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Model of heap formation in vibrated gravitational suspensions
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In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps,
stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain
because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper,
as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-
nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication
approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model.
In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps
and convectional flow appear. The obtained results are consistent with those observed experimentally. We also
find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap
formation and climbing of a heap on the slope.
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I. INTRODUCTION

Instability and pattern formation on the free surface of
a fluid have long attracted the interest of physicists. The
capillary force drives the Plateau-Rayleigh instability, in which
a falling stream of fluid breaks up into smaller packets
[1]. When a droplet is suspended in the air by an external
force, a capillary wave is excited and gives the droplet a
polygonal shape [2–4]. A denser fluid on a lighter fluid
shows Rayleigh-Taylor instabilities [5]. Impulsive acceleration
produces the Richtmyer-Meshkov instability [6,7]. Faraday
found the Faraday wave, which is a resonance of the free
surface wave to an external vibration [8]. Flow and surface
instabilities induced by vibration are also studied with the
objective of microfluidics and industrial applications [9–13].
Due to surface acoustic waves on solid boundaries, thin liquid
film is drawn from a sessile droplet, and fingering instability
and a solitonlike wave appear on that film [11].

Even if we focus on a Newtonian fluid, pattern formation
on the free surface includes highly nonlinear and complex
problems, and many researchers are working on them. When
we use complex fluids that contain structures made from
microscopic components, deformation and relaxation of the
structure yield additional effects, and various new instabilities
are reported [14].

In vertically vibrated dense suspensions, instabilities with
an inclined free surface are found, such as heaps, stable holes,
expanding holes, and replicating holes [15–22]. When we
study the mechanism of these instabilities, we easily find that
an intuitive understanding of the mechanism is inadequate.
An inclined free fluid surface is generally difficult to maintain
because surface deformation is suppressed by gravity. Thus,
heaps and holes must resist gravitational pressure to maintain
stable structures. Some nontrivial mechanism should convert
the energy input by vertical vibration into a horizontal driving
force. Similar surface instability and localized structures
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are also found in vibrated viscoplastic fluids and emulsions
[23–25]. Because we cannot observe these phenomena in
Newtonian fluids, it is important to identify the rheological
features that are crucial for such surface instabilities.

In this study, we propose a model of heaps in a vibrated
non-density-matched suspension (gravitational suspension)
[26]. Heaps are investigated in both vibrated dry granular
materials [27–33] and vibrated wet granules [34,35]. In both
cases, the granules are completely immersed in the fluid.
Thus, the free surface is not taken into account. In the
presence of less interstitial liquid, called the capillary state
[15], many granules stay at the liquid-air interface, and we have
to consider the effect of the free surface. In this case, as
we mentioned before, the most crucial problem is how to
maintain steady deformation of the free surface under gravity.
As a candidate for the driving mechanism, we propose a slip
boundary condition at a solid wall [26]. In addition to the
bulk rheological characteristics, such as the yield stress, shear
thinning, and shear thickening, dense suspensions also have a
specific boundary condition at a solid wall [36–38]. If the shear
stress at the wall τw is sufficiently small, dense suspensions
stick to the solid boundary. When τw exceeds a critical value,
dense suspensions slip on the wall. In our model, we assume
that τw is a function of gravity, and a boundary condition
shows slip-nonslip switching in synchronization with vertical
vibration. By applying the lubrication approximation, the time
evolution equation of the fluid thickness is derived.

Under the slip-nonslip switching boundary condition, we
show that the initially flat fluid layer becomes unstable, and
heaps and convectional flow appear. This surface instability
was shown to be analogous to Rayleigh-Taylor instability
[39–42]. From a weak nonlinear analysis, we show that
subcritical pitchfork bifurcation always occurs for a viscous
fluid. These features are consistent with results reported
experimentally [15]. In this paper, viscoelasticity is introduced
to the model proposed in our previous work [26]. In a
viscoelastic fluid, if the relaxation time of the shear stress is
small, almost all the features resemble those of a viscous fluid.
When the relaxation time exceeds a critical value, the dynamics
of the heaps changes crucially. In addition, we found that heaps
can climb a slope, and viscoelasticity enhances the climbing.
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FIG. 1. (Color online) (a) Schematic illustration of the system.
(b, c) Schematic illustration of the boundary condition. (b) When
g(t) > 0, granules slip on the bottom. (c) When g(t) < 0, granules
stick on the bottom.

The validity of the model is examined with the experiment on
the drift motion of a heap.

II. MODEL EQUATIONS

First, we introduce the governing equations of the model
[26]. We consider a fluid layer with thickness h(x,t) on a solid
bottom plate [Fig. 1(a)]. A mixture of granules and interstitial
fluid is treated as a single fluid, with velocity vi , pressure p,
and a deviatoric stress τij . Vertical vibration is represented by
oscillating gravity as g(t) = −g[1 − � sin (ωt)], where � and
ω are the normalized vibration acceleration and vibration fre-
quency, respectively. The conservation of linear momentum is

ρ
Dvi

Dt
= − ∂p

∂xi

+ ∂τij

∂xj

− ∂φ

∂xi

, (1)

φ = ρg[1 − � sin (ωt)]z, (2)

where φ is the gravity potential. Compared to the
compressibility of dry granular media, that of a suspension
is reduced by the drag force of the interstitial liquid and
a capillary force. Thus, we assume incompressibility and
uniformity of the packing fraction in our model, ∂xi

vi = 0.
When the gravitational suspension is vertically vibrated,

even very weak vibration causes the loss of yield stress, and a
viscosity plateau appears at a low shear rate [43]. Thus, we do
not consider the yield stress. Recently, a rheological model of
vibrated granular suspension was proposed [44,45]. They also
tested the model through experiments. That proposed equation
in Ref. [45] consists of a Maxwell-Jeffreys model with two
nonlinear terms. Since only single shear rate is considered,
this model is an equation of scalar variable. When we extend
this model to tensor form, it appears to be a special case
of Oldroyd 8 constant fluid. For simplicity, we neglect the
nonlinear elasticity and use an Oldroyd B constitutive equation
in this paper,

τij + λ1τ
�
ij = 2η(Dij + λ2D

�
ij ), (3)

Dij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (4)

where λ1 and λ2 are the relaxation time and retardation time,
respectively. The overhead symbol

�
represents the upper

convected time derivative. For example, the upper convected
time derivative of a variable X is

X
�

ij = ∂tXij + vk

∂Xij

∂xk

− ∂vi

∂xk

Xkj − ∂vj

∂xk

Xik. (5)

If λ2 = 0, Eq. (3) corresponds to the Maxwell model.

The kinematic boundary condition and force balance
condition at the free surface (at z = h) are

∂th + vx∂xh + vy∂yh = vz, (6)

(−pδij + τij )nj = −κσni, (7)

where ni is the unit outward vector normal to the surface, κ

is the curvature of the surface, and σ is the surface tension
[Fig. 1(a)]. In the two-dimensional (2D) case, n = (nx,nz) and
κ has the form

n = (−∂xh, 1)

(1 + (∂xh)2)1/2
, κ = ∂2

xh

(1 + (∂xh)2)3/2
. (8)

In this paper, we consider the case that the granules are
surrounded by the interstitial fluid as in the experiment of Ref.
[15]. When the packing fraction of the granules is 45%–60%,
the granular layer is completely covered with a free surface
of interstitial fluid. Thus, we used the surface tension of the
interstitial fluid as that of the suspension.

When we consider the steady shear of an ordinary Newto-
nian fluid such as water or oil, we generally adopt a nonslip
condition at a solid boundary. However, dense suspensions
reportedly can slip along a solid boundary depending on
the shear stress [36–38]. Dense suspensions stick to a solid
boundary if the shear stress is sufficiently small but can slip
if the shear stress exceeds a critical value. If we use a step
function θ (x), the slip boundary conditions at z = 0 are

vz = 0, (9)

vi − β0

ηw

τiz

(
1 − τc

τ

)
θ (τ − τc) = 0, (10)

where τ =
√

τ 2
xz + τ 2

yz, i ∈ (x,y), and

θ (x) =
{

1 (x � 0)

0 (x < 0)
. (11)

In Eq. (10), we set the second term to zero at τ = 0. ηw and τc

are the viscosity of the interstitial fluid and the critical shear
stress above which slip occurs, respectively [37]. β0 is called
the slip length, which has a length dimension.

In heaping experiments, granules are generally chosen to be
heavier than the surrounding fluid. In a non-density-matched
suspension, when gravity g(t) acts downward, granules are
pushed to the bottom. On the other hand, when gravity g(t)
acts upward, granules are released from the bottom. Here, we
introduce an important assumption [26]. If the granules are
pushed to the bottom, τc becomes large, and if the granules
are released from the bottom, τc becomes small. We assume
that τc is an increasing function of g(t). For convenience, we
introduce a modified slip length β:

β = β0

(
1 − τc[g(t)]

τ

)
θ (τ − τc[g(t)]). (12)

To make the analysis easier, we use the condition that τc

becomes sufficiently large compared to shear stress when
g(t) < 0, and τc is 0 when g(t) > 0 [Figs. 1(b) and 1(c)].
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The boundary condition, Eq. (10), can be simplified as

vi − β

ηw

τiz = 0, (13)

β = β0θ [g(t)]. (14)

This boundary condition is crucial for our model, which
switches between slip and nonslip conditions in synchroniza-
tion with vertical vibration. In Eq. (14), we assume that the
granular layer touches the bottom plate when gravity acts
downward. However, at high vibration frequency, the motion
of the granular layer could have a phase delay. The necessary
condition for Eq. (14) is estimated in Appendix A.

III. LUBRICATION APPROXIMATION

To avoid solving the full three-dimensional fluid equations,
we apply a lubrication approximation. In the experiment, the
typical size of heaps near the critical acceleration corresponds
to the size of the container. The depth of the fluid layer is
∼1.0 cm and the size of the container is ∼10 cm. Thus, the
aspect ratio is ∼0.1. In the model, the validity of the lubrication
approximation is ensured if the wavelength of the instability
is much larger than the depth of the fluid.

By applying a lubrication approximation, we seek to
construct an equation for the evolution of the fluid layer
thickness h(x,t). Here, we introduce two length scales [42].
One is the mean thickness of the fluid h0, and the other is
the length scale in the horizontal direction determined by the
wavelength λ, which should be larger than h0. We define a
small parameter ε as

ε = 2πh0

λ
. (15)

It is natural to scale z to h0 and x to h0/ε, which is equivalent
to λ. The normalized coordinates are

Z = z

h0
, X = εx

h0
. (16)

We choose a typical velocity U0 in the x direction as a
characteristic velocity of the system. Because the dominant
driving force is gravity in our model, we set U0 = ερgh2

0/η,
which is the typical velocity of a spreading and dewetting
fluid film. If we require continuity for a dimensionless fluid
equation, the normalized velocity should have the form

U = u

U0
, W = w

εU0
. (17)

There are two time scales in this case. The slower time scale
is λ/U0 ∼ h0/(εU0). This corresponds to the time scale of
formation and relaxation of a heap (typically, several seconds).
On the other hand, the faster time scale is the cycle of vibration
2π/ω ∼ 0.01 s. This is much faster than the time scale of heap
formation. Because we seek to know how the surface becomes
unstable with vibration, we choose the faster time scale as that
of the model. We define the scaled time and the corresponding
time derivative as

T = ωt, ∂T = 1

ω
∂t . (18)

We assume that the gradients of the shear stress and pressure
are the dominant terms of the motion equation in the horizontal

direction. This can be expressed as −∂xp ∼ ∂zτxz. Thus, the
normalized pressure and stress are defined as

P = εh0

ηU0
p, �ij = h0

ηU0
τij . (19)

The normalized gravity and surface tension have the forms

G = ερh2
0

ηU0
g, C−1 = ε3σ

U0η
. (20)

Further, h and β are scaled as

H = h(xi,t)

h0
, β̄ = β

h0
. (21)

The system has the following nondimensional numbers:

Re = h0U0

εν
, St = ωh0

εU0
, (22)

De1 = ωλ1, De2 = ωλ2, (23)

We = λ1
U0

h0
, We2 = λ2

U0

h0
, (24)

where Re and St are the Reynolds number and Strouhal
number, respectively, De1 and De2 are the Deborah numbers,
and We1 and We2 are the Weissenberg numbers. The scaled
motion equation is obtained as follows:

ε2ReSt∂T U + ε2Re (U∂XU + W∂ZU )

= −∂XP + ε∂X�xx + ∂Z�xz, (25)

ε3ReSt∂T W + ε3Re (U∂XW + W∂ZW )

= −∂ZP + ε2∂X�xz + ε∂Z�zz + G(T ), (26)

where G(T ) = −G[1 − � sin(T )], and ν = η/ρ. Because a
dense suspension has a high viscosity, the system should be
strongly dissipative. Thus, we introduce Stokes’ approxima-
tion here [46]. We assume ε2ReSt = ωh2

0/ν � 1. Then we
ignore the inertia term in Eqs. (25) and (26):

0 = −∂XP + ε∂X�xx + ∂Z�xz, (27)

0 = −∂ZP + ε2∂X�xz + ε∂Z�zz + G(T ). (28)

The normalized continuity equation is

∂XU + ∂ZW = 0. (29)

The normalized constitutive equations are

L̃1�xx − 2We1�xz∂ZU = −2We2(∂ZU )2 + O(ε), (30)

L̃1�zz = O(ε), (31)

L̃1�xz − We1�zz∂ZU = L̃2∂ZU + O(ε), (32)

where we introduce the following operator:

L̃1 = 1 + De1∂T , L̃2 = 1 + De2∂T . (33)

The exact forms of the normalized constitutive equations are
shown in Appendix B. The boundary conditions are scaled as
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follows. At Z = H ,

− P − ε2�xz∂XH + ε�zz = C−1∂2
XH

[1 + ε2(∂XH )2]3/2
, (34)

[1 − ε2(∂XH )2]�xz + ε∂XH (�zz − �xx) = 0, (35)

∂T H + 1

St
∂X

∫ H

0
UdZ = 0, (36)

where we use a continuity equation to obtain Eq. (36). At
Z = 0,

W = 0, U − β̄
�xz

ηw0
= 0, (37)

where ηw0 = ηw/η is the normalized viscosity of the intersti-
tial fluid. By using the definition U0 = ερgh2

0/η,

G = 1, C−1 = ε2σ

ρgh2
0

, St = ων

ε2gh0
. (38)

The driving forces of this system are gravity and surface
tension, so we let C = O(1) as ε → 0. The term 1/St has
the order O(ε2). However, because we aim to obtain the time
evolution equation of H , we do not neglect 1/St in Eq. (36).
At the leading order of ε, the following equations are obtained
from Eqs. (27)–(37). The scaled motion equation is

0 = −∂XP + ∂Z�xz, (39)

0 = −∂ZP + G(T ). (40)

The scaled constitutive equations are

L̃1�xx − 2We1�xz∂ZU = −2We2(∂ZU )2, (41)

L̃1�zz = 0, (42)

L̃1�xz − We1�zz∂ZU = L̃2∂ZU. (43)

Further, at Z = H ,

−P = C−1∂2
XH, (44)

�xz = 0, (45)

∂T H + 1

St
∂X

∫ H

0
UdZ = 0. (46)

And, at Z = 0,

W = 0, U − β̄
�xz

ηw0
= 0. (47)

To simplify the equations, we introduce a reduced pressure:

P̄ = −[
G(T ) + C−1∂2

X

]
H. (48)

By using P̄ , the pressure and shear stress are obtained from
Eqs. (39) and (40):

P = G(T )Z + P̄ , (49)

�xz = ∂XP̄ (Z − H ). (50)

From Eq. (42), �zz is solved as �zz = �zz(0) exp(−t/De).
This solution of �zz indicates that only the initial perturbation
relaxes to zero. Thus, we assume �zz = 0. Then Eq. (43)

gives

U =
∫ Z

0
dZ′L̃−1

2 L̃1�xz, (51)

where L̃−1
2 is the inverse operator of L̃2,

L̃−1
2 f (t) = et/De2

De2

∫ t

0
dt ′f (t ′)e−t ′/De2 , (52)

where f (t) is a given function. Because the shear stress �xz

is solved in Eq. (50), the velocity U can be calculated from
Eq. (51). W can also be obtained by solving the continuity
equation, Eq. (29):

U = 1

2
L̃−1

2 L̃1(∂XP̄ )Z2 − L̃−1
2 L̃1(H∂XP̄ )Z − β̄

ηw0
H∂XP̄ ,

(53)

W = −∂X

{
1

6
L̃−1

2 L̃1(∂XP̄ )Z3

−1

2
L̃−1

2 L̃1(H∂XP̄ )Z2 − β̄

ηw0
H∂XP̄Z

}
. (54)

By substituting U in Eq. (46), we obtain the evolution equation
of H :

∂T H + 1

St
∂X

{
1

6
H 3L̃−1

2 L̃1∂XP̄

−1

2
H 2L̃−1

2 L̃1(H∂XP̄ ) − β̄

ηw0
H 2∂XP̄

}
= 0. (55)

The dimensional form of the time evolution equation is

η∂th + ∂x

{
1

6
h3L−1

2 L1∂xp̄

−1

2
h2L−1

2 L1(h∂xp̄) − βη

ηw

h2∂xp̄

}
= 0, (56)

where Lj = 1 + λj∂t , j = 1,2. By using Eq. (52) and the
partial integral, the following relation is obtained:

L−1
2 L1f (t) = λ1

λ2
f (t) +

(
1 − λ1

λ2

)
L−1

2 f (t) + λ1

λ2
e−t/λ2f (0),

(57)

where f (t) is a given function. Then Eq. (56) can be
transformed as follows:

η∂th = ∂x

{(
1 − λ1

λ2

)(
−1

6
h3L−1

2 ∂xp̄ + 1

2
h2L−1

2 (h∂xp̄)

)

+
(

λ1

3λ2
h + βη

ηw

)
h2∂xp̄ + λ1

λ2
e−t/λ2X0

}
, (58)

X0 = 1
6h3[∂xp̄]t=0 − 1

2h2[h∂xp̄]t=0. (59)

The above equation does not have a time derivative term on
the right-hand side. Thus, in the numerical simulation, we use
Eq. (58).
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FIG. 2. (Color online) (a) Heap in steady state (blue line) and
time-averaged velocity field (red arrows). (b, c) Spatiotemporal plot of
heaps. Horizontal and vertical axes are time and position, respectively.
Gray scale represents the height of h(x,y). A brighter region indicates
greater height (see color bar). (b) � = 2.2. (c) � = 2.41. (a–c) η =
100 St, σ = 72 dyne/cm, f = 10 Hz, h0 = β0η/ηw = 0.5 cm. We
use a disjoining pressure. See Appendix C. (a) B = 10 000 Pa, hp =
0.005 cm. (b, c) B = 10 Pa, hp = 0.005 cm. (a–c) Initial condition
is h(x,y) = h0 + ξ0

∑n=m

n=1 sin (2πnx/L + φn). L is the system size.
φn is a random number uniformly distributed from 0 to 2π . (a) ξ0 =
0.01 cm, L = 10 cm, m = 5. (b, c) ξ0 = 0.05 cm, L = 100 cm,
m = 10.

A. Newtonian fluid

For a 2D Newtonian fluid, the time evolution equation is
derived by setting λ1 = λ2 = 0 in Eq. (56) [26]:

η∂th = ∂x

{(
1

3
h + η

ηw

β0θ [g(t)]

)
h2∂xp̄

}
, (60)

p̄ = −[
ρg(t) + σ∂2

x

]
h. (61)

We simulate Eq. (60) with a periodic boundary condition.
When the acceleration � is sufficiently large, the flat surface
becomes unstable and a steady deformation grows to form
heaps [Figs. 2(a)–2(c)]. When the acceleration exceeds a criti-
cal value, the valley of the heaps reaches the bottom plate and
the fluid layer shows a rupture. Therefore, ultimately, heaps
are separated by a dry region. Near the critical acceleration, the
size of a heap is comparable to that of the system [Figs. 2(a) and
2(b)]. The shape of the heap is slightly modulated by vibration,
but the positions of the peak and the bottom of the surface do
not change during one vibration cycle. As the acceleration
increases, higher wave numbers become unstable and the size
of the heap decreases [Fig. 2(c)]. The time-averaged behavior
of heaps shows convectionlike flow [Fig. 2(a)]. The flow moves
upward at the peak of the deformation and then downward
from the peak. We also found that the onset acceleration is
independent of the vibration frequency and shows hysteresis.
These results are consistent with experimental observations of
heaping [15].

We check the bifurcation type of a viscous fluid by a weak
nonlinear analysis. Here, we use a model equation for a viscous

fluid proposed in Ref. [26]:

∂th = −∂x

{∫ h

0
dz

∫ z

0
dz′ τxz(z′)

η[τxz(z′)]
+ β

τxz(0)

ηw

h

}
,

τxz = (h − z)
[
ρg(t) + σ∂2

x

]
∂xh, (62)

where η(τxz) could be a function of the shear stress τxz, and
we set η(τxz = 0) = η0. We assume the periodic boundary
condition in the x direction.

First, we calculate the linear stability of the evolution equa-
tion. We linearize Eq. (62) at h = h0 and calculate the time-
averaged growth rate �k defined by hk(T ) = exp(�kT )hk(0):

�k = 1

T

∫ T

0
dt

k2

η0

(
1

3
h3

0 + η0

ηw

βh2
0

)
[ρg(t) − σk2]

= β0h
2
0ρgk2

2πηw

{
−

[
2πh0ηw

3β0η0
+ π − 2 sin−1

(
1

�

)]

×
(

1 + σ

ρg
k2

)
+ 2

√
�2 − 1

}
, (63)

where k is the wave number, and T is a cycle of the vibration.
�k has the same functional form as Rayleigh-Taylor instability
in a thin film [39–42]. In an infinitely large system, the onset
acceleration �c0 satisfies

−π + 2 sin−1

(
1

�c0

)
+ 2

√
�2

c0 − 1 = 2πh0ηw

3β0η0
. (64)

This onset acceleration is independent of the vibration fre-
quency and depends only on η0β0/(h0ηw). This condition of
onset acceleration has the same form as that in Ref. [15].

Next, we consider the case in which the acceleration differs
slightly from the onset acceleration:

� = �c + ε2
2χ�c, ε2 =

√
|� − �c|

�c

, (65)

where χ is the sign of � − �c, and ε2 is a small parameter. We
assume that only one wave number, km, which corresponds
to the system size, has neutral stability and the other wave
numbers are sufficiently stable. When km is too small, huge
numbers of harmonics nkm are very close to neutral stability.
In this case we cannot neglect higher harmonics [47]. To
ignore the higher harmonics of km, ε2 should be smaller than
kmh0. Therefore, we do not treat too-small values of km, and
we assume that kmh0 is around 0.1. Then we expand h in a
perturbation series in powers of ε2:

h = h0 + ε2h1 + ε2
2h2 + · · · . (66)

Next, we expand the viscosity η−1(τxz) in powers of ε2. Owing
to the spatial symmetry, the viscosity η(τxz) is an even function
of τxz. Therefore, the inverse of the viscosity is expanded as

η−1(τxz) = η−1
0 − ε2

2η
−2
0

∂2η(0)

∂τ 2
xz

(τxz1)2 . . . , (67)

τxz1 = (h0 − z)
[
ρgc(t) + σ∂2

x

]
∂xh1, (68)

gc(t) = g[−1 + �c sin (ωt)], (69)

where τxz1 is the shear stress of O(ε2). To simplify the
equations, we replace η0β/ηw with β. First, we introduce the
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following operator:

L0 = ∂t + η−1
0

(
1

3
h3

0 + βh2
0

)[
ρgc(t) + σ∂2

x

]
∂2
x . (70)

Then the equation in O(ε2) is

L0h1 = 0. (71)

From the assumption, the neutral stable solution can be written
as

h1 = Aĥ1(t) exp (ikmx) + c.c., (72)

where A has a complex value, and we set ĥ1(0) = 1. Because
the acceleration differs slightly from the onset acceleration,
the amplitude A evolves very slowly. The time scale τ of A

is O(ε2
2 ), and we introduce the slow time scale τ = ε2

2 t . Thus,
the time derivative should be transformed as

∂t → ∂t + ε2
2∂τ . (73)

The equation in O(ε2
2 ) becomes

L0h2 = −η−1
0 ∂x

{(
h2

0 + 2βh0
)
h1

(
ρgc(t) + σ∂2

x

)
∂xh1

}
. (74)

The specific solution of h2 can be written as

h2 = A2ĥ2(t) exp (2ikmx) + c.c. (75)

Finally, the equation in O(ε3
2 ) becomes

L0h3 = M. (76)

The explicit forms of h1,h2, and M are derived in Appendix D.
The solvability condition requires that M is orthogonal to ĥ1,

1

T

∫ T

0
dtĥ−1

1 M = 0. (77)

Then we obtain the evolution equation of A,

∂τA = αA + γA|A|2, (78)

where the explicit forms of α and γ are shown in Appendix D.
Henceforth, we calculate γ at the leading order in km. Here,
we use the following relation:

�c = �c0 + O
(
k2
m

)
, (79)

where �c0 is the onset acceleration at km = 0 [see Eq. (64)].
Further, h1 and h2 are constant at the leading order in km,

ĥ1 = 1 + O
(
k2
m

)
, (80)

ĥ2 = ρg

6σh0

F2

F1
k−2
m + O(1), (81)

where F1 and F2 are defined as follows:

F1 = 2β0

πh0

√
�2

c0 − 1, F2 = −2π

3
. (82)

By substituting Eqs. (80) and (81) into Eq. (D15), γ can be
written as

γ = ρ2g2h0

12πη0σ

F 2
2

F1
+ O

(
k2
m

)
. (83)

Because F1 is positive, γ is always non-negative. Therefore,
subcritical pitchfork bifurcation always occurs. Notice that γ

FIG. 3. (Color online) (a) Dependence of γ on k calculated from
Eq. (D15). Dashed black line is calculated from Eq. (83). Blue circles:
η = 100 St, and σ = 21 dyne/cm. Green triangles: η = 50 St, and σ =
72 dyne/cm. Red squares: η = 100 St, and σ = 72 dyne/cm. (b) Blue
circles indicate unstable branch of Eq. (60) with periodic boundary
condition in two dimensions. ξ0 is the initial deformation, h = h0 +
ξ0 sin(kmx). Above the symbol, the fluid layer ends in rupture. Below
the symbol, the fluid layer relaxes to become flat. Red solid line is
unstable branch calculated from Eq. (78). η = 50 St, and σ = 72
dyne/cm. (a, b) Parameter values are km = 2π/5 cm−1, f = 10 Hz,
h0 = β0η/ηw = 0.5 cm, and ρ = 1 g/cm3.

does not depend on the non-Newtonian viscosity [Fig. 3(a)].
The unstable branch calculated from Eq. (78) collapses to that
computed in the simulation [Fig. 3(b)]. Thus, without elastic-
ity, the linear and weakly nonlinear regimes are completely
determined by the slip-nonslip switching boundary condition.

B. Viscoelastic fluid

Here, we simulate the evolution equation of a viscoelastic
fluid [Eq. (58)]. We assume λ1 > λ2 and change λ1 to examine
the effects of the elasticity. For small λ1, the numerical result
becomes similar to that for the Newtonian fluid. Above the
critical acceleration, long wavelengths become unstable and
heaps are formed. Once the heaps appear, the valleys of the
heaps reach the bottom plate and a dried region appears. We
also found hysteresis in heap formation. Compared to the
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FIG. 4. (Color online) Bistable states of heaps in viscoelastic fluid. Blue curve indicates time-averaged surface, and red arrows indicate
time-averaged velocity field. Relaxation time λ1 is set to exceed a critical value λc. (a) Small initial surface deformation. Initial condition
is h(x,y) = h0 − 0.05 cos (4πnx/L). L = 10 cm is the system size. (b) Large initial surface deformation. Initial condition is h(x,y) =
h0 − 0.3 cos (2πnx/L). Parameter values are λ1 = 0.15 s, � = 2.37, η = 100 St, σ = 72 dyne/cm, h0 = βη/ηw = 0.5 cm, ρ = 1 g/cm3, and
λ2 = 0.01 s. We use a disjoining pressure. See Appendix C. B = 10 Pa, hp = 0.005 cm.

Newtonian fluid, the amplitude of the oscillation of the shape
becomes large because of the shear thinning viscosity.

When λ1 exceeds a critical relaxation time λc, heap
formation changes crucially. Above λc, the most unstable
wave number kc has a finite value at the onset acceleration
[Fig. 4(a)]. At the onset acceleration of the heap, wave number
km, which corresponds to the system size, is also very close to
neutral stability. Thus, we cannot neglect the growth of wave
number km. We found that the bifurcation type depends on
the wave number. As we measured, the heap of wave number
kc undergoes supercritical pitchfork bifurcation. On the other
hand, the heap of wave number km undergoes subcritical
pitchfork bifurcation. Thus, around the onset acceleration, the
system shows a bistable state. If the initial deformation of the
surface is sufficiently small, the amplitude of wave number
kc dominantly grows and the heaps with kc reach the steady
state [Fig. 4(a)]. In this case, the valleys of the heaps are
shallow and a fluid layer always covers the bottom plate. If
a large deformation with long wavelength is initially made,
the amplitude of wave number km dominantly grows and the
heaps with km reach the steady state [Fig. 4(b)]. In this case,
the valleys of the heaps are deep and a dried region appears.

Next, we calculate the linear stability of a viscoelastic
fluid. Equation (58) is linearized at h = h0, and a Fourier
transformation gives

ηL2∂tξk = k2

3
h3

0L1{[ρg(t) − σk2]ξk}

+ k2 η

ηw

L2
{
βh2

0[ρg(t) − σk2]ξk

}
, (84)

where ξk is a small deformation with wave number k. Using
Floquet’s theorem, we numerically calculate the time-averaged
growth rates from Eq. (84). Equation (84) has two growth rates,

and one of them always has a negative value. Here, we set the
larger growth rate as �k . The dependence of �k on k at the
onset acceleration is shown in Fig. 5(a). As λ1 increases, �k

becomes flat at around k = 0. There exists a critical relaxation
time λ1 = λc above which the critical wave number kc has a
finite value. Figures 5(b) and 5(c) show the onset acceleration
and critical wave number, respectively, of a sufficiently large
system (system size is 104 cm). For a very large system, below
the critical relaxation time λc the onset acceleration and critical
wave number are identical to those of a Newtonian fluid. Above
λc, the critical wave number increases as kc ∼ (λ1 − λc)1/2 and
the onset acceleration decreases.
Next, we estimate the critical relaxation time λc. For simplicity
we consider only the case λ2 = 0. Then the time-averaged
growth rate �k has the form

�k = 1

T

∫ T

0
dt

k2
(

1
3h3

0 + η

ηw
βh2

0

)
[ρg(t) − σk2]

η − λ1
k2

3 h3
0[ρg(t) − σk2]

. (85)

The analytical expression of �k is rather complicated. Thus,
we do not show it here. However, we note that the onset
acceleration and critical wave number are independent of
the frequency f . Henceforth, we consider an infinitely large
system and assume that the critical wave number is sufficiently
small around λc. Then only small k is considered, and we
expand �k in the series of k. Equation (85) contains only k2

terms. Thus, �k is a function of k2,

�k = αk2k
2 + αk4k

4 + αk6k
6 + · · · . (86)

We then calculate αk2,αk4, and αk6. αk2 is identical to that of a
viscous fluid,

αk2 = lim
k2→0

(
�k

k2

)
= ρg

η
(−B + A), (87)

FIG. 5. (Color online) (a) Dependence of �k on k at the critical acceleration �c. λ2 = 0.01 s. Red solid line: viscous fluid. Green dashed
line: λ1 = 1.135 × 10−1 s. Blue squares: λ1 = 1.150 × 10−1 s. Magenta circles: λ1 = 1.155 × 10−1 s. (b) Dependence of �c on λ1. Red circles:
λ2 = 0.001 s. Green triangles: λ2 = 0.01 s. Blue squares: λ2 = 0.02 s. (c) Dependence of kc on λ1. Red circles: λ2 = 0.001 s. Green triangles:
λ2 = 0.01 s. Blue squares: λ2 = 0.02 s. (a–c) Parameter values are η = 100 St, σ = 72 dyne/cm, h0 = βη/ηw = 0.5 cm, and ρ = 1 g/cm3.
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where A and B are defined as follows:

A = β0h
2
0η

πηw

√
�2 − 1, (88)

B = 1

3
h3

0 + β0h
2
0η

ηw

[
1

2
− 1

π
sin−1

(
1

�

)]
, (89)

and αk4 is calculated as follows:

αk4 = lim
k2→0

∂

∂k2

(
�k

k2

)
= −B

σ

η

+ λ1h
3
0

3

(
ρg

η

)2{(
1 + �2

2

)
B − 3

2
A

}
. (90)

Similarly, αk6 is calculated as follows:

αk6 = 1

2
lim
k2→0

∂2

∂k2∂k2

(
�k

k2

)

= −2

3
(A − B)

λ1ρgσ

η2
+ 1

9

{(
11

6
+ 2

3
�2

)
A

−
(

1 + 3

2
�2

)
B

}
λ2

1h
6
0

(
ρg

η

)3

, (91)

where αk2 is independent of λ1, so λ1 affects only αk4 and
αk6. For a viscous fluid, αk4 is always negative. Thus, for an
infinitely large system, the condition αk2 = 0 gives the onset
acceleration. If αk4 becomes positive at αk2 = 0, the onset
acceleration should change and the critical wave number has
a finite value. The condition αk4 > 0 with αk2 = 0 gives the
critical relaxation time λc:

λ1 > λc = 6ση

ρ2g2h3
0

(
�2

c0 − 1
) , (92)

where �c0 is the onset acceleration of a Newtonian fluid
[Eq. (64)]. As shown in Fig. 6(a), λc calculated from Eq. (92)
is in good agreement with λc directly computed from Eq. (85).
If λ1 − λc is small and positive, the critical wave number kc

is given by k2
c = αk4/(2αk6). When we ignore the deviation of

�c from �c0, kc is written as

k2
c = 9

10

η

ρgλ2
ch

3
0

(λ1 − λc) = 1

40

ρ3g3h3
0

σ 2η

(
�2

c0 − 1
)2

(λ1 − λc).

(93)

We confirm this relation by numerical simulation [Fig. 6(b)].
For λ2 �= 0, λc is an increasing function of f and λ2 [Fig. 6(c)].
If kch0 � 1 is satisfied, the lubrication approximation is valid.
From Eqs. (92) and (93), a large viscosity and small thickness
of the fluid yield a large λc and small kc. Therefore, for a
highly viscous thin film, the lubrication approximation can be
applied to a viscoelastic fluid having a large relaxation time.

IV. CLIMBING OF A HEAP

In this section, we focus on the dynamics of an isolated
heap. First, we do not consider the elasticity, the effect of which
is discussed later. We apply our model to the case in which
the bottom plate is slightly inclined from the horizontal axis.
In the model, the inclination of the bottom can be expressed
by adding horizontal gravity Gh(T ) to Eq. (39). Therefore, we
need only to modify the reduced pressure [Eq. (61)],

p̄ = −[
ρg(t) + σ

(
∂2
x + ∂2

y

)]
h − ρgh(t)x + ψ, (94)

where we introduce the disjoining pressure ψ to treat
the contact line (see Appendix C). The gravities are
g(t) = cos θbg[−1 + � sin(ωt)] and gh(t) = sin θbg[−1 +
� sin(ωt)], where θb is the angle of inclination from the
x axis. In the simulation, we apply a periodic boundary
condition and place a heap as an initial condition. As shown
in Figs. 7(a)–7(c), the heap starts to climb the slope as the
acceleration increases. When g(t) and gh(t) are both negative,
the boundary condition on the bottom is nonslip. On the other
hand, when both gravities are positive, the boundary condition
on the bottom is slip. Therefore, it is easy for the heap to
flow when the gravities are positive. Thus, a heap starts to
climb the slope when the acceleration becomes sufficiently
large. Climbing of a heap reminds us of vibration-induced
climbing of a droplet [48], where it indicates the importance
of a nonlinear friction law between the droplet and a bottom
plate.

A time series of the velocity of the centroid Vg is shown in
Fig. 7(d). For all the cases, Vg oscillates around a mean value.
The oscillation comes from the contact line dynamics. The
time average of Vg is shown in Fig. 7(e). As the acceleration
increases, Vg monotonically increases. When the angle of the
slope θb is small, the heap sometimes adheres to the bottom
plate because of the force from the contact line. For θb = 0.5◦,

FIG. 6. (Color online) (a) Dependence of λc on parameter values. Horizontal and vertical axes are λc calculated from Eq. (92) and λc

directly computed from Eq. (85), respectively. Blue circles: σ = 72 dyne/cm, η = 100 St. h0 is varied from 0.1 to 1 cm. Green squares:
σ = 72 dyne/cm, h0 = 0.5 cm. η is varied from 10 St to 100 St. Red crosses: η = 100 St, h0 = 0.5 cm. σ is varied from 10 dyne/cm to
100 dyne/cm. (b) Dependence of critical wave number kc on λ1 around λc. Black dashed line is calculated from Eq. (93). Blue squares: h0 = 1
cm, σ = 72 dyne/cm. Green triangles: h0 = 0.5 cm, σ = 21 dyne/cm. Red circles: h0 = 0.5 cm, σ = 72 dyne/cm. η is fixed at 100 St.
(c) Dependence of λc on frequency and λ2. Red squares: λ2 = 0.000 1 s. Green crosses: λ2 = 0.001 s. Blue circles: λ2 = 0.01 s. Parameter
values are h0 = 0.5 cm, σ = 72 dyne/cm, η = 100 St. (a, b, c) We set β0η/ηw = h0.
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FIG. 7. (Color online) Climbing of a heap. (a–c) The bottom wall is inclined at an angle θb from the x axis. The heap (blue line) shows
directional motion. The dashed line is the initial condition. θb = −2◦. (a) � = 2.6. (b) � = 3.05. (c) � = 3.2. (d) Time series of Vg . (e) Velocity
of the centroid of a heap. The bottom plate is slightly inclined. A positive velocity indicates that a heap climbs a slope. (f) Dependence of
C0/ sin θb on �. (g) Dependence of S0 on �. (h) Dependence of Vg/ sin θb on �. (e–h) Purple crosses: θb = 0.5◦. Blue squares: θb = 1.0◦. Green
triangles: θb = 1.5◦. Red circles: θb = 2.0◦. (a–h) f = 10 Hz, ρ = 1 g/cm3, η = 100 St, σ = 72 dyne/cm, h0 = βη/ηw = 0.5 cm, B = 10
Pa, hp = 0.005 cm.

Vg becomes 0 between � = 3.0 and � = 3.15. If we increase
the disjoining pressure, the heap adheres to the bottom plate for
a wider range of � and θb. Except at small θb, the acceleration
at which the heap starts to climb does not depend on θb.

Next, we analytically calculate Vg from the time evolution
equation of h. We assume a large system and an isolated heap.
The system size 2L is large compared to the size of a heap. We
assume that at a distance from the heap, a flat precursor fluid
film covers the bottom plate,

h(|x| 
 1) = hp � 1, ∂xh(|x| 
 1) = 0, (95)

where hp is defined in Appendix C. By using the governing
equation [Eq. (60)], the velocity of the centroid xg is written
as

∂txg = 1

V

∂

∂t

∫ L

−L

xh(x,t)dx

= 1

ηV

∫ L

−L

x∂x

{(
1

3
h3 + η

ηw

βh2

)
∂xp̄

}
dx

= −1

ηV

∫ L

−L

{(
1

3
h3 + η

ηw

βh2

)
∂xp̄

}
dx, (96)

where V = ∫ L

−L
h(x,t)dx is the total volume of the fluid. By

using the relation
∫ L

−L
hn∂xhdx = 0, the above equation is

reduced to

∂txg = 1

ηV

∫ L

−L

(
1

3
h3 + η

ηw

βh2

)[
σ∂3

xh + ρgh(t)
]
dx. (97)

If the bottom plate is inclined, the time-averaged velocity has
the form

Vg = 1

TL

∫ t0+TL

t0

∂t ′xgdt ′ = σ

η
C0 + ρg

η
sin θbS0, (98)

where TL is large compared to the vibration cycle T . C0 and
S0 are defined as

C0 =
〈

1

V

∫ L

−L

dx

(
1

3
h3 + η

ηw

βh2

)
∂3
xh

〉
t

, (99)

S0 =
〈

1

V

∫ L

−L

dx

(
1

3
h3 + η

ηw

βh2

)
× [−1 + � sin(ωt)]

〉
t

,

(100)

where 〈...〉t is the time average over TL. Thus, if the motion
of the heap reaches a steady state, C0 and S0 have constant
values and 〈Vg〉t becomes constant. The first term in Eq. (98)
comes from the capillary force, and the second term comes
from the horizontal gravity. If the horizontal gravity is 0,
the steady shape of the heap, hs , should be symmetric with
respect to the peak position of the heap. In this case, C0 = 0
is satisfied. When the horizontal gravity is applied, the shape
of the heap deviates from a symmetric shape, h = hs + δh. If
the inclination angle θb is small, so that gh � 1, δh should
be proportional to gh ∝ sin θb. Because only the integration of
the asymmetric part δh has a finite value in Eq. (99), C0 is
expected to be proportional to sin θb. As shown in Fig. 7(f), C0

is proportional to sin θb, except when the heap adheres to the
bottom plate. Because the asymmetric part δh is averaged out
in Eq. (100), S0 is independent of sin θb [Fig. 7(g)]. Eventually,
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FIG. 8. (Color online) Effect of elasticity on climbing. (a) Velocity of the centroid of a heap. A positive velocity indicates that a heap climbs
a slope. Blue squares: velocity of a heap with elasticity. λ1 = 0.1 s, λ2 = 0.01 s. Red circles: velocity of a heap without elasticity (Newtonian
fluid). (b) Steady shape of the heap in faster branch. (c) Steady shape of the heap in slower branch. (d) Blue circles indicate onset acceleration
at which heap starts to climb. λ2 = 0.01 s. Red square indicates data point of Newtonian fluid. (a–d) f = 10 Hz, ρ = 1 g/cm3, η = 100 St,
σ = 72 dyne/cm, h0 = βη/ηw = 0.5 cm, B = 10 Pa, hp = 0.005 cm, θb = 2◦.

Vg is proportional to sin θb, and Vg/ sin θb converges on a single
curve [Fig. 7(h)]. This is why the acceleration at which the heap
starts to climb does not depend on the angle of the slope θb.

Next, we measure the effect of the elasticity on the climbing
speed. We calculate Eq. (58) using Eq. (94). As the relaxation
time λ1 increases, the onset acceleration �clm at which the
heap starts to climb decreases [Figs. 8(a) and 8(d)]. When
the acceleration becomes high, the steady shape of the heap
changes discontinuously. At lower acceleration, the heap has
one peak [Fig. 8(b)]. At high acceleration, the number of
peaks becomes 2, and the climbing velocity suddenly decreases
[Fig. 8(c)]. We found that the hysteresis of these two branches
is narrow [Fig. 8(a)].

V. DRIFT DUE TO HORIZONTAL VIBRATION

In this section, we consider the case that horizontal vibration
is applied onto an isolated heap. We use the same model
equation, boundary condition, and initial condition as those
in the previous section. Only the gravity and horizontal
gravity in Eq. (94) are modified as g(t) = g[−1 + � sin(ωt)]
and gh(t) = g�h sin(ωt − ϕh), where �h and ϕh are the
normalized acceleration and phase shift of the horizontal
vibration, respectively. Here, we consider only the case that
the frequency of horizontal vibration is identical to that of the
vertical vibration. The elasticity is not considered. As shown in
Fig. 9(a), a heap starts to drift when the horizontal vibration is
sufficiently large. The time series of the velocity of the centroid
resembles that of a climbing heap [Fig. 7(d)]. The velocity of
the centroid is nearly constant but slightly oscillates around
a mean value. When the phase shift ϕh is around 0 and 2π ,
a heap drifts toward a positive direction. On the other hand,
around ϕh = π , the heap drifts toward a negative direction.
When �h is small or ϕh is around π/2 and 3π/2, the heap does
not drift because of the force from the contact line. For large
�h, the front contact line moves faster than the rear [Fig. 9(b)],
and the flat liquid layer remains after the droplet.

Next, we briefly checked the drift of a heap in an
experiment. For suspensions, we used mixtures of titanium
beads and water. The diameter of titanium beads is around
200 μm. We used a narrow acrylic box (10 cm length ×
1 cm width × 10 cm height) for quasi-2D systems. An
initial small heap was subjected to vertical sinusoidal vibration
[vertical position z(t) = A sin 2πf t] using an electromagnetic

vibration system. The motion of the heap was recorded by
a high-speed camera. The description of the experimental
apparatus is found in Ref. [18]. We simultaneously measured
the vibration acceleration along the x, y, and z axis by a
time-resolved three-axis acceleration meter. We found that
the vibrator had horizontal vibration of x and y directions
in addition to the z direction. They can be well fitted by
g�i sin(2πf t − ϕi), i = x,y. �i and ϕi depended on the
vertical acceleration � and vibration frequency f . Because
the heap moved only along the long axis of the container,
we defined the horizontal vibration along the long axis of
the container as gh(t) = g�h sin(ωt − ϕh). Then, by rotating
the acrylic box around the z axis, we varied the horizontal
vibration along the long axis of the container, �h. The observed
motions of the heap are shown in Figs. 10(a)–10(c). When �h

FIG. 9. (Color online) (a) Drift velocity of a heap driven by
horizontal vibration. Blue squares: �h = 0.035. Green triangles:
�h = 0.07. Red circles: �h = 0.14. (b) Shape of a heap under large
horizontal acceleration. �h = 1.00, ϕh = 0. Blue solid line: shape
of a heap at t = 32 s. Red dashed line: initial shape of a heap.
Black dashed arrow indicates a position of rear contact line at t=32
s. (a, b) f =10 Hz, ρ=1 g/cm3, η = 100 St, σ = 72 dyne/cm,
h0 = βη/ηw = 0.5 cm, B = 100 Pa, hp = 0.005 cm.
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FIG. 10. Drift of a heap in quasi-2D container. Dashed line indicates the position of the contact line. (a) �h = 1.04, ϕh = 3.62 rad,
f = 70 Hz. (b) �h = 0.21, ϕh = 0.78 rad, f = 70 Hz. (c) �h = 1.26, ϕh = 5.13 rad, f = 80 Hz. (a–c) � = 10.1. The total volume of the
suspension is 1.66 cm3. The packing fraction of the titanium beads is 58%.

was sufficiently large, a heap drifted with a constant speed,
and the front contact line moved faster than the rear [Figs.
10(a) and 10(c)]. Around ϕh = 0 and 2π , the heap drifted
toward a positive direction [Fig. 10(c)]. Around ϕh = π , the
heap drifted toward a negative direction [Fig. 10(a)]. If �h

was sufficiently small, the heap stuck to the walls and did
not move [Fig. 10(b)]. We confirmed that around ϕh = π/2,
the heap was almost stationary even for large �h > 1.5. We
varied the frequency from 60 to 100 Hz. Then we obtained the
same tendency. This experimental result is in good agreement
with our simulation results [Figs. 9(a) and 9(b)]. Compared
to the previous work [15] and our simulation (Fig. 9), the
accelerations � and �h in this experiment are rather large.
This is because the heap formation and horizontal drift are
strongly suppressed by the narrow geometry. If we used a large
container such as a cylindrical container with 10 cm diameter,
the horizontal drift was observed with much smaller � and �h

in our preliminary experiment. Drift due to horizontal vibration
is also found for a Newtonian droplet [49]. For the Newtonian
droplet, contact line dynamics is crucial for the drift motion.
The contact angle of the droplet changes more than 90 deg
during one vibration cycle. In our case, a heap drifted even
when the change of contact angle was less than 5 deg. Thus,
the dynamics of the contact line is expected to have a minor
effect. Similar to the drift motion of a dry granular bed on a
vibratory conveyor [50–52], we consider that dependence of
the slippage on vertical vibration is crucial, as we modeled in
Eq. (14).

VI. DISCUSSION AND CONCLUSION

We have proposed a model to explain how the surface
of a vibrated dense suspension becomes unstable under a
slip-nonslip switching boundary condition [26]. As shown
in Figs. 11(a) and 11(b), when gravity acts downward, it
generates a flow that relaxes the surface deformation so that
the surface becomes flat. On the other hand, when gravity acts
upward, it generates a flow that enhances the deformation of
the surface, similar to Rayleigh-Taylor instability. Because the
time-averaged gravity acts downward, the surface deformation

relaxes and the surface becomes flat under an ordinary
boundary condition. However, if the boundary condition
switches between nonslip and slip, in synchronization with
gravity, downward gravity may cause slower flow than upward
gravity, depending on the magnitude of the acceleration.
The flat surface would then become unstable, similar to
Rayleigh-Taylor instability, and steady flow would appear at
the boundary. As we show in a weak nonlinear analysis, for a
viscous fluid, the rheological characteristics of the bulk fluid
are less important, and the boundary condition determines
most of the dynamics, especially near the critical point.

We showed that our model can be applied to a viscoelastic
fluid if we consider the relaxation and retardation of stress.
As we mentioned, synchronization between switching of
the boundary condition and gravity is crucial to the surface
instability. Thus, the relaxation and retardation of gravitational
pressure might prevent the surface instability. However, a small
relaxation time does not affect the onset of heap formation.
Furthermore, a large relaxation time decreases the onset
acceleration of heaping. Thus, a large relaxation time enhances
the surface instability. The reason for this decrease in the

FIG. 11. (Color online) Instantaneous flow field under downward
and upward gravity. Blue curve and red arrows indicate surface of the
fluid and flow field, respectively. (a) When g(t) < 0, velocity is 0 on
the bottom. (b) When g(t) > 0, velocity is nonzero on the bottom.
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onset acceleration can be understood by comparing the time-
averaged growth rate of a viscous fluid and that of a viscoelastic
fluid. By comparing Eqs. (63) and (85), the time-averaged
growth rate of a Maxwell fluid can be expressed as

�k = 1

T

∫ T

0
dt

k2

ηeff

(
1

3
h3

0 + η

ηw

βh2
0

)
[ρg(t) − σk2], (101)

where ηeff is the effective viscosity of the Maxwell fluid:

ηeff = η − λ1k
2h3

0

3
[ρg(t) − σk2]. (102)

The effective viscosity ηeff is a decreasing function of the
gravity g(t). When gravity acts upward, the flow enforces the
deformation of the surface. Simultaneously, the viscosity of
the Maxwell fluid decreases, so the fluid forms heaps easily.
Thus, a large relaxation time decreases the onset acceleration.
This effective viscosity is based on linear stability analysis.
However, if this shear thinning behavior holds in the nonlinear
regime, it also enhances the climbing of the heap. When
gravity acts upward, the viscosity decreases so the heap
climbs the slope easily.

In this paper, we assume the slip-nonslip switching bound-
ary condition. Ideally, this should be determined by the local
dynamics of the granules near the bottom plate. Both in single-
and multiparticle systems, bouncing problems on a vibrating
surface have been investigated [53–55]. In order to presume
a boundary condition in a more realistic manner, we need to
understand the detailed behavior of particles in slurry on a
vibrating plate. Another important issue is to experimentally
confirm the change of the slippage due to the vibration. The slip
length is expected to be a function of gap between assembly
of granules and a bottom plate. To validate our model, it is
required to measure gap size and slip velocity of granules
during one vibration cycle.

Our model proposes a mechanism of migration of an
isolated domain in addition to surface deformation. For
dry granular beds, a combination of vertical and horizontal
vibrations causes migration of granules [50,51]. This system
is called a vibratory conveyor. The dynamics of granules
on a vibratory conveyor is modeled based on the bouncer
model [50]. In the model, maximum static frictional force
is assumed to be proportional to the gravity g(t), and then
slippage depends on the gravity. The model is validated in
experiments by measuring the stability and drift speed of a
granular bed on the vibratory conveyor [50,52]. Thus, our
model could be also tested through the precise measurement
of a heap with horizontal vibration.
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APPENDIX A: BOUNCING GRANULAR LAYER

In Eq. (14), we assume that the granular layer touches
the bottom plate when gravity acts downward. However, at
high vibration frequency, the motion of the granular layer
could have a phase delay. In this Appendix, we estimate the
necessary condition for Eq. (14) based on the simple model of a

bouncing granular layer. We only consider the vertical motion
of a granular layer in massless fluid. Similar to previous works,
we consider the granular layer as an elastic plug of porosity
[35]. In Ref. [35], the motion equation of the granular layer
is modeled as the bouncer model with viscous drag force.
Here, we introduce the elastic force which comes from the
elastic property of a granular layer and free surface. Because
the granular layer is surrounded by a viscous fluid, we assume
that the collision between the granular layer and the bottom
plate is completely inelastic. Then the granular layer stays
on the bottom after the collision. When the gravity becomes
positive (� sin ωt > 1), the granular layer detaches from the
bottom plate. Thus, the detaching time t0 satisfies

t0 = 1

ω
sin−1

(
1

�

)
. (A1)

Then the model equations are

mz̈ + γbż + kbz = mg(−1 + � sin ωt), (t0 � t � t1), (A2)

z = 0, otherwise, (A3)

where m,γb, and kb are constant parameters, z is the vertical
position of the granular layer measured from bottom plate, and
z = 0 means that the granular layer is touching on the bottom
plate. The granular layer detaches from the bottom plate at
t = t0 and touches the bottom plate at t = t1. The terms of
the left-hand side in Eq. (A2) are the inertia term, viscous
drag force, and elastic force, respectively. The term of the
right-hand side is gravity, including the inertial force due to
vibration. Here, we consider the strongly dissipative case and
neglect the inertia term mz̈. Then the motion equation is

dz

dT
+ kb

γbω
z = mg

γbω
(−1 + � sin T ), (T0 � T � T1), (A4)

where T = ωt . Equation (A4) gives

z(T ) = mg

γbω
e−αT [F (T ) − F (T0)], (A5)

F (T ) = eαT

{
− 1

α
+ 1

α2 + 1
(α sin T − cos T )

}
, (A6)

where α = kb/(γbω). The touching time T1 is given by z(T1) =
0, and then F (T1) = F (T0). T1 is numerically calculated as
shown in Fig. 12. As α becomes large, T1 approaches π − T0.
Note that gravity g(t) changes its sign at t = (π − T0)/ω,
g[(π − T0)/ω] = 0. Thus, Eq. (14) is valid when α 
 1. The
vibration frequency f must satisfy f � kb/(2πγb). When α

is sufficiently small, the grain motion has a phase delay with
respect to vibration. This delay has to be taken into account.

APPENDIX B: SCALED CONSTITUTIVE EQUATION

Here we define the scaled deformation rate tensor D̄ij as

D̄xx = ε∂XU, (B1)

D̄xz = (∂ZU + ε2∂XW )/2, (B2)

D̄zz = ε∂ZW. (B3)
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FIG. 12. (Color online) Touching time T1 as a function of α =
kb/(γbω). Black dashed line indicates π − T0. Red circles: � = 1.5.
Green triangles: � = 3.0. Blue squares: � = 9.0.

The upper convective derivatives of the shear stress and
deformation rate are normalized as

λiX
�

xx = Dei∂T Xxx − 2Wei∂ZUXxz

+ εWei(U∂XXxx + W∂ZXxx − 2∂XUXxx), (B4)

λiX
�

xz = Dei∂T Xxz − Wei∂ZUXzz + εWei(U∂XXxz

+W∂ZXxz − ∂XUXxz − ε∂XWXxx − ∂ZWXxz),

(B5)

λiX
�

zz = Dei∂T Xzz + εWei(U∂XXzz + W∂ZXzz

− 2ε∂XWXxz − 2∂ZWXzz), (B6)

where λi (i = 1,2) are the relaxation times, and Xlm is the
scaled shear stress �lm and scaled deformation rate D̄lm.

Wei and Dei (i = 1,2) are the Weissenberg numbers and
Deborah numbers, respectively. Then the scaled constitutive
equation is

�ij + λ1�
�

ij = 2(D̄ij + λ2D̄
�

ij ), (B7)

where i,j = x,z.

APPENDIX C: CONTACT LINE

If a completely dry region h = 0 appears, we have to
consider the contact line. Here we use the disjoining pressure ψ

to avoid complete dewetting and treat the contact line without
a singularity [42,56],

ψ = B

[(
hp

h

)3

−
(

hp

h

)4
]
, (C1)

where hp is the thickness of the precursor layer. The disjoin-
ing pressure contains intermolecular attractive and repulsive
forces. The local disjoining energy has a minimum at hp. In
this model, we assume that a very thin precursor fluid layer
spreads out around the contact line, and the bottom plate is
always covered by the fluid. The thickness of the precursor
layer hp is set to be larger than that in the experimental result
because of a computational limitation [57]. The equilibrium
contact angle θe is given by the following relation [56]:

B = 6σ

hp

(1 − cos θe). (C2)

When we introduce the disjoining pressure, the reduced
pressure [Eq. (48)] is modified as

p̄ = −[
ρg(t) + σ

(
∂2
x + ∂2

y

)]
h + ψ. (C3)

APPENDIX D: WEAK NONLINEAR ANALYSIS

In this Appendix, we derive h1, h2, M , α, and γ . From Eqs. (71) and (72), ĥ1 satisfies

∂t ĥ1 −
(

1

3
h3

0 + βh2
0

)
�(km)ĥ1 = 0, (D1)

�(k) = k2

η0
[ρgc(t) − σk2]. (D2)

As a result, ĥ1 is solved as

ĥ1 = exp

{∫ t

0
dt

(
1

3
h3

0 + βh2
0

)
�(km)

}
. (D3)

From Eqs. (74) and (75), the equation for ĥ2 is obtained as

∂t ĥ2 − (
1
3h3

0 + βh2
0

)
�(2km)ĥ2 = 2

(
h2

0 + 2βh0
)
�(km)ĥ2

1.

(D4)

To make the calculation clear, we introduce following variables:

S(t) = (
1
3h3

0 + βh2
0

)
�(2km), (D5)

R(t) = 2
(
h2

0 + 2βh0
)
�(km)ĥ2

1. (D6)
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ĥ2 has a time-periodic part (particular solution) and a relaxing part (general solution). The relaxing part is less important, and
we ignore it. The time-periodic part is calculated if we apply the condition ĥ2(nT ) = ĥ2[(n − 1)T ]. Then, ĥ2 is

ĥ2(t) = exp

(∫ t

0
dtS(t)

){
It +

∫ t

0
dt ′R(t ′) exp

(
−

∫ t ′

0
dt ′′S(t ′′)

)}
. (D7)

It is defined as follows:

It = exp (ζT )

1 − exp (ζT )

∫ T

0
dt ′R(t ′) exp

(
−

∫ t ′

0
dt ′′S(t ′′)

)
, (D8)

ζ = −6k4
mh3

0σ

πη0

∫ 2π

0
dx

(
1

3
+ β(x)

h0

)
. (D9)

The equation of O(ε3
2 ) becomes

L0h3 = M, (D10)

where M is defined as

M = −∂τAĥ1 + η−1
0 k2

m

∂β

∂�
h2

0χ�c�(km)ĥ1A + η−1
0 k2

m

(
1

3
h3

0 + βh2
0

)
ρgχ�c sin (ωt)ĥ1A + 1

2

(
h2

0 + 2βh0
)
�(2km)ĥ2ĥ1A|A|2

−(
h2

0 + 2βh0
)
�(km)ĥ2ĥ1A|A|2 + (h0 + β)�(km)ĥ3

1A|A|2 − 3η0h
5
0

5k2
m

∂2η(0)

∂τ 2
xz

[�(km)ĥ1]3A|A|2. (D11)

The solvability condition requires that M is orthogonal to ĥ1,

1

T

∫ T

0
dtĥ−1

1 M = 0. (D12)

Then we obtain the evolution equation of A,

∂τA = αA + γA|A|2, (D13)

where α and γ are

α = 1

T

∫ T

0
dt χ�c

{
∂β

∂�
h2

0�(km) +
(

1

3
h3

0 + βh2
0

)
k2
m

ρg

η0
sin (ωt)

}
, (D14)

γ = 1

T

∫ T

0
dt

{
1

2

(
h2

0 + 2βh0
)
�(2km)ĥ2 − (

h2
0 + 2βh0

)
�(km)ĥ2 + (h0 + β)�(km)ĥ2

1 − 3η0h
5
0

5k2
m

∂2η(0)

∂τ 2
xz

[�(km)]3ĥ2
1

}
. (D15)
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