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in the kinematic approximation

N. V. Antonov" and M. M. Kostenko'
Chair of High Energy Physics and Elementary Particles, Department of Theoretical Physics, Faculty of Physics,
Saint Petersburg State University, Ulyanovskaja 1, Saint Petersburg—Petrodvorez, 198904 Russia
(Received 30 July 2015; published 16 November 2015)

The field-theoretic renormalization group and the operator product expansion are applied to the model
of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed
by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance
o 8(t — t")k*=¢>, where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints,
the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects
of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated
as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations
possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and
its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y.
The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields
(“operators” in the quantum-field terminology), can be systematically calculated as series in y. The practical
calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions.
It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the
perturbation theory presented here are manifestly Galilean covariant.
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I. INTRODUCTION

Much attention has been attracted to the problem of
intermittency and anomalous scaling in developed magne-
tohydrodynamic (MHD) turbulence; see, e.g., Refs. [1-29]
and references therein. It has long been known that in the
so-called Alfvénic regime, the MHD turbulence demonstrates
a behavior similar to that of the usual fully developed fluid
turbulence: a cascade of energy from the infrared (IR) range
towards smaller scales, where the dissipation effects dominate,
and a self-similar (scaling) behavior of the energy spectra in the
intermediate (inertial-convective) range. Moreover, a strongly
non-Gaussian (intermittent) character of the fluctuations in the
MHD turbulence is much more strongly pronounced than in
ordinary turbulent fluids or in the passive scalar problem.

The solar wind, a conducting fluid expanding into the
interplanetary space, covers a wide range of spatial and
temporal scales and thus provides a kind of “laboratory”
in which various models of the MHD turbulence can be
tested [4—16]. In solar flares, highly energetic and anisotropic
large-scale events (with the magnetic fields as intense as
500 Gauss) coexist with small-scale stochastic fluctuations
and coherent structures, finally responsible for the dissipation.
Thus modeling the way the energy is distributed and conveyed
along the scales and eventually dissipated is a difficult task.

The intermittency strongly modifies the IR behavior of the
higher-order correlation functions, leading to anomalous scal-
ing with infinite sets of independent anomalous exponents [7].

A simplified description of the situation was proposed
in Ref. [6]: the large-scale field Bf) = n; B dominates the
dynamics in the distinguished direction specified by a unit
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constant vector n = {n;}, while the fluctuations in the per-
pendicular plane are described as nearly two dimensional.
This picture allows for precise numerical simulations, which
show that turbulent fluctuations organize in rare coherent
structures separated by narrow current sheets. On the other
hand, the satellite observations [4] and numerical simulations
[5,7] suggest that the scaling behavior in the solar wind
is closer to the anomalous scaling in the three-dimensional
fully developed hydrodynamic turbulence than to simple
Iroshnikov-Kraichnan scaling [2,3] suggested by the two-
dimensional picture with the inverse energy cascade.

Thus, further analysis of more realistic three-dimensional
models is welcome.

In a number of papers, the problem was studied within
the framework of the kinematic approximation, in which the
magnetic field is passive in the sense that it does not affect the
dynamics of the velocity field [17-29]. This approximation
seems reasonable if the gradients of the magnetic fields are not
too large. What is more, the renormalization group analysis of
Ref. [30] suggests that such a “kinematic regime” can indeed
describe the possible IR behavior of the full-scale problem. It
is then possible to model the velocity field “by hands,” that
is, by simple statistical ensembles with prescribed properties.
Most popular is the Kazantsev-Kraichnan ensemble [31,32]:
The random velocity field is Gaussian and white in time and
has a power-law spectrum.

Numerous analytical and numerical results were derived
for the scalar and vector fields, advected by the Kazantsev-
Kraichnan “flow,” see Ref. [33] for the review and references.
The main results concerning anomalous scaling for the
magnetic case can be summarized as follows [17-20]:

(i) Anomalous scaling is present and appears already for
the pair correlation function.

(ii) In the presence of large-scale anisotropy (brought about,
e.g., by the constant background field B°), the anomalous
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exponents for a given correlation function demonstrate a kind
of hierarchy: in the expansion of correlation functions in the
spherical harmonics Y;,,,, the corresponding exponents increase
with [, the degree of anisotropy. Thus, for the even-order
functions, the leading terms of the inertial-range behavior
are given by the isotropic contribution (/ = 0). This gives
quantitative support for Kolmogorov’s hypothesis of the local
isotropy restoration.

(iii) Nevertheless, the anisotropy survives at small scales
and manifests itself in odd-order correlation functions or
in dimensionless ratios involving such functions (like the
skewness factor).

An important advantage of the Kazantsev-Kraichnan en-
semble is the possibility to easily model anisotropy and
compressibility. Importance of compressibility for the MHD
turbulence was realized already in the classical study of Ref.
[2]. Within the framework of the Kazantsev-Kraichnan ensem-
ble, effects of compressibility were studied in Refs. [18,22,27].
It was shown that:

(iv) The anomalous exponents depend on the degree of
compressibility. When it grows, the hierarchy of anisotropic
contributions becomes less pronounced and the persistence of
anisotropy in the depth of the inertial interval becomes more
remarkable.

Of course, generalization of this analysis to more real-
istic velocity dynamics is necessary: Some of the afore-
mentioned results can be artifacts of the oversimplified
statistics.

It is possible to directly generalize the Kazantsev-
Kraichnan ensemble to the case of finite correlation time;
see, e.g., Refs. [34-36] for the passive scalar and [24] for the
passive vector fields. However, such “synthetic” models with
nonvanishing correlation time suffer from the lack of Galilean
symmetry, which may lead to “interesting pathologies,” quot-
ing the authors of Ref. [37]. One such pathology manifests
itself as ultraviolet (UV) divergence in the vertex [35], which
in more realistic models is forbidden by Galilean invariance.

Thus, it is desirable to describe the advecting velocity field
by the Navier-Stokes equations with a random stirring force
and to work within Galilean covariant formalism. For the
incompressible case, the analysis of the passive vector field
was accomplished in Ref. [29].

In this paper, we study the anomalous scaling in the kine-
matic MHD problem and model the velocity dynamics by the
non-Gaussian velocity field with finite correlation time, gov-
erned by the stochastic Navier-Stokes (NS) equation. We apply
to the problem the approach based on the field-theoretic renor-
malization group (RG) and the operator product expansion
(OPE), earlier applied to the passive scalar problem [38—40].
In that approach, the anomalous exponents are identified with
the critical dimensions of certain Galilean-invariant composite
fields (“operators”). It can be directly generalized to the cases
of finite correlation time, the presence of anisotropy, non-
Gaussianity, and so on. Passive advection of vector fields (and
hence kinematic MHD problems) with various velocity en-
sembles were studied earlier within the RG+OPE approach in
Refs. [21-29].

A general overview of the RG+OPE approach to the
problem of anomalous scaling and more references can be
found in Ref. [41]. Detailed exposition of earlier work on the
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field-theoretic RG approach to stochastic models of turbulence
on the whole is presented in Ref. [42].

However, analysis of the compressible fluid on the base
of the stochastic NS equation appears to be a difficult
task in itself; see, e.g., Refs. [43-48]. In spite of some
discrepancies, all of those studies support the existence of
a “strongly compressible” scaling regime, different from the
usual incompressible one.

In the present paper, we adopt the approach of Ref. [48],
where, with the price of some natural approximations, the
stochastic NS equation for a compressible fluid was refor-
mulated as a multiplicatively renormalizable field-theoretic
model. Then the standard field-theoretic RG was applied
to the problem, and the resulting stationary scaling regime
was associated with the IR attractive fixed point of the
corresponding RG equations.

Recently, that ensemble was employed to study, within the
RG+OPE framework, the problem of passive scalar advection
in a turbulent compressible fluid [49]. In spite of close
resemblance with the case of Kraichnan’s model, some of
the results appeared somewhat different. The present paper
continues the study of Ref. [49] in connection with the MHD
turbulence. For this reason, we will only briefly discuss the
points, common to the scalar and vector problems, refer the
reader to the papers [48,49] whenever possible, and focus on
the points specific of the vector case.

The plan of the paper is the following. In Sec. II we
give the detailed description of the model: the velocity
ensemble, the stochastic MHD equation, and the field-theoretic
formulation. In Sec. III we discuss canonical dimensions and
renormalization of the field-theoretic model, demonstrate its
multiplicative renormalizability, and calculate (in the leading
one-loop approximation) the corresponding renormalization
constant. In Sec. IV we derive the corresponding RG equations
and show that they possess the only IR attractive fixed point
in the physical region of parameters. This fact implies the
scaling behavior in the IR range (long times, large distances);
the corresponding critical dimensions of the basic fields
and parameters are presented. In Sec. V we calculate the
critical dimensions of the tensor composite fields (operators),
constructed solely of the basic scalar fields; these will play the
crucial role in the following. In Sec. VI we employ the OPE
to derive the inertial-range asymptotic behavior of various
correlation functions. Section VII is reserved for discussion
and the conclusion.

II. THE MODEL

A. The velocity ensemble

Following Refs. [48,49], we describe the stochastic dynam-
ics of a compressible fluid by a set of two equations:

Vv = vol8ixd* — 3 vk +iod; dvx —dip+fi, (2.1

Vip = —cidivi, (2.2)

which are derived from the momentum balance equation
and the continuity equation [50] with two assumptions: The
kinematic viscosity coefficients vy and j( are assumed to be
constant, that is, independent of x = {z,x}, and the equation
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of state is taken in the simplest form of the linear relation
(p—p) = c(z)(p — p) between the deviations of the pressure
p(x) and the density p(x) from their mean values; then the
constant ¢ has the meaning of the (adiabatic) speed of sound.

In Egs. (2.1) and (2.2), v = {v;(x)} is the velocity field
and, instead of the density, we use the scalar field defined as
¢(x) = ¢} In[p(x)/p]. Furthermore,

Vi =0 + vr 0 (2.3)

is the Lagrangean (Galilean covariant) derivative, 9, = 9/0¢,
9; = 8/9x;,and 3> = 9;9; is the Laplace operator. The problem
is studied in the d-dimensional (for generality) space x = {x;},
i = 1...d,and the summations over the repeated Latin indices
are always implied.

In the Navier-Stokes equation (2.1), f; is the density of
the external force (per unit mass), which mimics the energy
input into the system from the large-scale stirring. In order to
apply the standard perturbative RG to the problem, it is taken
to be Gaussian with zero mean, not correlated in time (this is
dictated by the Galilean symmetry), with the given covariance

i fie =0 =) | 555 Dk explik-x),

2.4)
with

D/ (k) = Do k=" (P (k) + a P} (K)}. (2.5)
Here Pijl.(k) =dij — k,'kj/k2 and Pi‘J‘.(k) = k,-kj/k2 are the
transverse and the longitudinal projectors, respectively, k =
|k| is the wave number (momentum), and Dy and o are
positive amplitudes. The parameter go = Dy/ 1)8 plays the
part of the coupling constant (expansion parameter in the
perturbation theory); the relation gg ~ A?Y defines the typical
UV momentum scale. The parameter m ~ L~!, reciprocal of
the integral turbulence scale, provides IR regularization; its
precise form is unessential and the sharp cutoff is merely
the simplest choice for calculational reasons. The exponent
0 < y < 4 plays is analogous to ¢ = 4 — d in the RG theory
of critical state [51,52]: It provides UV regularization (so the
UV divergences have the form of the poles in y) and various
scaling dimensions are calculated as series in y. The most
realistic (physical) value is given by the limit y — 4: Then the
function (2.5) can be viewed as a powerlike representation of
the function §(k) and it corresponds to the idealized picture of
the energy input from infinitely large scales.

As already mentioned, more detailed justification and
discussion of the compressible model (2.1)—(2.5) is given in
Refs. [48,49].

B. The MHD equation

In the presence of a constant background field Bl.o = B;
with a certain constant unit vector n = {n;}, the dynamic
equation for the fluctuating part 6; = 6;(¢,x) of the full

magnetic field B; = BY(n; + 6;) has the form
30; + (kb — Okvy) = k0d%0; + nidyv;, (2.6)

where ko = c¢}/4mo is the magnetic diffusion coefficient.
Equation (2.6) follows from the Maxwell equations neglecting
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the displacement current and the simplest form of Ohm’s law
for a moving medium j = o(E + cfl[v,B]), where o is the
conductivity and ¢; is the speed of light; see, e.g., Ref. [53].
The last term on the right-hand side of (2.6) maintains
the steady state of the system and acts as the source of the
anisotropy; in principle, it can be replaced with an artificial
Gaussian noise with appropriate statistics. In the real problem,
the field v satisfies the Navier-Stokes equation with the
additional Lorentz force term ~ (B x curl B). In our kinematic
approximation the back reaction of the magnetic field on the
velocity dynamics is neglected and the latter is described by
the stochastic problem (2.1)—(2.5) without the Lorentz term.

C. The field-theoretic formulation

It is well known that any stochastic problem of the type
(2.1)—(2.5) can be reformulated, in a standard fashion, as a
certain field-theoretic model; see, e.g., Refs. [51,52]. This
means that various correlation and response functions of the
original stochastic problem can be represented as functional
integrals over the doubled set of fields ® with the weight
exp S(P), where S(®P) is the so-called De Dominicis-Janssen
action functional. The action functional S, (®) for the problem
(2.1)—(2.5) with ® = {v',¢’,v,¢} looks too cumbersome, and
we do not reproduce it here, as well as the elements of
the corresponding Feynman diagrammatic techniques (bare
propagators and vertices); they can be found in Refs. [48,49].
Below we only will need the velocity-velocity propagator at
co = 0; in the frequency-momentum (w-Kk) representation it
has the form:

P(k)

w? + v3k*

Pk
o Fy®) } 2.7

vivido = D
{vivjlo 0{ ? + ugvik*

The full-scale stochastic problem (2.1)—(2.6) corresponds
to the action functional

S(@) =S,(v,¢",v,0) + Se(0",0,v), (2.3
where
So = 0/{—8,0; — Q(vi; — Opv;) + K0d%6; + nydpvi} (2.9)

is the De Dominicis-Janssen action for the problem (2.6) at
fixed v. It brings about the new propagator

0’6 P (k) 210

(0;0j)0 = m (2.10)
and the new vertex V;;;0/6;v; with the vertex factor

Viji(K) = i(8;jki — k). (2.11)

A few remarks are in order here. First, the derivative at
the vertex in (2.9) can be moved onto the auxiliary field
0’ using the integration by parts; thus k in (2.11) is the
momentum argument of #’. Second, the vertex factor satisfies
the transversality condition

kiVii(k) =0 (2.12)

that follows from its explicit form (2.11). We also note that
another new mixed propagator (#v)o will not appear in relevant
diagrams.
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III. UV DIVERGENCES AND THE RENORMALIZATION
A. Canonical dimensions, counterterms, and renormalizability

The analysis of UV divergences is based on the analysis
of canonical dimensions; see, e.g., Refs. [51,52]. Dynamical
models of the type (2.1)-(2.6) have two scales: the time
scale T and the length scale L. The canonical dimension
of any quantity F' (a field or a parameter) is described by
two numbers, the momentum dimension d% and the frequency

dimension d?, defined such that [F] ~ [T]~4*[L]~9F. In the
renormalization theory, the central role is played by the total
canonical dimension dr = dﬁ + 2d%®, defined such that all
the viscosity or diffusivity coefficients are dimensionless; see
Refs. [42,52]. All the canonical dimensions in our model
(2.1)—(2.6) are identical to their counterparts in the scalar case,
and we refer the reader to Table 1 in Ref. [49].

The formal index of UV divergence of a certain 1-
irreducible Green function I is given by its total canonical
dimension:

Sr=d+2-) Nodo, (3.1)
[}

where N¢ are the numbers of the fields entering into the func-
tion I" and dg are their total canonical dimensions. Superficial
UV divergences, whose removal requires counterterms, can be
present only in the functions I" with a non-negative integer §r.
The counterterm is a polynomial in frequencies and momenta
of degree 81, with the convention that w ~ k2.

The dimensional analysis (“power counting”) should be
augmented by certain additional considerations:

(i) All the I-irreducible Green functions without the
auxiliary (“primed”) fields vanish identically and thus require
no counterterms.

(i) If a number of external momenta occurs as an overall
factor in all the diagrams of a certain Green function, then
the real index of divergence §}. is smaller than dr by the
corresponding number of unities. In the model S, the field
¢ enters the corresponding vertex only in the form of a spatial
derivative, which reduces the real index of divergence:

8. = 8 — N,. (3.2)

(iii) The Galilean invariance of the model requires that the
counterterms be also invariant. In particular, this means that
the covariant derivative (2.3) appears in the counterterms as a
whole.

These considerations forbid superficial UV divergences in
certain Green functions, allowed by dimensional analysis, and
hence reduce the number of the counterterms needed for the
renormalization of the model.

The analysis of the field-theoretic model with the action
S, in (2.8), performed in Ref. [48] (see also Ref. [49]), has
shown that it is multiplicatively renormalizable (after a simple
natural extension). This means that all the UV divergences can
be removed from the Green functions by the renormalization
of the fields ¢ — Zy¢, ¢' — Zy ¢’ and of the parameters:

8o = gl’Lngv wZ,, c¢y=cZ, (3.3)

and so on. Here the renormalization constants Z; absorb all
the UV divergences, so the Green functions are UV finite
(that is, finite at y = 0) when expressed in terms of the
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renormalized parameters g, u, and so on; the reference scale (or
the “renormalization mass”) w is an additional free parameter
of the renormalized theory. No renormalization of the fields
v’,v and of the parameters m,« is needed.

The inclusion of the new contribution Sy in the full model
brings about the only new UV divergence in the 1-irreducible
function (6'0),_;, with the counterterm 6’320. Two points are
important here:

(iv) From the linerarity of the original stochatic model
in the field 6 it follows that Nyo — Ny is a non-negative
integer for any nontrivial 1-irreducible Green function: No
other Feynman diagram can be drawn. This fact forbids
the superficial divergences in all the 1-irreducible functions
(0’6 ...0)1_;r, except for the first one and thus prevents our
model from being nonrenormalizable, despite the fact that the
magnetic field has a negative canonical dimension.

(v) For the full model (2.8), the items (ii) and (iii) require
some additional discussion. The derivative at the vertex in Sy
can be moved, using the integration by parts, onto the field 6'.
Thus, the real index of divergence is reduced according to the
item (ii) above, and 6’ enters the countertems only as a spatial
derivative. The expression (3.2) has to be replaced with

8. = 8r — Ny — Ny.. (3.4)

Thus, the counterterm 6’9, is forbidden, and so is 8’(v; ;)0
due to the Galilean symmetry (iii).

The only remaining counterterm 6’26 is naturally repro-
duced by the multiplicative renormalization of the magnetic
diffusion coefficient: kg = k¥ Z,. No renormalization of the
fields 0/, 0 is needed.

The renormalized analog of the action functional (2.8) has
the form

SR(@) = SK(@) + SF(@), (3.5)

where SE(®) is the renormalized analog of the action S(®),
given in Refs. [48,49], and

S5t = 0/{—0:6; — 0 (b — 6vi) + K Z,0%6; + nidpvi}
3.6)

is the renormalized part of the full action that describes
interaction with the magnetic field.

B. Leading-order calculation of the renormalization
constant Z,

We performed the practical calculation of the renormal-
ization constant Z, in the leading one-loop approximation,
which is consistent with the accuracy of the calculation for the
NS problem (2.1) and (2.2) made in Ref. [48]. Although this
calculation is rather simple and similar to that for the Gaussian
velocity ensemble [24], we will briefly discuss it for the sake
of completeness and in order to stress some peculiarities.

The constant is found from the requirement that the 1-
irreducible Green function (6'6)_;, be UV finite (that is, finite
at y — 0) when expressed in renormalized parameters. In the
frequency-momentum representation it has the form:

(0162)1-ix(2,p) = {—kop” + iR} Pi5(p) + Z12(2,p), (3.7)

where X, is the “self-energy operator” given by infinite sum of
1-irreducible Feynman diagrams and p = |p|. Because of the
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large number of tensor indices involved in our expressions, we

use numbers (instead of Latin letters) to denote them, with the

standard convention on the summation over repeated indices.
The only one-loop self-energy diagram looks as follows:

X Z&'

Here the wavy line denotes the bare propagator (vv)o, and the
solid line with a slash denotes the bare propagator (66'), from
(2.10), with the slashed end corresponding to the field 6". The
dots with three attached fields 6’, 6, v denote the vertex (2.11).

In this approximation, the renormalization constant in the
bare term of (3.7) is taken to the first order in g, while in
the diagram (3.8) all Z’s are simply replaced with unities.
Furthermore, we only need to know the divergent part of (3.8),
which is quadratic in p (see the preceding subsection). Thus,
we can put 2 = 0 in (3.7) and retain only quadratic terms in
the expansion of X1,(2 = 0,p) in p. Like for the original NS
model, its divergent part is independent of ¢y ~ ¢ and can be
calculated directly at ¢ = 0; see the discussion in Ref. [49].
Thus, we can use the expression (2.7) for (vv)g.

Then the analytic expression for (3.8) takes on the form:

(3.8)

do dk
Xp@=0p) =Dy | 5 ——a V143(P)Vers(p + k)
2n k>m (277)

» P35(k)
02 + 2K
Pis(k + p)
—iw + wv|k + p|?’

a Pl (k)
w? + uv2k4

(3.9)

where k = |K|. The simplifying replacement Pjz — 846 can
immediately be made due to the transversality condition (2.12)
and the contraction with Vgys.

Integrations over the frequency are easily performed, for
example:

dw 1 1
/ 27 —iw + wv|p + K2 0? + u2vZk4
1
- 2uvk2(uk® + wip + k|?)

(3.10)

The numerators in the integrand of (3.9) contain the
terms quadratic and linear in p. For the first ones, one can
immediately set p = Oin (3.10), while for the second ones, one
should expand (3.10) up to the linear term in p, for example,

1 1 { . 2w (pk) }

U FuwlpL kP2 @+wk| @tw) &2

With the aid of the formulas

dkk; f(k) =0 a5 cao = % [
f SE) =0, f k—2f<)—7/ @),

kikskik 656 810 8ipds
k4 dd+?2)

/ dk (k).
(3.11)
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where f(k) is any function depending only on k = |k|, all the
resulting integrals are reduced to the scalar integral

I L 3.12
J(m) = ks = SdT, (3.12)

where
Sy = 2w/ T(d/2) (3.13)

is the surface area of the unit sphere in the d-dimensional space
and I'(- - - ) is Euler’s Gamma function.

The final result contains two types of terms, proportional
to P;5(p) and Pl“z(p), respectively. Due to the transversality
of the fields 0, 6, the latter ones should be discarded. [This
would happen automatically if we included the corresponding
projector into the vertex (2.11), but we did not do that for
brevity.] Practically, it is more convenient to collect only terms
proportional to 8, p> and drop all the terms proportional
to p;p, in the course of calculation. Then we express the
amplitude Dy in (3.9) in terms of renormalized variables:
Dy = gviu’.

The final result reads:

212(9 = O,p) = — vp2 Pé(p) i ﬁ g
2dy \m
d—1 —
(fUZD ez | gy
I+w  u(u+ w)?
Here we passed to the new coupling constant
g =gSa/CQn)?, (3.15)

with S; from (3.13).

Then in the MS scheme the renormalization constant Z, that
cancels the pole of the expression (3.14) in the renormalized
analog of the function (3.7) (that is, with the replacement
ko — Kk Z, in the bare term) has the form:

g d—1 —
7z —1- & W=D awzw)| 0
2dwy | (1 +w)  u(u + w)?
while the corresponding anomalous dimension is
g d—1 —
_ & [@-D  eu—w] G17)
2dw | (14+w)  u(u+ w)?

with the corrections of the order > and higher.

It is interesting to note that the expression (3.17) literally
coincides with its analog for the scalar fields advected by the
same velocity ensemble; see Eq. (3.24) in Ref. [49]. Similar
coincidence between the passive scalar and magnetic fields
in the kinematic approximation was earlier observed for the
incompressible case (see, e.g., Ref. [42]); sometimes it extends
to the two-loop approximation [28].

IV. RG EQUATIONS, FIXED POINT,
AND THE CRITICAL DIMENSIONS

Here we only briefly discuss the derivation of the IR scaling
behavior from the RG equations in our model; it is nearly
identical to the scalar case, discussed in Ref. [49] in great
detail.

Multiplicative renormalizability of the field-theoretic
model (2.8) allows one to derive, in a standard way, differential
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RG equations for the renormalized Green functions
Glepy...) =(P... D)p.

Here ¢ = {g,v,u,v,w,c,m,a} is the full set of renormalized
parameters, p is the reference momentum scale, and the
ellipsis stands for the other arguments (times or frequencies
and coordinates or momenta). For convenience, we introduced
here three dimensionless ratios: ug = uo/vo and vo = xo/Vo
are related to the viscosity and diffusivity coefficients of the
(properly extended) model (2.1), (2.2), while wg = ko/vp i
related to the magnetic diffusivity coefficient; u, v, and w are
their renormalized analogs.

The RG equation expresses the invariance of the renormal-
ized Green function with respect to changing of the reference
scale 1, when the bare parameters ¢, are kept fixed:

iﬁM+ZN¢y¢}G(e,u,...)=O. .1
(o]

Here and below we denote D, = x9, for any variable x and
D,, is the operation D, = ud, at fixed eg. In terms of the
renormalized variables, it takes the form

DM = DM + IBgag + Budu + Bv0y + Buwdy — WD, — v D..

(4.2)

The anomalous dimension y¢ of a certain quantity F (a field
or a parameter) is defined by the relation

YF = 5[/. In Zp, (43)

and the g functions for the dimensionless parameters (“cou-
pling constants™) are

Be = 5Mg =g[-y =¥l
B (4.4)
Bu = D/L“ = —UYu,

and similarly for 8,, B,,. Here the second equalities result from
the definitions and the relations of the type (3.3).

Note that from the definition of wy it follows that Z, =
Z,Z,, S0

Bw = w[yy — Ywl. 4.5)

The possible types of IR asymptotic behavior are associated
with IR attractive fixed points of the RG equations. The
coordinates g, = {g;,} of the fixed points are found from the
equations

Bi(g+) =0,

where g = {g;} is the full set of coupling constants and g; =
D,.gi are their B functions. The character of a fixed point is
determined by the matrix

Qij = aﬂi/agﬂg:g*-

For the IR fixed points the matrix €2 is positive (that is, positive
are the real parts of all its eigenvalues).

The analysis performed in Ref. [48] (see also Ref. [49])
on the base of the leading-order (one-loop) approximation has
shown that the RG equations of the model S,, corresponding
to the stochastic NS problem (2.1) and (2.2), possess the only

(4.6)

4.7
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IR attractive fixed point in the physical region of parameters
(g,u,v > 0):
R 4dy

g = ——+00O?),

4.8)
From a certain exact relation between the renormalization
constants [48], the exact result

vy = /3 4.9)

follows (no corrections of the order y*> and higher). Here and
below, y;* denotes the value of the anomalous dimension y; at
the fixed point.

Now we substitute the one-loop expressions (3.17) and (4.8)
and the exact result (4.9) into Eq. (4.5). Then the equation
Bw = 0 yields, after simple algebra, the equation

(w— D[ - D(w+ D(w +2)+ 2a] =0, (4.10)

which has the only positive solution w, = 1, with possible
corrections of order O(y) and higher.

Since the functions S, ,,, do not depend on w, the new
eigenvalue of the matrix (4.7) coincides with the diagonal
element

0B/ IWl ey, = y (3(d — D)+ a} /6(d — 1) > 0;

thus the fixed point (4.8) and w, = 1 of the full model remains
IR attractive.

Existence of an IR-attractive fixed point in the physical
region of the parameters implies existence of scaling behavior
in the IR range. The critical dimension of some quantity F (a
field or a parameter) is given by the relation (see Refs. [42,52])

Ap=di + A,d2 4y}, A, =2—y=2—y/3. (4l11)

Here d% and d¢ are the canonical dimensions of F, y;}: is the
value of the anomalous dimension yr at the fixed point, and
A, is the critical dimension of the frequency.

The critical dimensions of the fields and parameters of the
model described by the action S, from Eq. (2.8) are presented
in Ref. [48]; see also Ref. [49]. In addition, our full model
involves two more critical dimensions:

Ag=—14y/6, Ag=d+1—y/6. (4.12)

These expressions are exact because the fields 6 and 6” are not
renormalized.

V. COMPOSITE FIELDS AND THEIR DIMENSIONS

An important role in the following will be played by certain
composite fields (“composite operators” in the quantum-field
terminology). In general, a local composite operator is a
monomial or polynomial built of the primary fields ®(x) and
their finite-order derivatives at a single space-time point x. In
the Green functions with such objects, new UV divergences
arise due to coincidence of the field arguments. They should be
eliminated by additional renormalization procedure. As a rule,
operators mix in renormalization: Renormalized operators
(whose Green functions are UV finite) are given by finite
sums of the original monomials. However, in the following
only a simpler situation will be encountered, when the original
operator F(x) and its renormalized analog F ®(x) are related by
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multiplicative renormalization F(x) = Zp F R(x)witha single
renormalization constant Zg. Then the critical dimension A g
of the operator F is given by the same expression (4.11) and,
in general, differs from the naive sum of the dimensions of the
fields and derivatives that compose the operator.

We will focus on the irreducible tensor operators built solely
of the fields 8. They have the forms

Fup = 0;,(x) -+ 6, (x) (6;()0;(x))" -+, (5.1)

where [ < n is the number of free tensor indices and n = [ +
2s is the total number of the fields 8 entering into the operator;
the tensor indices and the argument x of the symbol F},; are
omitted. The ellipsis stands for the appropriate subtractions
involving the Kronecker § symbols, which ensure that the
resulting expressions are traceless with respect to contraction
of any given pair of indices, for example, 6;6; — 5;;(6x6i/d)
and so on.

The total canonical dimension of any 1-irreducible Green
function I'" with one operator F(x) and arbitrary number of
primary fields (the formal index of UV divergence) is given by

S =dr — ) Noda, (5.2)
P

where Ng are the numbers of the fields entering into ', dg
are their total canonical dimensions, and df is the canonical
dimension of the operator. Superficial UV divergences can be
present only in the functions I with a non-negative integer
dr. For the operators (5.1) from Table 1 in Ref. [49] we find
dr = —n. The linearity of Eq. (2.6) in the field 6 imposes
the restriction that Ny in (5.2) cannot exceed the number
of the fields 0 in the operator F. The direct analysis shows
that superficial UV divergences (ép > 0) for F,; can be
present only in the 1-irreducible functions with Ny = N, =0
and Ny = n; they are all logarithmic: §r = 0. The simple
inspection shows that the mixed propagator (8v)o does not
appear in the relevant Feynman diagrams; in other words, the
last term in the right-hand side of Eq. (2.6) is unimportant
here. Without that term, the model becomes O(d) invariant. In
turn, this means that irreducible operators with different values
of / cannot mix with each other. We finally conclude that the
operators (5.1) renormalize multiplicatively: F,; = Z,; Fnlf and
turn to the one-loop calculation of the renormalization constant
Z,; and of the critical dimension of the operator (5.1), which
will be denoted as A,,;.

Let I'(x; 6) be the generating functional of the 1-irreducible
Green functions with one composite operator F(x) = F,; and
any number of fields 6. Here x = {r,x} is the argument of
the operator and 6 is the functional argument, the “classical
analog” of the random field 6. We are interested in the n-th term
of the expansion of I'(x; 6) in 6, which we denote I, (x;0). It
can be written as follows:

Fn(X;9)=fdx1 -~-/dxn9(xl)-~-9(xn)

X (F(x)0(x1) - - - 0(xn)) 1-ir- (5.3)
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In the one-loop approximation the function (5.3) is represented
diagramatically as follows:

Iy(x;0)=F(x)+ % 5.4)

The first term is the tree (loopless) approximation, and the
thick dot with the two attached lines in the diagram denotes
the operator vertex, to be specified later.

The renormalization constant Z,; for the operator (5.1)
is found from the requirement that the renormalized analog
IR = Z7'T, of the function (5.3) be UV finite in terms of
renormalized parameters.

For practical calculations, it is convenient to contract the
tensors (5.1) with an arbitrary constant vector A = {};}. The
resulting scalar operator has the form

F®D = (0,006, + -+ -, (5.5)

where the subtractions, denoted by the ellipsis, necessarily
involve the factors of A2 = A ;.

Within our accuracy, it is sufficient to replace all the
renormalization constants in the diagram with unities, so
Dy — gv3uy, uyg — u and so on. Furthermore, we are
eventually interested in the fixed-point value of the anomalous
dimension, so we can set # = w = 1 in the following. Since
the diagram is logarithmically divergent, we can set all the
external frequencies and momenta equal to zero.

Like for the calculation of the self-energy diagram in
Sec. III B, here and below we use numbers (instead of Latin
letters) to denote the tensor indices. Then the diagram in (5.4)
can be represented as follows:

V12(6) C1275 6403, (5.6)

where V,(0) is the operator vertex (denoted by the thick dot
in the diagram and specified below), the fields 8763 (denoted
by wavy tails) are attached to the lower vertices (2.11) (small
dots), and Ci,7s is the “core” of the diagram. It has the form

dw dk gl)3/,LyR1278
Con=[ 5= 4 (02 + V2K
2n k>m (27[) (C() + vk )

with the tensorial factor stemming from the vertices (2.11) and
the projectors of the propagators:

Rizzs = P(K) P (K| P35 (K) + a Pl ()} Vazs(K) Vago ().
(5.8)

5.7

Intergation over the frequency is easily performed:

/ d_a) ! = ! 5.9)
21 (w2 +v2k*H)? 43k6° '

Contraction of the vector indices in (5.8) leads to the
following integrals over the momentum:

k1 pii Pl 5.10

k>mmkd—+yp12( ) Pog(K) (5.10)
for the transverse contribution in (2.7) and
dk 1 L n

/k>m Wkd_ﬂ P (k) Psg(k) (5.11)

for the longitudinal one. With the aid of the relations (3.11),
all these integrals are reduced to the scalar integral (3.12).
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Combining all these contributions and contracting the result
with the fields 6,63 gives for (5.6) the following expression:

—-D

m Via (Tia + @La), (5.12)
where
Tiz = (d + 1)8126% — 26,6,
and
Liy = 8126 + (d* — 2)6165.
Now let us turn to the vertex factor
Vi = St (5.13)
8601(x1)862(x2)
Using the chain rule, it can be rewritten in the form
Vip = w 8(x — x1)8(x — x2), (5.14)
Jwi 0wy
where
FOU = Qqw) (wjwy)* + -+, (5.15)

with the subsequent substitution w; — 6;(x).
The differentiation gives

O*F D /gwidwy = 25(w?)* 2 (w) [81w? + 2(s — Dwiw]
+1(l — D) Qw) "2a1hn
+2s(w?)* T Ow) TN wi s + waky),

(5.16)

where w? = wiwy and (Aw) = Agwg.

Now we have to contract the vertex factor (5.16) with
the expression (5.12). In order to find the renormalization
constant, it is sufficient to retain only the terms proportional
to the principal monomial in (5.5) and discard all the terms
containing the factors of A> = ;A;. Combining all the relevant
factors finally gives

~ 1\’ 80 +a0s)
rnl(x)—Fnl(x){1—<m) A o } (5.17)

where
01
O =—-nn+nd—d)(d—-1)+I11+d+2),

and g is defined in (3.15).
The requirement that the renormalized analog of the
function (5.3) be UV finite in the MS scheme gives:

z,,l={1 &

—nn+d)d—-1)+d+ DIl +d+2),
(5.18)

—W(Ql-i-sz)}, (5.19)

and the anomalous dimension y,; = D, InZ,; is

A

g
8dd 1) (Q1+aQ>)
(we recall that we already set u = w = 1).
Using the general expression (4.11), for the critical dimen-
sion A, at the fixed point (4.8) we obtain
ny  y(Q1+aQ>)

Au = nhg+y5 =" 4 L1 TED
=Rt Y = e S~ Dd + 2)

Yl = (5.20)

(5.21)
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with Ay from (4.12). In particular, for the scalar operator one
arrives at the expression

—yn BGn+d-—4)
Apy=—""—"———{n—-2 — 1, (5.22
’ 6(d+2>{(” remaTy | O
which is negative and decreases as o grows:
dAp0/0a < 0. (5.23)

As we will see in the next section, this means that the
anomalous scaling is indeed present in our model and becomes
more strongly pronounced as the degree of compressibility
increases.

For a fixed n, the dimensions (5.21) exhibit a kind of
hierarchy with respect to the rank ! (which measures the
“degree of anisotropy”):

0Ay /0l > 0. (5.24)

In contrast to the Gaussian model (see, e.g., Refs. [22,35]), this
hierarchy becomes more strongly pronounced as « increases:

3°A,/dlda > 0. (5.25)

VI. OPERATOR PRODUCT EXPANSION
AND THE ANOMALOUS SCALING

A. General discussion and isotropic case

The quantities of interest are, in particular, the pair
correlation functions of the (renormalized analogs of the)
operators (5.1). In the following, we restrict ourselves with the
equal-time correlations because they are Galilean invariant and
do not bear strong dependence on the IR scale m = L~ caused
by the sweeping of small-scale vortices by the large-scale ones.
Then one can write

(Fu(t,X)Fy(t,X)) = pm v, 4 (ur,mr,c/uv)

~ ,udF v (pr)~ B84 Cnt,qj(mr,c(r)),

6.1)

where r = |r| = |x’ — x|; it is also assumed that n,q > 1.

The first equality follows from simple dimensionality
considerations; then d and dr are the canonical dimensions
of the correlation function, given by simple sums of the
corresponding dimensions of the operators, and 7(. . . ) is some
function of completely dimensionless parameters. We have
expressed the right-hand side in renormalized variables, when
the reference mass w is the substitute of the UV momentum
scale A. The second (approximate) equality is valid in the IR
asymptotic range pr > 1 and follows from solving the RG
equation in the presence of the IR attractive fixed point; A,;
and A,; being the critical dimensions of the operators from
the left-hand side, given by Eq. (5.21). In the following, we
omit the RG invariant variable c(r) = c(ur)®c/(uv), which is
restricted in the IR range; for more explanations, see Ref. [49].
We will also omit the indices of the scaling functions 1 and ¢
and do not display the dependence on the parameters v, u that
are fixed for a given physical setup.

The inertial range corresponds to the additional inequality
mr < 1. The form of the functions ¢ in (6.1) is not determined
by the RG equations alone; they should be augmented by the
OPE. In the case at hand, the OPE states that the equal-time
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product F,;(x)Fyj(x")atx = (x +x)/2 = constandr = X' —
x — 0 can be represented in the form

Fu(x)Fy;(x") = Y Cr(r)F(t.x). (6.2)
F

Here the functions Cr are the Wilson coefficients, regular
in m2, and F are, in general, all possible renormalized local
composite operators allowed by the symmetry of the model
and of the left-hand side. In the case at hand this implies that
only Galilean invariant operators contribute. If these operators
have additional vector indices, they are contracted with the
corresponding (additional) indices of the coefficient functions
Cr.

Without loss of generality, it can always be assumed that
the expansion (6.2) is made in the irreducible operators with
definite critical dimensions A g. The correlation functions (6.1)
are obtained by averaging the expression (6.2) with the weight
exp S(P), where S(P) is the (renormalized) action functional
(3.5). Then the quantities (F') appear on the right-hand sides.
Consider first the isotropic case, then only the contributions
from scalar operators survive. Their asymptotic behavior for
m — 0 is found from the RG equations for the operators F
and has the form (F) oc m”# (we recall that A, = 1).

Thus, combining the expressions (6.1) and (6.2) gives
the following inertial-range asymptotic representation for the
scaling functions ¢:

(mr) >y " Ap (mr)™", (6.3)
F

where all the coefficients Ar = Ap(mr) are regular in (mr)>.

Singularities for mr — 0 (and thus the anomalous scaling)
result from the contributions in (6.3) of the operators with
negative critical dimensions, termed “dangerous” in Ref. [42].
Clearly, if the number of such operators were finite, the
leading contribution would be determined by the operator
with the lowest dimension. However, one can argue that if
at least one dangerous operator exists in a model, the latter
necessarily involves an infinite set of dangerous operators,
and the spectrum of their dimensions is not bounded from
below; see Appendix for discussion. In our case, from the
expression (5.22) we can see that all the scalar operators F,( are
dangerous, and their dimensions A, increase without bound
as n grows.

Fortunately, the linearity of the original equation (2.6) in
the field 6 imposes the restriction that the number of the fields
60 in all the composite operators in the expansion (6.2) cannot
exceed their number in the left-hand side; cf. the remark below
Eq. (5.2) in Sec. V. In turn, this means that only a finite
number of the operators of the type Fyo can contribute to
any given OPE. For the product (6.2), these are the operators
with k < n + ¢. Thus,

n+q

¢(mr) >~ Z Ap(mr) (mr)®o 4 ...

k=0

(6.4)

with Ao from (5.22); the ellipsis stands for the “more distant”
corrections to the small-mr behavior, given by the operators
with derivatives and other types of fields. The leading term in
(6.4) is determined by the operator with the maximum possible
k = n + g, so the final leading-order asymptotic expression
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for the correlation function (6.1) in the inertial range pur > 1,
mr < 1 has the form

(FurFyj) = ()~ 2080 (mp)Brao, (6.5)

As already mentioned in the preceding section, the inequality
(5.23) means that the anomalous scaling becomes more
strongly pronounced as the degree of compressibility grows.
We also note that the inequality

An+q,0 < Anl + qu, (66)

which follows from the explicit expressions (5.21) and, in
fact, is required by the probabilistic theory, shows that the
expression (6.5) diverges for r — 0.

B. Effects of large-scale anisotropy

Consider effects of the anisotropy, introduced into the
system at large scales ~ L through, say, the large-scale field
B? = n; B or through the correlation function of the artificial
force. Then the irreducible tensor composite operators acquire
nonzero mean values, built of the vector n: for example, the
mean value of the second-rank operator is proportional to the
irreducible tensor n;n; — §;;/d. In general, the mean value of
any /-th rank irreducible operator is proportional to the tensor
n;, ...n; + ---, where the ellipsis stands for the appropriate
subtractions with the Kronecker § symbols that make it
irreducible. Upon substitution into the OPE for the product
of two scalar operators, their tensor indices are contracted
with the corresponding indices of the coefficient functions
Cp(r). This gives rise to the Gegenbauer polynomials, the
d-dimensional analogs of the Legendre polynomials P;(cos ),
where ¥ is the angle between the vectors r and n. For general
anisotropy, the d-dimensional spherical harmonics appear on
the right-hand side, while for products of tensor operators,
their tensor analogs arise.

Consider, as the simplest example, the pair correlation
function (6.1) of two scalar operators in the inertial range:

N
(Fao(t,X) Fyo(t, X)) r20=%0 ) " ¢ P(cos 9)(mr) '+ - -,
=0

(6.7)

with N = n + g and Ay, from (5.21); ¢; are numerical coef-
ficients and the ellipsis stands for the “distant” contributions
with [ > N. The inequality (5.24) means that the anisotropic
contributions in (6.7) exhibit a kind of hierarchy related to
the degree of anisotropy /: the leading contribution is given
by the isotropic “shell” (I = 0), while the contributions with
I > 1 give only corrections which become relatively weaker
as mr — 0, the faster the higher the degree of anisotropy /
is. A similar hierarchy, observed earlier in numerous models,
e.g., Refs. [19-24,34-36,49], gives quantitative support for
Kolmogorov’s hypothesis of the local isotropy restoration.
The inequality (5.25) means that the hierarchy (5.24)
becomes stronger as the degree of compressibility o grows:
The anisotropic corrections are getting further from one
another and from the isotropic term, contrary to the situation
observed earlier for the passive vector field, advected by
Kraichnan’s ensemble [22]. A similar discrepancy for the
scalar field was encountered recently in Ref. [49]. This means
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that the results obtained on the basis of simplified “synthetic”
ensembles should be taken with some precaution.

C. Structure functions

The phenomenon of anomalous scaling is often discussed in
terms of structure functions; see, e.g., Ref. [1] and references
therein. For the vector case they can be defined as

Sp(1) = ([6,(2,%) = 6,(,X)]*P),

where 6, is the component of the field 6 parallel to the
vector r = x’ — x. For simplicity, in this subsection we restrict
ourselves with the isotropic model and therefore consider only
even-order functions.

After the binomial expansion and the decomposition in
irreducible tensors, the function (6.8) is represented as a linear
combination of two types of terms. The first type involves
the pair correlation functions (6.1) of the operators (5.1) with
n + q = p and all possible values of /, j. Their inertial-range
behavior is described by the expression (6.5).

The second type involves the mean values (F;) of the
operators from the same family; these are independent of r.
The RG analysis shows that the analog of (6.5) for them has
the form

(6.8)

(m/u)™r;

for the isotropic case, only the term with k£ = O survives. It can
be rewritten in a somewhat artificial form:

(m/M)Apo = (mr)Apo(Mr)pro.

Now comparison with (6.5) along with the inequality (6.6)
shows that the contribution of the mean value is the leading
term of the inertial-range asymptotic behavior (we recall than
n+q=p).

The structure functions in the kinematic MHD model are
superpositions of a constant term and a number of power-law
corrections should be taken into account in the interpretation
of experimental data, while they are usually fitted by single
power-law terms. The structure functions, at least from a
theoretical point of view, are more convenient objects for the
models with the symmetry with respect to the shift 6 — 0,
like the scalar tracer model; cf. the discussion, e.g., in Refs.
[35,49]. It should be stressed, however, that the RG+SDE
scenario of anomalous scaling proved to be successful for
linear models (kinematic dynamo model in the present case),
while its relevance for the full-scale nonlinear MHD problem
is far from obvious.

(6.9)

(6.10)

VII. CONCLUSION

We have studied the model of the passive vector field,
advected by a turbulent flow. The latter is described by the
Navier-Stokes equations for a strongly compressible fluid
(2.1), (2.2) with an external stirring force with the correlation
function o« k*~¢7; (2.4) and (2.5). From physics viewpoints,
the model describes magnetohydrodynamic turbulence in the
so-called kinematic approximation, where the effects of the
magnetic field on the dynamics of the fluid are neglected.

The full stochastic problem can be cast as a field-theoretic
model with the action functional specified in (2.8) and (2.9).
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That model appears multiplicatively renormalizable, so the
corresponding RG equations can be derived in a usual way.
They have the only IR attractive fixed point in the physical
range of parameters, so various correlation functions reveal
scaling behavior in the IR region.

Their inertial-range behavior was studied by means of
the OPE; existence of anomalous scaling (singular power-
like dependence on the integral scale L) was established.
The corresponding anomalous exponents were identified with
the scaling (critical) dimensions of certain composite fields
(composite operators), namely powers of the magnetic field.
They can be systematically calculated as series in the exponent
y. The practical calculation was accomplished in the leading
order; the results are presented in (5.21).

The results obtained are quite similar to those derived
earlier for the vector fields advected by synthetic velocity
ensembles [22,24]: The anomalous scaling becomes more
remarkable as the degree of compressibility « increases; the
anisotropic contributions form a hierarchy related to the degree
of anisotropy /, so the leading inertial-range contribution is
the same as for the isotropic case. However, that hierarchy
becomes stronger as the degree of compressibility grows, in
contrast to what was observed in Ref. [22] for the Kraichnan’s
rapid-change ensemble. In this respect, our results are close to
what was recently observed for the scalar field, advected by
the same velocity ensemble [49].

From a more theoretical point of view, it is important that
in our case, the anomalous exponents are associated with the
critical dimensions of certain individual composite operators,
exactly as in the RG+OPE treatment of the rapid-change
models; see, e.g., Refs. [21,22,38,40,41]. In the zero-mode
approach to the latter, the anomalous exponents are related
to the so-called zero modes (unforced solutions) of the exact
differential equations satisfied by the equal-time correlation
functions; see, e.g., Refs. [17-19,33]. In a more general
sense, zero modes can be interpreted as certain statistical
conservation laws in the dynamics of particle clusters [33]. The
close resemblance in the RG4-OPE pictures of the origin of
anomalous scaling for the present model and its rapid-change
predecessors suggests that the concept of zero modes (and thus
that of statistical conservation laws) is also applicable in much
more realistic models.

Admittedly, our results are derived only in the leading order
of the expansion in a parameter, which is not very small. So
it is hard to expect a good quantitative agreement between the
theory and experiment. On the other hand, to the best of our
knowledge, the dependence of the anomalous exponents on the
degree of compressibility has not been studied experimentally.

Further theoretical investigation should include, in partic-
ular, an account of the reaction of the magnetic field on the
fluid dynamics. Existing works of this problem, based on the
RG techniques, were concerned with the incompressible fluid
and did not discuss the anomalous multiscaling. Thus, much
work remains for the future.
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APPENDIX: INFINITE NUMBER
OF NEGATIVE DIMENSIONS

Let F(x) be a certain renormalized composite operator in
a certain multiplicatively renormalizable field-theoretic model
with an IR attractive fixed point of the RG equations. Assume
that F has a definite negative critical dimension, Ay < 0, and
assume that it is the lowest dimension in the model (that is, F
is the “most dangerous” operator).

Consider its pair correlation function:

dk
()t

where k = |k|. Our assumption implies that in the IR range
the function D (k) has the asymptotic form

Drp(k) =~ k™A f(m/k), (A2)

Dr(k)expl{ik - (x' —x)}, (A1)

(FOF(X)) = /

where m is some typical IR momentum scale, f(m/k)is some
dimensionless scaling function, and we assumed that A, = 1
(like in our model). Now consider the mean value

(FX(x)) = _dk_ Dr(k). (A3)
2m)!

The function f(m/ k) provides IR regularization of the integral
(A3). The question is whether this integral remains convergent
for large k if the exact (unknown) function D (k) is replaced
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with its asymptotic form (A2). According to the OPE, the
asymptotic behavior of the function f(m/k) for large k or,
equivalently, for small m is determined by the contribution of
the most dangerous operator, which by assumption is F itself:

f(m/k) >~ (m/k)>". (Ad)
Thus, for large k we have
Dp(k) ~ k~9+Ar (A5)

and the integral (A3) remains convergent upon the substitution
of (A2). In turn, this means that it is expressed only in terms
of the IR parameter m (UV regularization A can be removed).
Then it is easily found from the dimension:

(F2(x)) ~ m**F. (A6)

Expression (A6) means, however, that the operator F 2
has the negative dimension 2Ar < Ap < 0 which is smaller
than that of F'. We arrive at the contradiction with our initial
assumption about F'.

To avoid possible misunderstanding we stress that our
consideration does not mean that F? is necessarily dangerous
and its dimension is exactly 2Ap (although this indeed
happens, e.g., for the powers of the velocity field in the
stochastic NS problem; see Ref. [42]). It means that operators
with negative dimensions, if any, always appear in a model as
infinite families, with the spectrum of dimensions not bounded
from below. This fact should be taken into account in axiomatic
or phenomenological implementations of the OPE to models
of turbulence [54].
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