defined for any time t ∈ [0, + ∞[ is the null solution.
Equation (83) illustrates that the “initial condition” corre-
sponds in fact to an “end condition” as we have then

p̃r (t ; z2) =
∫

g(y)
1√

2π |ev2|(T − t)

× exp

[
− (z2 − y)2

2|ev2|(T − t)

]
dy, (84)

implying that p̃r (T ; z2) = g(z2) which is the very function we
had to give ourselves through the expression of the initial
condition. For example, if we expect the “antidiffusion”
to lead to a PDF that is a Dirac function at the “final
time” T , then g(y) = δ(y − z0) with z0 a constant value in
sample space, which shows that the initial condition becomes
p̃r (0; z2) = 1/

√
2π |ev2|T exp [− (z2−z0)2

2|ev2|T ] and, therefore, must
be a Gaussian PDF. The kinetic PDF equation is then of little
interest as we are forced to remain in the Gaussian context and,
obviously, writing an evolution equation is not needed when
we already know the form of the PDF.

Concerning this problem, there is a strong similarity with
a classical issue in PDF scalar modeling in single-phase
turbulent flows (see the detailed account in Ref. [2, Sec. 12.7.4]
for the case of the conserved scalar PDF equation in isotropic
turbulence). It is shown in Ref. [2] that the assumption of
Gaussian scalar fields leads to an exact scalar-PDF equation
that has an “antidiffusive” nature (see Eq. (12.347) in Ref. [2,
Sec. 12.7.4]). Then, the conclusion is also that, to avoid
solutions from blowing up in finite time, one has to consider
only initial PDFs that are Gaussian [2] and, thus, that such
formulations are flawed as general models.

The ill-based nature of Eq. (74) is further demonstrated
by considering the relative entropy H (p̃r,2|p̃r,1) between two
solutions p̃r,1 and p̃r,2 corresponding to two different initial
conditions. Since Eq. (74) is of the same form as Eq. (63), the
reasoning presented in Sec. VI can be directly applied to give
that

Ḣ (p̃r,2|p̃r,1) = |ev2|
∫

p̃r,1(t ; z2)

[
d ln(R)

dz2

]2

dz2 > 0 (85)

still with R = p̃r,1/p̃r,2. This shows that the functional
H (p̃r,2|p̃r,1) measuring the “distance” between two solutions
of the same equation is increasing and, thus, that solutions
are diverging. Note that this remains true even if we consider
two Gaussian distributions (with different variances) as initial
conditions.

The failure of the kinetic PDF equation to respect basic
criteria for well-posedness may come as some surprise since
this equation is an exact result for Gaussian processes. Yet,
present results reveal that the kinetic PDF equation can indeed
be solved (without solutions blowing up in finite time) but
provided that we consider only very special initial conditions,
for example, with a Gaussian form. Furthermore, solutions
reflect the choice of an initial condition rather than the true
properties of the modeled equation. For the complete kinetic
PDF equation in Eq. (65) or in Eq. (72), this behavior can
be sometimes hidden by the effects of the positive eigenvalue
and specific (or “lucky”) choices of initial conditions but they
remain potentially present.
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At this stage, a remark is in order. It has been recognized in
recent years that, even in statistically homogeneous turbulent
flows, particles can correlate with special fluid structures
embedded in the flow and, as a result, concentrate in some
specific areas. This is known as the “particle preferential
concentration effect” in turbulent flows [6,43,44]. This is a
physical effect due to the existence of so-called fluid coherent
structures that can “capture” particles, which leads to possible
local concentration build-ups for particles whose relaxation
time scales are tuned to the characteristic lifetimes of these
structures. Yet, this physical effect must not be confused
with the antidiffusive behavior exhibited by a model. For
example, the negative eigenvalue of the kinetic PDF equation
can produce particle concentration build-ups. However, this is
the result of the ill-based nature of the formulation and in no
way can it be said that this represents the physical effect of
particle preferential concentration effect.

In conclusion, the results put forward in this section
invalidates the kinetic PDF approach as an acceptable PDF
description of disperse two-phase flows.

VIII. STOCHASTIC MODELING PRINCIPLES

A. The key issue of the particle state vector

Given the well-posed nature of the dynamic PDF model and
the ill-based formulation of the kinetic PDF model, it may be
believed that the difference is due solely to the addition of an
extra variable in the particle state vector. However, it is worth
emphasizing that it is the combination of a relevant choice of
this state vector with fast-variable elimination that really paves
the way towards physically meaningful and mathematically
correct PDF formulations. A second misleading belief is that
differences in the model expressions are due to the approach
used to obtain the closed fluxes: Langevin models versus
the Furutsu-Novikov-Donsker relation. This is not so and the
purpose of the present section is to show how this interplay
between physical choices and mathematical guidelines is
working.

To demonstrate that including the velocity of the fluid seen
is not sufficient by itself or that the FND relation is not to
blame, we address the situation where Zp = (xp,Up,Us) is
influenced by a general Gaussian noise.

B. The Furutsu-Novikov approach for the velocity
of the fluid seen

For this purpose, a 1D formulation with no mean velocity
field and no external forces is sufficient to concentrate on the
treatment of “external noises.” We consider the particle state
vector Zp = (xp,Up,Us) whose trajectories are given by the
following equations:

dxp

dt
= Up, (86a)

dUp

dt
= Us − Up

τp

, (86b)

dUs

dt
= −Us

TL

+ ξs, (86c)

where the relaxation time scales τp and TL are taken as
constant. As an example, we can take τp = τ st

p but we retain the
more general expression to indicate that any constant value can
be used in the following. Compared to the SDEs in Eqs. (25),
it is seen that the white-noise term in Eq. (25c) has been
replaced by a colored noise ξs and Us is thus differentiable.
This explains that the trajectory equations in Eqs. (86) are
written in a differentiable form: They correspond to Eqs. (23)
in Sec. IV B with s(t) = −Us/TL + ξs(t), a decomposition
in line with the one used in Eq. (24). For ξs , we consider a
stationary Gaussian process with a nonzero correlation time
scale, which is easily simulated as an OU process

dξs = −ξs

τ
dt +

√
K dW, (87)

where τ is the time scale of ξs and K a constant (equal
to K = 2〈ξ 2

s 〉/τ from the classical fluctuation-dissipation
theorem [14]). The autocorrelation is an exponential function
〈ξs(t)ξs(t ′)〉 = 〈ξ 2

s 〉 exp(−|t − t ′|/τ ) and is not δ correlated
when τ �= 0.

From Eqs. (86) it is clear that, although the fluid velocity
seen Us has been included, the particle state vector Zp does
not constitute a Markov process. Thus, this formulation is an
incomplete stand-alone PDF description [note that, of course,
a Markov process would be retrieved by considering the
extended state vector (xp,Up,Us,ξs)]. Conversely, the PDF
equation for p(t ; yp,Vp,Vs) is open and is [cf. Eq. (22)]

∂p

∂t
+ ∂

[
Vp p

]
∂yp

= − ∂

∂Vp

[(
Vs − Vp

τp

)
p

]
+ ∂

∂Vs

[
Vs

TL

p

]
− ∂

∂Vs

[〈ξs |(yp,Vp,Vs) 〉p
]
. (88)

Since the external noise ξs to the system represented by Zp

is Gaussian, we can work out an exact closed PDF equation
by applying the same FND relation used in Secs. IV A and
IV B. This is done, for example, with the formulation in
Eq. (36) or with Eq. (50) for the jointly Gaussian process
Zp = (xp,Up,Us,ξs), which yields

〈ξs | (yp,Vp,Vs) 〉p = −�yp

∂p

∂yp

− �Up

∂p

∂Vp

− �Us

∂p

∂Vs

,

(89)
where the coefficients �yp

, �Up
, and �Us

are given below.
For the moment, we are concerned with the structure of the
resulting PDF equation obtained by inserting the above closure
flux in Eq. (88), which gives a closed PDF formulation written
in a compact form as

∂p

∂t
= − ∂

∂Zp,l

[Ãl p] + 1

2

∂2

∂Zp,l∂Zp,m

[
B̃lm p

]
, (90)

where the drift vector (Ãl)l=1,3 follows directly from Eq. (88).
From the analysis in Sec. VII B, we know that the well-posed
property of this PDF equation is governed by the second-order
tensor which is a (3 × 3) matrix

B̃ =
⎛⎝ 0 0 �yp

0 0 �Up

�yp
�Up

2 �Us

⎞⎠. (91)
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Its characteristic polynomial, PB̃(x) = det(x1 − B̃), is

PB̃(x) = x
(
x2 − 2x�Us

− �2
Up

− �2
xp

)
, (92)

from which it follows that the eigenvalues are

ev1 = 0, (93a)

ev2 = �Us
−
√

�2
Us

+ �2
Up

+ �2
xp

, (93b)

ev3 = �Us
+
√

�2
Us

+ �2
Up

+ �2
xp

, (93c)

and, thus, that there is always a negative eigenvalue (here ev2).
The analysis of Sec. VII B is directly applicable and shows
that Eq. (90) is ill posed.

Therefore, the sole inclusion of the velocity of the fluid
seen in the particle state vector does not change the situation
for an external colored Gaussian noise and we end up again
with an incomplete and ill-based PDF formulation. The way
out of the this dead end is provided by physical insight.
We use the important result obtained in Sec. V [see point
(b) in the conclusion of that section] that the coefficients in
the flux closure formula represent the correlations between
the variables kept in the state vector and the noise that is
eliminated. Thus, for our example, we have

�Us
= 〈Us ξs〉, �Up

= 〈Up ξs〉, �xp
= 〈xp ξs〉. (94)

These correlations are derived from Eqs. (86) and Eq. (87) by
a straightforward application of stochastic calculus to yield

�Us
= τ TL

τ + TL

〈
ξ 2
s

〉
, (95a)

�Up
= τ

τ + τp

〈Us ξs〉 = τ 2 TL

(τ + TL)(τ + τp)

〈
ξ 2
s

〉
, (95b)

�xp
= τ 〈Up ξs〉 = τ 3 TL

(τ + TL)(τ + τp)

〈
ξ 2
s

〉
. (95c)

This reveals that the “dispersion coefficients,” which appear
in the PDF equation as the result of the elimination of the
external noise ξs , scale as the successive powers in the time
scale of that noise.

Next, the physically meaningful step is to search for a
rapidly varying noise having the same total energy [4,14].
This means that τ becomes small (with respect to TL) but
that the total energy, τ 〈ξ 2

s 〉, remains constant. Scaling of the
“dispersion coefficients” can then be expressed in terms of the
small parameter τ (or, more rigorously, in terms of τ/TL) to
show that

〈Us ξs〉 ∼ 1, while 〈Up ξs〉 ∼ τ and 〈xp ξs〉 ∼ τ 2. (96)

However, to obtain a mathematically correct result for the PDF
equation, we must go to the white-noise limit. Indeed, when
τ → 0 with 〈ξ 2

s 〉 → ∞, such that lim
τ→0

(τ 〈ξ 2
s 〉) = K̃ where K̃

is a positive constant, the dispersion coefficients tend to

�Us
−−→
τ→0

K̃, �Up
−−→
τ→0

0, �xp
−−→
τ→0

0. (97)

In that limit, the second-order tensor B̃ becomes

lim
τ→0

B̃ =
⎛⎝0 0 0

0 0 0
0 0 2 K̃

⎞⎠ (98)

with eigenvalues equal to ev1 = ev2 = 0 while ev3 > 0. Thus,
B̃ is now degenerate but with a strictly positive submatrix (here
the positive coefficient K̃) and we retrieve a well-posed FPE
for the PDF equation in Eq. (90). The corresponding trajectory
equations are

dxp = Up dt, (99a)

dUp = Us − Up

τp

dt, (99b)

dUs = −Us

TL

dt +
√

2K̃ dW, (99c)

which are also obtained by (loosely) writing directly that
lim
τ→0

ξs dt �
√

2K̃ dW in the original trajectory equations,

Eqs. (86). In short, this shows that we retrieve exactly the
Langevin model by the combined application of the FND
relation and of fast-variable elimination techniques [4,14].

As indicated in Sec. IV B, the elimination of the accel-
eration of the velocity of the fluid seen is supported by the
Kolmogorov theory [2,4,36] which indicates that τ is of the
order of the Kolmogorov time scale τη while TL is of the order
of the time scale of the large scales, with τη � TL for high
Reynolds-number flows. This provides interesting insights into
the nature of the modeling steps made in the dynamic PDF
approach that were first mentioned at the end of Sec. IV B.
Going back to the general case, we can write the increments
of Us(t) [cf. Eq. (23c) with Eq. (24)] as

Us(t + �t) − Us(t)

=
∫ t+�t

t

As(t
′,Zp(t ′)) dt ′ +

∫ t+�t

t

Bs(t
′,Zp(t ′)) ξ s(t

′) dt ′.

(100)

When �t � τη, the integral of this rapid part can be split
into the sum of several integrals, using a partition (ti)i=1,n

of the interval [t ; t + �t] such that t1 = t , tn = t + �t , and
ti+1 − ti = kτη (with k � 1, for i = 1, . . . ,n − 1)∫ t+�t

t

Bs(t
′,Zp(t ′)) ξ s(t

′) dt ′

=
n−1∑
i=1

∫ ti+1

ti

Bs(t
′,Zp(t ′)) ξ s(t

′) dt ′. (101)

In the dynamic PDF approach, we are considering the
conditional increments dUs |(Zp(t) = zp). The modeling steps
consist in freezing the slowly varying functions As(t ′,Zp(t ′))
and Bs(t ′,Zp(t ′)) at As(t,Zp(t)) and Bs(t,Zp(t)) in Eq. (100)
and in regarding each of the integrals on the right-hand side
of Eq. (101) as being nearly independent. Then the central
limit theorem (CLT) for n � 1, that is, when �t � τη, allows
us to approximate this sum as a Gaussian random variable.
This reasoning clarifies the meaning of the nature of the
Gaussian hypothesis made in the dynamic-PDF description
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where dUs |(Zp(t) = zp) is assumed to be Gaussian over small
time increments �t (small with respect to TL, �t � TL, to
justify freezing the functions As and Bs but large with regard
to τη, �t � τη, to resort to the CLT). It also justifies the
consideration of Gaussian noises in the present section as with
the original form in Eqs. (86). Then, as explained above, the
meaningful form of the dynamic PDF model is obtained by
taking the limit of vanishing τ (the white-noise limit). This
yields the formulation given in Eq. (25c) in Sec. IV B. Note
that, in the fluid case, the limit lim

τ→0
(τ 〈ξ 2

s 〉) is indeed predicted

as being finite by the Kolmogorov theory since, for Re → ∞
(or τη → 0), this limit is the nonvanishing mean turbulent
kinetic energy dissipation lim

τ→0
(τ 〈ξ 2

s 〉) � 〈ε〉(t,xp) [2,36]. This

point has been covered in detailed studies for Lagrangian
stochastic approaches to single-phase turbulent flows [1,2,45]
as well as to disperse turbulent two-phase flows [4,6].

Unfortunately, these ideas cannot be carried to velocities
governed by the fluid large scales that is when the same
elimination procedure is attempted on the velocity of the fluid
seen, as done in the kinetic PDF approach. Indeed, using
Eqs. (99) and applying the same procedure, we get for the
“dispersion coefficients” λ and μ

μ = 1

τp

〈Up Us〉 = 1

τp

TL

τp + TL

〈
U 2

s

〉
, (102a)

λ = 1

τp

〈xp Us〉 = 1

τp

T 2
L

τp + TL

〈
U 2

s

〉
, (102b)

which, of course, scale as successive powers in the time scale
TL of the eliminated variable Us(t) with, in particular, λ/μ =
TL. Note that, by taking τp = τ st

p , the usual expressions of λ

and μ for the homogeneous turbulence case are retrieved. Yet,
in that case, the proper dimensionless parameter that appears is
TL/τp which is the inverse of the particle Stokes number Stp =
τp/TL. For high-inertia particles with Stp � 1, the elimination
procedure can be applied and leads to a FPE since λ can be
neglected. Note that we retrieve then a well-defined and closed
PDF description since for such “bullet particles” the fluid seen
can be regarded as a weak white-noise term (that is, we find
again that descriptions are complete when the external forces
are fully determined, here as white noise). This is not, however,
an interesting limit and the issue is mostly to describe particles
having low and moderate Stokes numbers. Yet, in this range of
values, the elimination of the velocity fluid seen is no longer
possible, leaving the ill-posed kinetic PDF equation.

To summarize, these developments show that Gaussian
colored noise can always be eliminated but that the resulting
PDF equation is ill based and cannot be applied outside the
Gaussian world. Only the elimination of white-noise terms
leads to a closed and well-posed formulation and an acceptable
general PDF description.

C. Two stochastic modeling approaches

The two specific examples studied in Sec. IV A for the
kinetic PDF model and in Sec. IV B for the dynamic one
reflect two different modeling approaches.

In the first modeling approach, the particle state vector is
fixed right from the outset to Zr

p = (xp,Up). The analysis car-

ried out in the preceding sections indicates that this description
has a chance to be physically relevant and mathematically
well posed only if the actions of force fields external to
this fixed particle system are fully known. Otherwise, the
example of the actions of a turbulent fluid flow described
by limited information (a few statistical moments) reveals
that the resulting probabilistic descriptions are restrained (to a
Gaussian world) or suffer from an ill-based behavior of their
solutions.

The second modeling approach adopts a more flexible point
of view and seeks to adjust the state vector to each problem
and to the nature of the information at hand. In that case,
the mathematical toolbox consists of Markov processes and
well-defined stochastic diffusion processes (only continuous
physical phenomena in the frame of fluid mechanics have
been considered in this work). Then, the “art of modeling”
consists in separating the slow and fast modes between the
degrees of freedom of a system and in replacing rapidly
varying ones by white-noise terms to be able to apply the well-
defined mathematical machinery. Depending on the available
information, different descriptions can then be chosen for the
same system. Note that this second modeling approach is
typical in synergetics [46].

D. A thermodynamic interpretation

It is possible to give a thermodynamical flavor to the
previous arguments, which is helpful to outline the difference
between the two modeling approaches. It was shown that the
descriptions considered in this work can be formulated in a
compact notation by a general equation of the following form
[cf. for example Eq. (8) and Eq. (65)]:

∂p

∂t
= −∂[Ai p ]

∂zi

+ ∂2[Bi p]

∂z2
i

= −∂Ji

∂zi

, (103)

where the matrix B has been written here in a diagonal form
(note that this is always possible since B is symmetrical) and
with the flux Ji given by

Ji(t ; zp) = Ai p − ∂[Bi p]

∂zi

. (104)

Then the entropy of the system is defined by [47–49]

S(t) = −
∫

p(t ; zp) ln p(t ; zp) dzp, (105)

thus as the equivalent of the Gibbs entropy, and it can be shown
that entropy production can be identified with [47–49]

� =
∫ |Ji(t ; zp)|2

Bi p(t ; zp)
dzp. (106)

In the dynamic PDF model, the second-order tensor is
definite positive (for the reduced set of variables on which
white-noise terms are acting) and we have � > 0. On the
other hand, in the kinetic PDF model, there is typically at least
one negative eigenvalue and thus, potentially, one can have a
negative entropy production � < 0.

Although surprising at first sight, this is in line with the
previous accounts. In the kinetic PDF description, one is
considering an open thermodynamical system (made up by
Zr

p) in contact with another system represented by the velocity
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of the fluid seen Us but which is treated as the outside world.
However, unless we are limited to very high inertia particles
for which the velocity of the fluid can be seen as acting as a
heat bath, the velocity of the fluid seen Us is varying with time
scales comparable to the particle one. This is then reflected in
the nonzero λij terms appearing in the kinetic PDF equation.
Yet, as demonstrated above, this characteristic feature is also
the very same one that makes the description ill posed. In
thermodynamical terms, this translates the fact that we are
considering a system in contact with another one but that is
also slowly varying. As for any open subsystem of a larger
one, nothing much can be assessed for the evolution of its
entropy. It can also be seen that attempts at describing such
open systems as closed ones are not likely to succeed.

On the other hand, in the dynamic PDF model, the extended-
particle system Zp is now described as a thermodynamical
system in contact with a heat bath represented by the fast
variables eliminated and the resulting white-noise terms, and
this whatever the particle inertia. In that sense, the two
approaches clearly differ with the dynamic PDF approach
following a classical thermodynamic road.

IX. CONSEQUENCES FOR PRACTICAL SIMULATIONS

While the previous analyses clarify the content of the
kinetic and dynamic PDF approaches, they are also relevant
for practical simulations. This corresponds to the twofold
interest of PDF formulations mentioned in the Introduction,
both as stand-alone approaches and as roads towards closed
macroscopic models.

The first consequence is related to the direct simulation
of the chosen PDF. One possibility is to consider the PDF
equation in sample space and use classical numerical methods
(e.g., finite volume schemes). In the kinetic PDF approach,
this has been used in some works [17]. Yet, even with
the reduced particle state vector Zr

p, we are considering an
equation in a six-dimensional space since zr

p = (yp,Vp) and
this can be attempted only for some special configurations
where the dimension can be reduced to typically one spatial
direction and two or three independent variables. Furthermore,
it is now clear from the ill-posed nature of the kinetic PDF
equation demonstrated in Sec. VII B that attempts at solving
this equation in the general case are doomed to fail. In the
dynamic PDF formulation, the resulting PDF equation is well
posed and a stand-alone approach is possible. The particle
state vector is extended to Zp, which means that the sample
space dimension of zp = (yp,Vp,Vs) is already equal to 9
for a general three-dimensional fluid flow (in physical space).
This dimension accounts only for dynamical variables and,
as PDF approaches are typically attractive for more complex
problems (involving for instance chemical reactions, evolving
particle diameter, etc.), we are thus dealing with equations
in high-dimensional spaces. Obviously, classical numerical
schemes cannot be applied anymore and numerical solutions
of the PDF equation rely on Monte Carlo methods, which
indicates that one is simulating a large number of stochastic
particle realizations and approximating the actual PDF in
a weak sense [1,4,15]. This has become a well-established
simulation method and presentations can be found in several
works, see Refs. [1,50,51] for comprehensive discussions of

stochastic numerical schemes for dynamic PDF approaches
based on Langevin models and assessment of numerical costs.
Detailing the numerical aspects of simulations carried out
with dynamic PDF models is outside the scope of this article
but various validation cases and applications can be found in
Refs. [4,5,51] and in a recent survey [6].

The second consequence is of importance for the derivation
of macroscopic descriptions made up by two-fluid models.
Indeed, one application of PDF models is to use PDF equations
as an intermediate step to extract a set of moment equations
[typically, the set of partial differential equations (PDE) for
particle first and second one-point moments]. At first sight,
this appears as particularly interesting with the kinetic PDF
description since the reduced state vector implies that the
first two moments yield a closed formulation in terms of
the particle mean velocity field and kinetic stresses only.
This corresponds to a set of 10 PDEs, which represents
a numerical effort that remains tractable for monodisperse
particles and to a macroscopic description on a par with
classical Reynolds-stress models (cf. Rij − ε formulations)
that still make up the mainstream of classical models for
single-phase turbulent flows. However, the status of such
a moment (or Eulerian) description can then be pondered.
Indeed, the ill-based nature of the kinetic PDF equation casts
some doubts on the validity of these moment equations. On
the other hand, it does not necessarily invalidate them. From
the present analysis, it appears more justified to consider
the set of moment equations derived from the dynamic PDF
approach. The resulting Eulerian description and two-fluid
model was derived in Refs. [4,10] and it is worth emphasizing
that, for the same level of physics contained in the model
(typically, in the Langevin equation used for the velocity of
the fluid seen), the corresponding two-fluid model consists in
a set of at least 19 coupled PDEs since transport equations
must also be written for the fluid-particle velocity tensor
〈up,ius,j 〉 which is not symmetrical. This represents already a
considerable computational effort for monodisperse particles.
When particles are polydisperse, the closure issues of the
particle relaxation time scale and momentum exchange term
[4,6] means that Eulerian simulations must be run for a set of
particle diameter classes, implying that the total numerical task
is now to solve a set of 19Nclass coupled PDEs where Nclass is
the number of particle classes in a simulation. This is clearly a
daunting challenge which explains that Lagrangian stochastic
methods, or Monte Carlo simulations of the dynamic PDF
equation, are of direct interest for practical applications.

These considerations do not mean that Lagrangian stochas-
tic and two-fluid models should be regarded as competitive
methods. For example, new hybrid PDF-moment formulations
have recently surfaced (see an introduction to these new
ideas in Ref. [6, Sec. 5.3]). Yet, it is important that closed
moment formulations be properly obtained and be shown
to represent realizable models, which points to the use of
the complete set of second-order transport equations for the
particle mean velocity, particle kinetic stresses, and full fluid-
particle velocity tensor. However, if the derivation of a reduced
set of moment equations is still deemed useful, it must be put
on a sound footing. For that purpose, the following procedure
is proposed: Embed the kinetic description into a dynamic
one, derive the extended set of moment equations at this
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particle-fluid-velocity-seen level (this is done, for example, in
Refs. [4,10]), and then work our way “downwards” by injecting
local equilibrium assumptions for the various correlations with
Us that appear to derive a reduced and closed set of equations.
If such equilibrium simplifications are not physically justified,
then the conclusions of this work support the argument that
the physics of disperse two-phase flows is best addressed at
the level of dynamic PDF approaches and, thus, with the full
set of moment equations that include transport equations for
particle-fluid-seen correlations.

X. CONCLUSIONS

The aim of this article was to assess the kinetic and dynamic
PDF models proposed in the literature for disperse two-phase
flows. In a broader perspective, its objective was also to bring
out a consistent approach to one-particle PDF descriptions
of the dynamics of particles in turbulent flows. Drawing on
the developments presented in this article, several conclusions
emerge. They are gathered and presented along two main lines.

First, in the framework of the hypothesis of a Gaussian
distribution for the velocity of the fluid seen and of constant
particle relaxation time scale (for monodisperse particles)
imposed by the limitation of the kinetic PDF state vector:

(G1) a new derivation of the kinetic PDF equation has
been obtained by integrating a dynamic PDF description over
the velocity of the fluid seen and new physically meaningful
expressions of the “dispersion tensors” have been given as the
correlations with the eliminated noise (cf. Sec. V);

(G2) these results demonstrate that the kinetic PDF equa-
tion is retrieved as the marginal of the dynamic PDF approach
and that present kinetic PDF descriptions are always contained
in dynamic-PDF ones when the velocity of the fluid seen has
a Gaussian distribution (cf. Sec. V).

Second, when the two approaches are analyzed as general
models, and therefore outside of the Gaussian context, two
very different pictures are revealed:

(NG1) the dynamic-PDF approach, which is based on
Langevin or FPE types of models, benefit directly from the
great body of work devoted to their analysis that has shown
that such approaches are well posed and form acceptable
stand-alone PDF descriptions, in the sense that the criteria
(C1) and (C2) are met (cf. Sec. VI);

(NG2) on the contrary, neither criterion (C1) nor (C2)
are satisfied by the kinetic-PDF approach. One of the key

results is that, whatever the closure of the “dispersion tensors,”
the kinetic PDF equation is ill posed (as soon as λij �= 0)
and cannot be applied outside of special cases and special
initial conditions, which represents a serious shortcoming for
a general modeling proposal (cf. Sec. VII);

(NG3) as the main modeling issues concern space-
dependent closures for inhomogeneous flows (related to non-
Gaussian fluid statistics), it has been shown that the dynamic
PDF approach represents not only a safe mathematical road
but yields naturally nonlocal closures at the level of particle
statistics since the space-dependent correlations of the fluid
velocity seen along particle trajectories are predicted by its
formulation. Within the limits of each model chosen for the
velocity of the fluid seen, it is thus seen that the dynamic PDF
description offers a consistent approach to derive nonlocal
effects on particle statistics (cf. Sec. V).

One of the most important outcome is that the status of a
PDF formulation is not related to the choice of the modeling
approach used to derive flux closures in sample space but to
a physically sound selection of the variables retained in the
particle state vector combined with the use of fast-variable
elimination techniques. In that respect, an interesting aspect
of the exact Furutsu-Novikov-Donsker relation (for Gaussian
processes) is to demonstrate that attempts at formulating
consistent PDF descriptions for systems influenced by external
colored noise are likely to fail (cf. Sec. VIII B). This is
helpful in that it points to a clear and mathematically correct
approach to guide necessary physically oriented improvements
of PDF descriptions of particle-laden turbulent flows. The
importance of a relevant choice of the particle state vector
has been emphasized repeatedly, mostly with physical argu-
ments [4–6,13], and is now further supported by the present
theoretical analyses as a central issue if one is to obtain
acceptable and well-posed PDF descriptions. More precisely,
the demonstrations given in this work point to the requirement
of addressing disperse two-phase flow PDF modeling from a
dynamical PDF standpoint. Present state-of-the-art Langevin
models have been shown to be able to yield interesting results
in practical applications [6] but much work remains to be
done to improve current PDF formulations. In that sense, the
conclusions developed in this paper complement the recent
analysis of Langevin models for the dynamic PDF approach
[37], in which requirements and guidelines were established,
and are helpful to orient future modeling works towards
well-posed and applicable PDF models.
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