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Derivation of the Biot-Savart equation from the nonlinear Schrödinger equation
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We present a systematic derivation of the Biot-Savart equation from the nonlinear Schrödinger equation,
in the limit when the curvature radius of vortex lines and the intervortex distance are much greater than the
vortex healing length, or core radius. We derive the Biot-Savart equations in Hamiltonian form with Hamiltonian
expressed in terms of vortex lines,

H = κ2

8π

∫
|s−s′ |>ξ∗

ds · ds′

|s − s′| ,

with cutoff length ξ∗ ≈ 0.341 629 3/
√

ρ0, where ρ0 is the background condensate density far from the vortex
lines and κ is the quantum of circulation.
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I. INTRODUCTION

Nonlinear Schrödinger (NLS) Eq. (1) and Biot-Savart
Eq. (8) are the two most popular models for describing
superfluid dynamics and turbulence at very low temperature
[1–8]. This includes flows in superfluid 4He and 3He, as
well as atomic Bose-Einstein condensates of alkali gases. It
is generally believed that the Biot-Savart equation describes
a subset of slow (subsonic) motions of the more general NLS
equation. This view is based on the formal ideal-fluid analogy
in the NLS model arising from the Madelung transformation,
as will be explained below in Sec. II B. However, to date there
has been no rigorous justification for such a correspondence
between the Biot-Savart and the NLS equations. The problem
is that the zero vortex line radius limit is ill defined for
the ideal fluids leading to a divergence of the Biot-Savart
integral. To tackle this problem, it is customary to introduce
a phenomenological cutoff regularization of the Biot-Savart
integral at a scale that corresponds roughly to the vortex line
radius. All efforts to justify this approach rigorously for the
ideal fluid dynamics have failed due to a great freedom in
possible realizations of the vortex profiles and their temporal
variability due to vortex stretching.

Fortunately, the fluid dynamics equations arising from the
NLS equation contain an extra term—the so-called quantum
pressure (see Sec. II B). It is the quantum pressure term that
makes the quantum vortex core “rigid,” i.e., having a fixed
universal profile. This fact makes it possible to rigorously
derive the Biot-Savart equation from the NLS equation. The
present paper is devoted to such a derivation.

II. NONLINEAR SCHRÖDINGER EQUATION

Consider a model described by the 3D defocusing nonlinear
Schrödinger (NLS) equation [9,10],

i� ∂T � + �
2

2M
∇2� + E� − V0|�|2� = 0 ,
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where � is a complex scalar function of a 3D physical space
coordinate X and time T , � is the reduced Planck’s constant,
M and E are the mass and single-particle energy of the bosons,
and V0 is the strength of the interaction potential between them.
Define dimensionless variables as follows: x =

√
2ME
�

X, t =
E
�

T and ψ =
√

V0
E

�. The resulting equation is

i ∂tψ + ∇2ψ + ψ − |ψ |2ψ = 0 . (1)

A. Hamiltonian formulation

The NLS Eq. (1) can be written in Hamiltonian form,

i ∂tψ = δH

δψ∗ , (2)

with Hamiltonian

H =
∫ [

|∇ψ(x,t)|2 + 1

2
(|ψ(x,t)|2 − 1)2

]
dx , (3)

which represents the conserved energy of the system.

B. Madelung transformation and fluid framework

The Madelung transformation [6,11,12] maps the complex
scalar field ψ(x,t) to two real scalar fields ρ(x,t) and
φ(x,t) following the relation ψ = √

ρ eiφ . By plugging this
substitution into the defocusing NLS Eq. (1) and separating
the real and imaginary parts, one obtains the set of equations

∂ρ

∂t
+ ∇ · (ρ 2∇φ) = 0,

∂φ

∂t
+ (∇φ)2 + ρ − 1 − ∇2√ρ√

ρ
= 0.

It is then straightforward to observe that by setting the
vector field u(x,t) = 2∇φ(x,t) the first equation results in
a continuity equation for the density field ρ and the second
equation a conservation of the momentum associated with the
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velocity field u:

∂ρ

∂t
+ ∇ · (ρ u) = 0,

∂u
∂t

+ (u · ∇) u = −∇ρ2

ρ
+ ∇

(
2
∇2√ρ√

ρ

)
.

Thus, we have obtained equations of an inviscid polytropic
gas with adiabatic index γ = 2 (pressure p = ρ2), but with
an extra term, called quantum pressure, appearing at the last
term in the second equation. The quantum pressure term is
negligible if the characteristic scale of motion is much greater
than the healing length ξ .

Let us re-express Hamiltonian Eq. (3) in terms of the fluid
variables:

H = 1

2

∫ [
1

2
ρu2 + (ρ − 1)2 + 2|∇√

ρ|2
]

dx . (4)

With the exception of the last term, we see a formal coincidence
with the standard expressions for the total energy (up to factor
1/2) of a compressible fluid.

III. QUANTIZED VORTICES

Even if the velocity field u is irrotational, vortices may
appear in the system. These are lines of singular vorticity
around which the real phase field changes by a multiple of 2π

assuring that the complex wave field ψ stays always single-
valued. One can measure the circulation along a closed curve
C around one of these vortex lines

�=
∮

C

u · dl=2
∮

C

∇φ · dl = 2 φ = 4πn , with n ∈ Z .

The circulation is zero for all contours embracing the regions
where the phase is a well-defined differentiable function.
However, at points where ψ = 0, the phase is undefined and
the circulation along contours embracing such points is not
zero. The circulation may take only discrete values and the
singularities in the vorticity field are called quantum vortices.
Moreover, vortices with n � 2 are unstable: a general smooth
change in field ψ leads to splitting of such “multicharge”
vortices into a set of elementary vortices with n = 1. Because
of the quantized circulation, together with the fact that the fluid
has no viscosity, the NLS model has been used to qualitatively
describe superfluids.

Let us first consider a single straight vortex solution found
by Pitaevskii [10]. For simplicity, let us consider a situation
where the density far from vortices asymptotes to ρ0 = 1.
The more general case when the density tends to a different
constant ρ0 > 0 can then be obtained by a simple rescaling
ψ(x,t) → √

ρ0 ψ(
√

ρ0 x,t). Let us impose that a phase shift
of +2π exists around the origin for the phase field φ and look
for a stationary solution. Going into polar coordinates

x = r cos θ

y = r sin θ,

we consider a solution with φ(r,θ ) = θ . We will also impose
an axial symmetry on the density field, so that the solution has
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FIG. 1. (Color online) Log-linear plot of the vortex profile R(r),
obtained as a piecewise combination between a highly accurate
numerical solution and an asymptotic solution. See Appendix A and
Supplemental Material [14] for details.

the form

ψv(r,θ ) = R(r) eiθ . (5)

Plugging this into the NLS Eq. (1) we get the ordinary
differential equation

d2R

dr2
+ 1

r

dR

dr
− 1

r2
R + (1 − R2)R = 0, (6)

supplemented with the boundary conditions R(0) =
0, R(∞) = 1. One may obtain analytically the behavior of
the function R(r) in the limits of very small and very large
radius, or look for a numerical solution using a shooting
method. Another method is to use a Padé approximation [13].
For the present paper, it turns out, the computation of the cutoff
length ξ∗ (see Sec. V) requires knowledge of a very accurate
solution for R(r) over a wide range of values of r . This rules
out Padé approximations (they have significant errors of up to
3.5%), so we are forced to work with high-accuracy numerical
solutions and asymptotic solutions at large r . Figure 1 shows
a log-linear plot of R(r) obtained by our method as explained
in Appendix A. The vortex core has size of the order of the
healing length tending rapidly to a constant value far from the
origin. The field ψ is smooth everywhere and tends to zero at
the origin, which can be thought of as a localized topological
phase defect.

IV. VORTEX TANGLE AND BIOT-SAVART MODEL

General vortex structure in strong 3D NLS turbulence may
be very complex and irregular: it is usually referred as vortex
tangle. In a wider context, vortex tangle represents a typical
realization of superfluid turbulence at zero temperature, i.e., in
liquid Helium 4 or 3.

When the distance between the vortex lines and their
curvature radii are much greater than the healing length ξ , the
first term in the integral of energy Eq. (4), the so-called kinetic
energy, is dominant over the second and the third contributions,
the internal and the quantum-pressure energies, respectively.
This is because (provided there is no ambient sound) the
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density field deviations from the background density ρ0 (in
our case ρ0 = 1) are bound within small vortex cores of radius
∼ξ , whereas the velocity field u produced by the vortices is
delocalized. Thus, the leading order in the Hamiltonian is

H = 1

4

∫
ρu2 dx, (7)

which is a Hamiltonian of an incompressible fluid (up to factor
1/2), but with density depletions in the vortex cores which
are rigidly fixed to have transverse density distributions of
the isolated 2D vortex considered in Sec. III. (Note for our
purposes we will also need to find the main subleading order
in H ).

This suggests that the vortex tangle can be modeled by the
Biot-Savart equation, which has been used in the context of
the vortex dynamics in incompressible fluids starting with the
work of Da Rios [15]:

st ≡ ∂s
∂t

= κ

4π

∫
(s′ − s) × ds′

|s − s′|3 , (8)

where s ≡ s(ζ,t), where ζ ∈ R is a Lagrangian label
parametrizing the positions of the vortex line elements. Here,
κ is the quantum of circulation; in the nondimensional NLS
model considered in this paper we have κ = 4π . The integral
is taken along all of the vortex lines, including the one to
which the considered vortex element belongs. To prevent
logarithmic singularity at s′ → s, the integration has a cut-off
at the “vortex radius” scale, ξ∗ < |s − s′|, whose value, based
on the common sense physical grounds, must be close to the
healing length ξ . Such a cutoff has been previously introduced
phenomenologically, but later in the present paper we will
provide a rigorous justification for this model and will find the
value of ξ∗ numerically.

Equation (8) can be obtained from the least-action principle

δS =
∫

δL dt = 0,

with Lagrangian [16–18]

L = κ

6

∫
st · (s × ds) − H

and Hamiltonian

H = κ2

16π

∫
ds′ · ds′′

|s′ − s′′| . (9)

Variation of action gives

δS = −
∫

dt δs ·
[
κ

2
st × sζ + δH

δs

]
dζ = 0.

Considering the fact that the parametrization ζ is arbitrary, the
expression in the square brackets must be zero for any vector
sζ tangential to s. The respective Hamiltonian equation is

κ

2
st × sζ = −δH

δs
. (10)

Taking into account that

δH
δs

= κ2

8π

∫
[sζ · (s − s′)] ds′ − (sζ · ds′)(s − s′)

|s − s′|3

= κ2

8π

∫
sζ × [(s′ − s) × ds′]

|s − s′|3
and undoing the cross product, we get the Biot-Savart Eq. (8).

V. DERIVATION OF THE BIOT-SAVART MODEL
FROM THE NLS EQUATION

In spite of great popularity of the Biot-Savart model, it
has not yet been rigorously obtained or justified in the form
formulated here, i.e., with an integration cutoff. In the ideal
fluids context, the difficulty is related to the vortex stretching
effect, which causes changes in the vortex core radius. The
situation may be easier in the NLS model, since the vortex
core shape is fixed. However, previous attempts to derive the
vortex line evolution in the NLS model have led to significantly
more complex equations than Eq. (8) (see, e.g., Ref. [19]).

The present paper is devoted to such a derivation of the
Biot-Savart model within the NLS model. For this one has
to (A) rewrite the NLS equation in the vortex filament form
Eq. (10), and (B) express the Hamiltonian H in terms of the
vortex line configuration s(ζ,t). Part (A) was done in Ref. [8]
in more general settings (forced Ginzburg-Landau equation),
and we reproduce it for our NLS case in Appendix B. On the
other hand, part (B) has not been done before to the extent that
the cutoff in the Biot-Savart Eq. (8) and the Hamiltonian Eq.
(9) would be rigorously justified and calculated, and this will
be the main goal of the derivations that follow.

The process of finding the Hamiltonian in terms of the
vortex line is done in six steps. The result will be

H = κ2

16π

∫
|s−s′ |>ξ∗

ds · ds′

|s − s′| , (11)

where ξ∗ = 0.341 629 3 ± 10−7. The value of the cutoff will
be shown to satisfy the following analytical formula:

ξ∗ = 1

2
exp

(
− 1

2
−

∫ ∞

0

[
dR(r)

dr

]2

r dr

− lim
r→∞

{∫ r

0

[R(r ′)]2

r ′ dr ′ − ln r

})
, (12)

where R(r) is the vortex profile, solution of Eq. (6).

A. Step 1: Obtaining the vortex-line Hamiltonian

This was already done by writing Eq. (4). We will assume
no sound is present or excited by the moving vortices, which
itself requires a justification if one wants to be fully rigorous.
However, we expect this to be a difficult task akin to proving
the validity of the balanced (wave-free) geophysical motions.
Physically, we could say that sound is not generated when the
motions of the vortices are strongly subsonic, which is true
when they are separated by the distances much greater than
their core radii.

Thus, here we will simply postulate Hamiltonian Eq. (4) and
assume that the density field rigidly follows the vortex cores,
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so that locally near the cores we have the Pitaevskii vortex
profile. In this way, the last two terms in this Hamiltonian will
be subdominant (after subtracting the constant contribution),
but still important because they affect the value of the cutoff
length ξ∗.

B. Step 2: Reformulating the problem in the form of a flow
with constant density in the leading order

We do this by introducing a new “velocity” field,

v =
√

ρ

2
u, (13)

so that the Hamiltonian is

H = HK + H0, HK = 1

2

∫
v2 dx,

(14)
H0 = 1

2

∫
[(ρ − 1)2 + 2|∇√

ρ|2] dx,

where HK formally looks like the kinetic energy of incom-
pressible fluid with density equal to one. The terms in H0

depend on the vortex profile and contribute directly to the
value of the cutoff length ξ∗.

For an infinite straight (Pitaevskii) vortex, we have

v =
√

2ρ

r⊥
θ̂ ,

where θ̂ is the unit vector in the azimuthal direction and r⊥ is
the distance to the vortex line.

Taking into account that that
√

ρ/2 → α r⊥, α = const,
when the distance to the vortex r⊥ → 0, and that in the vortex
u = 2/r⊥, we have

v → 2α, as r⊥ → 0. (15)

Same relation holds for a more general vortex line when its
curvature radius is much greater than the healing length.

We compute H0 explicitly in the case of the infinite straight
vortex. This will be used later on. In terms of the vortex profile
R(r), we obtain, per unit length of vortex line,

H0

L
= κ2

8π
μ0, (16)

where κ is the quantum of circulation, κ = 4π, and

μ0 ≡
∫ ∞

0

(
1

2
{[R(r)]2 − 1}2 +

[
dR(r)

dr

]2
)

r dr. (17)

These integrals can be split as follows. First [20],∫ ∞

0
([R(r)]2 − 1)2 r dr = 1.

Second, we obtain numerically∫ ∞

0

(
dR(r)

dr

)2

r dr ≈ 0.279 090 913.

Therefore,

μ0 ≈ 0.779 090 913.

C. Step 3: Rewriting the Hamiltonian Eq. (14) in such a way
that the integrand functions are localized within the vortex cores

This can be done at the expense of increasing dimensionality
of the integral via performing an integration by parts followed
by applying the Helmholtz theorem:

HK = 1

8π

∫
ω(x,t) · ω(x′,t) + γ (x,t) γ (x′,t)

|x − x′| dxdx′, (18)

where ω(x,t) is the “v-vorticity” field: ω(x,t) = ∇ × v(x,t),
and γ (x,t) is the v-divergence field: γ (x,t) = ∇ · v(x,t).

To obtain this formula, we have had to use Helmholtz
theorem on a domain that does not include the vortex lines, so
that v(x,t) satisfies the regularity conditions of the theorem.
Now, it is possible to make this domain as close to the vortex
lines as we like and show that the contribution of the remaining
small vicinity of the vortex is vanishing because the singularity
of v(x,t) is mild enough. So the integration domain in Eq. (18)
is the full R3.

From here on, we will discard the contribution from the
divergence terms γ (x,t), because they are small if the vortex
line’s curvature radius is much greater than the healing length.

From Eq. (15) we have asymptotics for the vorticity near
the vortex center:

ω = 1

r ⊥
∂r⊥ (r⊥v) → 2α

r⊥
, as r⊥ → 0. (19)

The vorticity field is strongly localized within the healing
length from the vortex center and rapidly decays at large
distances from the center.

We see that such a v vorticity is no longer a δ function
distributed on the vortex center, as it was the case for the
original u vorticity. It is still singular at r⊥ = 0, but the
singularity is mild, and it leads to a nondivergent H—without
a cutoff. The latter statement is true because the integral in H

is identical to the original convergent integral Eq. (7).

D. Step 4: Splitting the Hamiltonian in terms
of local and far regions

This is the key step. We introduce an intermediate length scale
a, which is in between of the healing length ξ and the curvature
of the vortex line �: ξ  a  �. We split the integrals in HK

as

HK = H> + H<,

where

H> = 1

8π

∫
|x−x′|>a

ω(x,t) · ω(x′,t)
|x − x′| dxdx′

and

H< = 1

8π

∫
|x−x′|<a

ω(x,t) · ω(x′,t)
|x − x′| dxdx′,

so H> and H< are the integrals over the domains |x − x′| >

a and |x − x′| � a, respectively. Notice that the term H0

contributes to H with a term that is more in the spirit of
H< than H> because the integrand in H0 is supported in the
vicinity of the vortex lines.

Writing H> in the Biot-Savart form Eq. (9) comes cheaply
because one can replace |x − x′| in the denominator with
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|s − s′|, which would be valid up to O(ξ/a) corrections. Then
the transverse to the vortex line directions can be integrated
out independently for the primed and the unprimed variables,
and in the end we have

H> = κ2

16π

∫
|s−s′ |>a

ds · ds′

|s − s′| , (20)

where κ is the quantum of circulation, κ = 4π . The prefactor
here comes from the fact that the transverse integration of ω(x)
gives the circulation of v(x), i.e., 23/2π .

To consider the H< integral, one can think of the vortex line
as locally straight and use local coordinates. Let us consider
two planes A and A′ transverse to the vortex line and passing
through the points x and x′, respectively. Let us introduce the
change of the integration variables (x,x′) → (s‖,r⊥,s‖′,r′

⊥),
where s‖ and s‖′ are the lengths along the vortex line to its
intersections with planes A and A′; r⊥ and r′

⊥ are the local 2D
Cartesian coordinates within A and A′, respectively. Taking
into account that the contributions to the integral are limited
to local regions, |x − x′| � a, the change of variables amounts
to a shift and rotation, i.e., its Jacobian is one, up to O(a/�)
corrections. The integration region is then |s‖ − s ′

‖| � a, and
we have

H< = 1

8π

∫
|s‖−s ′

‖|�a

ω(r⊥)ω(r ′
⊥)√

(s ′
‖ − s‖)2 + (r′

⊥ − r⊥)2
ds‖dr⊥ds ′

‖dr′
⊥.

After integrating out r⊥ and r′
⊥, the remaining integrand will be

a function of s ≡ |s ′
‖ − s‖| only (this s should not be confused

with |s|). Also, up to O(a/�) corrections integral H0 can be
replaced with its value obtained for the straight line, Eq. (16).
Combining H0 and H<, we get

H< + H0 = κ2L

8π
μ0 + κ2

16π

∫
|s‖−s ′

‖|�a

f (|s ′
‖ − s‖|) ds‖ds ′

‖

= κ2L

8π

[
μ0 +

∫ a

0
f (s) ds

]
, (21)

where μ0 is a constant defined in Eq. (17), L is the total length
of the vortex filament, and

f (s) ≡ 2

κ2

∫
ω(r⊥)ω(r ′

⊥)√
s2 + (r′

⊥ − r⊥)2
dr⊥dr′

⊥.

To obtain the latter expression we performed a linear transfor-
mation from (s‖,s ′

‖) to (s ′
‖ − s‖,s ′

‖ + s‖), with Jacobian equal
to 1/2.

E. Step 5: Defining the effective cutoff analytically
and finding the effective Hamiltonian

At this point it is useful to define the function

F (a) ≡ μ0 +
∫ a

0
f (s) ds. (22)

At large distances, 1 ∼ ξ  s � a, we have f (s) ≈ 1/s, so
that

F (a) = μ0 +
∫ a

0
f (s) ds ≈ ln a + μ0 + C ≡ ln(a/ξ∗).

(23)
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FIG. 2. (Color online) Plot of numerical solution of function g(s)
defined in Eq. (25).

This can be considered a definition of the effective cutoff
length ξ∗ in the Biot-Savart formulation, which is expected to
be different from the standard expression ξ = 1/

√
ρ0 = 1 by

an order-of-one factor. The task of finding ξ∗ numerically is left
to the next step. Notice that at s → 0, function f (s) = o(1/s),
so the integral in Eq. (23) converges and F (0) = μ0. In fact,
f (0) is finite (≈1.122 by numerical estimation).

To obtain a closed formula for the full Hamiltonian, define
the function

g(s) = sf (s) = 2s

κ2

∫
ω(r⊥)ω(r ′

⊥)√
s2 + (r′

⊥ − r⊥)2
dr⊥dr′

⊥, (24)

which represents a “smooth cutoff”; g(0) = 0, g(∞) = 1 (see
Fig. 2).

From Eqs. (21) and (22) we rewrite

H< + H0 = κ2L

8π
F (a) = κ2L

8π

∫ a

ξ∗

ds

s

= κ2

16π

∫
a>|s−s′ |>ξ∗

ds · ds′

|s − s′| .

Adding this expression to H>, given in Eq. (20), we have

H = κ2L

8π
μ0 + κ2

16π

∫
g(|s − s′|) ds · ds′

|s − s′|

= κ2

16π

∫
|s−s′|>ξ∗

ds · ds′

|s − s′| ,

which is Eq. (11) we were aiming to derive. This is an
asymptotically exact result valid when the vortex line’s
curvature radius is much greater than the healing length.

F. Step 6: Finding the cutoff length ξ∗ numerically

To compute g(s), we rewrite Eq. (24) in polar coordinates:

g(s) = s

4π

∫
r⊥r ′⊥ω(r⊥)ω(r ′

⊥)√
s2 + r ′2⊥ + r2

⊥ − 2r⊥r ′
⊥ cos θ

dθdr⊥dr ′
⊥.

The angular integration can be performed analytically, leading
to an expression for g(s) that is easier to handle numerically.
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FIG. 3. (Color online) Blue filled circles, numerical computation
(in segments) of the integral

∫ a

0 f (s)ds. The red oblique straight
line corresponds to the fit

∫ a

0 f (s)ds ≈ ln(a) + C. The green vertical
dot-dashed line corresponds to a = exp(−C).

Dropping the “perp” symbols, we get

g(s) = s

π

∫ ∞

0

∫ ∞

0
r ω(r) r ′ω(r ′)

K
(

4 rr ′
(r+r ′)2+s2

)
√

(r + r ′)2 + s2
drdr ′,

where K(m) is the complete elliptic integral of the first kind.
Equations (13) and (19) lead to relation r ω(r) = √

2 dR(r)
dr

,

where R(r) is the solution of the ODE Eq. (6) [in terms of the
vortex density we have R(r) = √

ρ(r)]. Thus, we get

g(s) = 2 s

π

∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′

K
(

4 rr ′
(r+r ′)2+s2

)
√

(r + r ′)2 + s2
drdr ′.

(25)

We will compute this integral numerically using a very
accurate numerical solution of Eq. (6) for R(r), combined
with an asymptotic solution valid for large r , so that the error
incurred in solving Eq. (6) is kept uniformly below 5 × 10−10

(see Appendix A). Replacing the corresponding expression
for dR(r)

dr
into Eq. (25), the resulting 2D integral is computed

numerically for several values of s. The partial result is plotted
in Fig. 2.

To obtain the effective cutoff length ξ∗ we need to integrate
numerically f (s) [=g(s)/s] over the range s ∈ (0,a), thus
obtaining F (a) [=μ0 + ∫ a

0 f (s)ds], and compare the result
with Eq. (23). The numerical computation of μ0 is done
accurately using the profile R(r) and the result is μ0 ≈
0.779 090 913. Figure 3 shows the results of numerically
integrating f (s) in segments, using Mathematica’s global
adaptive method with accuracy and precision goals of 10−10

each. The blue dots represent the values of
∫ a

0 f (s)ds obtained
numerically. The red straight oblique line corresponds to the
fit

∫ a

0 f (s)ds ≈ log(a) + C, which is good in the asymptotic
regime a � 1 (we went up to a > 109 to verify the asymptote).
By looking at Fig. 3, the value exp(−C) is by definition the
value of a at which the horizontal line and the red straight
oblique line intersect. Combined with the numerical value of
μ0, the fit gives the following accurate estimation for the cutoff
length:

ξ∗ = exp(−μ0 − C) = 0.341 629 3 ± 10−7. (26)

This result can be immediately generalized to the case ρ0 �= 1:

ξ∗ ≈ 0.341 629 3/
√

ρ0. (27)

Finally, in Appendix C we derive the analytical formula,
Eq. (12), that allows us to bypass the numerical fitting
procedure. Using the accurate numerical solution for R(r) on
Eq. (12) yields the same value for ξ∗ as in Eq. (27) above.

VI. CONCLUSIONS

In this paper, for the first time, we have rigorously derived
the Biot-Savart Eq. (11) with cutoff Eq. (12) from the 3D
defocusing NLS Eq. (1). For this we assumed that the vortex
line curvature and the intervortex distance are much greater
than the healing length. This setup corresponds to a very
subsonic motion of the vortex lines, such that the density far
from the vortices tends to a constant value ρ0. Correspondingly,
we assumed that the core is rigid and has a fixed angle-
independent profile. This is justified from the fact that all
angle-dependent modes quickly dissipate via sound radiation
[20]. Noncircular corrections to the core shape arising from
curvature (e.g., for a vortex ring) are small and can be ignored
in our derivations.

We have found an accurate numerical value for the cutoff
length, ξ∗ ≈ 0.341 629 3/

√
ρ0. This value agrees with the

common sense suggestion that it must be of the order of the
healing length ξ = 1/

√
ρ0. However, the numerical coefficient

shows an approximately threefold difference between these
two quantities, which may introduce significant corrections to
previous estimates of, e.g., the critical velocity for the vortex
formation in a superfluid flow past an obstacle, critical distance
for the vortex line reconnection process, speed of vortex rings,
etc.

It is important to understand that the NLS model provides
us with a significant advantage with respect to the ideal fluid
model described by the Euler equation: the vortex profile
is fixed in the former but not in the latter. As a result, the
Biot-Savart equation would be much harder to derive from
the Euler equation, and it would be unrealistic to expect that
the result would be in a simple form as in Eq. (11) with a
fixed cutoff length. However, it would be interesting to explore
possible justifications of the Biot-Savart model extension with
a variable cutoff length physically corresponding to variability
of the vortex radius due to the vortex stretching process.

In the future, it would be interesting to conduct a com-
parative numerical study of the Biot-Savart and the NLS
models for various physical examples, including propagating
and colliding vortex rings, Kelvin waves on vortex lines,
and reconnection of vortex lines. In particular, it would be
interesting to see at what stage and under which conditions
the Biot-Savart approach fails due to, e.g., close approach of
different vortex lines to each other, appearance of regions with
high curvature, or loss of energy to acoustic waves.
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APPENDIX A: ACCURATE SOLUTION
OF VORTEX PROFILE R(r)

We implemented a very accurate shooting method to obtain
R(r) numerically between r = r0 = exp(−50) ≈ 10−21 and
r = 20. The method uses Mathematica’s stiffness switching
solver with working precision of 22 digits and accuracy and
precision goals of 10−22 each. As a result, the absolute point-
wise errors in solving Eq. (6) is kept below 10−13 for all r

in the range 10−21 < r < 10−4, and below 10−17 in the range
10−4 < r < 20. The optimal value of derivative at r0 is found
to be[

dR

dr

]
r=r0

= 0.583 189 495 860 329 279 179 173 755 1.

It turns out that this numerical solution cannot be continued
much beyond r = 20 without significant loss of accuracy.
In order to continue the solution to higher values of r , we
devised an asymptotic method. This method consists of the
transformation

R(r) = exp[−Z(1/r2)],

which leads to the ODE

4q2Z′′(q) − 4q2Z′(q)2 + 4qZ′(q) − 1 − e−2Z(q)

q
+ 1 = 0.

This ODE is solved near q = 0 in power series

Z(q) =
N∑

j=1

cjq
j ,

leading to an asymptotic solution that does not converge, but
can be truncated so that the error in solving Eq. (6) is kept as
small as desired for r large enough. In practice we found that
N = 13 is a good compromise. The coefficients c1,c2, . . . ,c13

are, explicitly,

1

2
,

5

4
,

32

3
,

1589

8
,

64 981

10
,

989 939

3
,

168 211 250

7
,

38 006 710 085

16
,

5 510 235 057 787

18
,

199 454 257 136 329

4
,

110 192 683 498 843 556

11
,

14 600 012 068 277 445 755

6
,

9 139 380 150 115 822 460 510

13
.

Next, we patch this asymptotic series with the previous
numerical solution by finding the intersection of the two
functions. They intersect at

rtrans = 15.575 223 861 217 559 656 330 9,

which defines a piecewise continuous solution at the transition
point rtrans. The jump in the derivative of this piecewise
function is found to be reasonably small. In absolute terms,∣∣∣∣∣

[
dR

dr

]
r=r+

trans

−
[
dR

dr

]
r=r−

trans

∣∣∣∣∣ < 2 × 10−15,

while in relative terms,∣∣∣∣∣
[
dR

dr

]
r=r+

trans

−
[
dR

dr

]
r=r−

trans

∣∣∣∣∣ < 5 × 10−12

[
dR

dr

]
r=r+

trans

.

These errors are mostly due to the asymptotic solution’s error
in solving Eq. (6), which is of order 2 × 10−10 at the transition
point r = rtrans and rapidly decreases below 10−13 for r > 21.

Details of the implementation of this accurate piecewise
solution are found in the Supplemental Material [14].

APPENDIX B: HAMILTONIAN EQUATIONS
IN TERMS OF VORTEX LINES

Below, we reproduce derivations of Nemirovskii [8],
simplifying them as appropriate for the NLS model Eq. (1).
Consistently with what we assumed when deriving H , we will
consider highly subsonic motions of the vortex lines, which
occur when their curvature radius and mutual separations
remain much greater than the healing length ξ . In this case
one can neglect the acoustic waves and assume that function
ψ(x,t) is fully determined by the vortex line configuration
s(ζ,t):

ψ(x,t) ≡ ψ[x|s(ζ,t)].

In particular, the time dependence in ψ(x,t) appears only
implicitly via s(ζ,t) so that

∂tψ(x,t) =
∫

δψ[x|s(ζ,t)]

δs(ζ ′,t)
· st (ζ

′,t) dζ ′. (B1)

Let us multiply Eq. (2) by δψ(x|s(ζ,t))/δs(ζ0,t) add its
complex conjugate and integrate over the 3D physical space:

i

∫
∂tψ(x,t)

δψ∗

δs(ζ0,t)
dx + c.c.

=
∫ [

δH

δψ∗
δψ∗

δs(ζ0,t)
+ δH

δψ

δψ

δs(ζ0,t)

]
dx ≡ δH

δs(ζ0,t)
.

(B2)

Dominant contribution to the integral on the left-hand side of
this equation comes from a small vicinity of the vortex line,
where locally ψ behaves as the Pitaevskii vortex Eq. (5), i.e.,

ψ[x|s(ζ,t)] ≈ ψv(x⊥) ≡ ψv[s(ζ⊥,t) − x],

where ζ⊥ corresponds to the point on the vortex line which is
closest to x. Then we can write

δψ[x|s(ζ,t)]

δs(ζ ′,t)
= ∇⊥ψv(x′

⊥) δ(ζ ′ − ζ ′
⊥).

Using this in the left-hand side of Eq. (B2) and its conjugate
version in Eq. (B1), and integrating over dx‖ = |sζ (ζ0,t)|dζ⊥
and over ζ ′ using the δ functions, the left-hand side of Eq. (B2)
becomes

i|sζ (ζ0,t)|
∫

[st (ζ0,t) · ∇⊥ψv(x⊥)]∇⊥ψ∗
v (x⊥) dx⊥ + c.c.
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Using the vector triple product formula, we have

i [st (ζ0,t) · ∇⊥ψv(x⊥)]∇⊥ψ∗
v (x⊥) + c.c. = i st (ζ0,t) × [∇⊥ψ∗

v (x⊥) × ∇⊥ψv(x⊥)].

Substituting Eq. (5), we have

∇⊥ψ∗
v (x⊥) × ∇⊥ψv(x⊥) = 2i

R(x⊥)R′(x⊥)

x⊥
t̂,

where the prime here means derivative, x⊥ = |x⊥|, and t̂ = sζ (ζ0,t)
|sζ (ζ0,t)| is a unit vector tangential to the vortex line. We have taken

into account that ∇⊥θ = θ̂/x⊥, where θ̂ is a unit vector in the azimuthal direction.
Thus, the left-hand side of Eq. (B2) becomes

−|sζ (ζ0,t)|[st (ζ0,t) × t̂]
∫ ∞

0
2
R(x⊥)R′(x⊥)

x⊥
2πx⊥dx⊥ = −2π [st (ζ0,t) × sζ (ζ0,t)],

where we used the boundary conditions R(0) = 0,R(∞) = 1. Using this in Eq. (B2), we finally obtain Eq. (10).

APPENDIX C: ANALYTICAL EXPRESSION OF THE CUTOFF LENGTH ξ∗ IN TERMS OF THE VORTEX PROFILE R(r)

Based on the definition of ξ∗, we have

ln(1/ξ∗) = μ0 + lim
a→∞

[∫ a

0
f (s)ds − ln(a)

]
.

Using Eq. (25) and definition f (s) = g(s)/s, we get

ln(1/ξ∗) = μ0 + lim
a→∞

∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′

[
2

π

∫ a

0

K
(

4 rr ′
(r+r ′)2+s2

)
√

(r + r ′)2 + s2
ds − ln(a)

]
drdr ′, (C1)

where we have used
∫ ∞

0
dR(r)

dr
dr = 1. Notice that it is known how to compute integrals of the form

∫ ∞

0

K
[

4 rr ′
(r+r ′)2+s2

]
√

(r + r ′)2 + s2
s−ν ds,

after appropriate transformations that lead to tabulated integrals such as the ones found in Ref. [21]. The integral is finite for
1/2 > ν > 0 and has a simple pole at ν = 0. Therefore, we can regularize the integral over s in Eq. (C1) by introducing a factor
s−ν . To keep the integral dimensionless, we choose the following dimensionless regularizing factor: ( s

r+r ′ )
−ν

. One can then
interchange the limits a → ∞ and ν → 0, provided we can cancel the pole at ν = 0 using a regularization of the term ln(a).
The latter can be regularized as follows:

ln(a) = lim
ν→0+

[
ln

(
r + r ′

2

)
+

∫ a

0

(
s

r + r ′

)−p ν 1√
(r + r ′)2 + s2

ds

]
,

where p is a positive number, to be chosen in order to achieve the above-mentioned cancellation of the pole at ν = 0. To achieve
a more familiar presentation of the integral involving the complete elliptic function K, we perform a standard transformation to
obtain

ln(1/ξ∗) = μ0 + lim
a→∞ lim

ν→0+

∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′

⎧⎨
⎩ 2

π

∫ (1+ (r+r′ )2
a2 )−

1
2

0
K

[
4 r r ′

(r + r ′)2
(1 − k2)

]
k−2νdk

(1 − k2)1−ν

− ln

(
r + r ′

2

)
−

∫ a

0

(
s

r + r ′

)−p ν 1√
(r + r ′)2 + s2

ds

⎫⎬
⎭ dr dr ′.

We now interchange the limits, obtaining first

ln(1/ξ∗) = μ0 + lim
ν→0+

∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′

{
2

π

∫ 1

0
K

[
4 r r ′

(r + r ′)2
(1 − k2)

]
k−2νdk

(1 − k2)1−ν
− ln

(
r + r ′

2

)

−
∫ ∞

0

(
s

r + r ′

)−p ν 1√
(r + r ′)2 + s2

ds

}
dr dr ′. (C2)
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The integral involving the elliptic function is now in standard form, tabulated in Ref. [21], Eqs. (4) and (1.a.4), with the result

2

π

∫ 1

0
K

[
4 r r ′

(r + r ′)2
(1 − k2)

]
k−2νdk

(1 − k2)1−ν
=

√
π

2 cos νπ

�(ν)

�(ν + 1/2)
2F1

[
1

2
,ν; 1;

4 r r ′

(r + r ′)2

]
,

where 2F1 is the hypergeometric function. As for the remaining integral, it amounts to∫ ∞

0

(
s

r + r ′

)−p ν 1√
(r + r ′)2 + s2

ds = �(pν/2) �(1/2 − pν/2)

2
√

π
.

We see how the two integrals present simple poles at ν = 0 coming from the � functions. Going back to Eq. (C2), we perform a
Laurent expansion on the terms in the square brackets, obtaining

ln(1/ξ∗) = μ0 + lim
ν→0+

∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′

(
p − 2

2 p ν
+ 1

2

∂

∂z

{
2F1

[
1

2
,z; 1;

4 r r ′

(r + r ′)2

]}
z=0

− ln

(
r + r ′

2

)
+ O(ν)

)
dr dr ′.

We see that in order to cancel the pole we need to choose p = 2. Notice that the O(1) term that survives the limit does not depend
on p, which indicates that the method is consistent. Therefore, we obtain

ln(1/ξ∗) = μ0 +
∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′

(
1

2

∂

∂z

{
2F1

[
1

2
,z; 1;

4 r r ′

(r + r ′)2

]}
z=0

− ln

(
r + r ′

2

))
dr dr ′.

A remarkable relation allows us to simplify this: the term in brackets above is equal to − ln[max(r,r ′)] + ln 2. Also, replacing
μ0 by its definition, Eq. (17), we get

ln(1/ξ∗) = 1

2
+ ln 2 +

∫ ∞

0

[
dR(r)

dr

]2

r dr −
∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r ′)
dr ′ ln[max(r,r ′)] dr dr ′.

The latter double integral can be transformed to a single integral using integration by parts,

ln(1/ξ∗) = 1

2
+ ln 2 +

∫ ∞

0

[
dR(r)

dr

]2

r dr + lim
r→∞

{∫ r

0

[R(r ′)]2

r ′ dr ′ − ln r

}
,

which is the analytical Eq. (12) we have aimed to prove. A numerical application of this formula using Mathematica gives
the same result as the previous fitting method, Eq. (26), namely ξ∗ = 0.341 629 3 ± 10−7, which validates both the numerical
methods and the analytical formula.
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