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Effect of inertia on laminar swimming and flying of an assembly
of rigid spheres in an incompressible viscous fluid
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A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity
is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid
spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic
interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An
equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is
calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied
to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal
spheres moving along a common axis is studied.
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I. INTRODUCTION

The swimming of fish and the flying of birds continue to
pose challenging theoretical problems. The physics of bird
flight was studied in detail by Otto Lilienthal in the 19th
century [1]. Since then, significant progress has been made
in many years of dedicated research [2–5].

The goal of the theory is to calculate the time-averaged
speed and power for given periodic shape variations of the
body, at least for a simple model system. It is assumed that
the motion of the fluid is well described by the Navier-Stokes
equations for an incompressible viscous fluid. On average over
a period the force exerted by the body on the fluid vanishes, so
that thrust and drag cancel. In early work by Lighthill [6] and
Wu [7] the thrust and power were calculated approximately
as functions of the speed on the basis of potential flow theory
for a planar strip. This work and subsequent developments
have been reviewed by Childress [3], by Wu [8,9], and by
Sparenberg [10]. However, an independent calculation of
the mean speed for given periodic shape variations is still
lacking. Measurement of the power consumption has led to a
surprisingly small friction coefficient, much smaller than that
of an inert body, as was observed by Gray [11].

It was shown by Taylor [12] that in the slow swimming of a
microorganism the calculation of thrust can be circumvented.
In this limiting case one can use the time-independent Stokes
equations. The mean swimming velocity and mean rate of
dissipation then follow from a purely kinematic calculation
[13,14]. For small amplitude swimming both quantities are
quadratic in the amplitude of the stroke to lowest order. For
a simple system, where the body is modeled as an assembly
of rigid spheres held together by direct interaction forces and
subject to periodic actuating forces which sum to zero, we have
shown that in the high viscosity limit the swimming velocity
and power can be calculated for any amplitude of stroke from
kinematics alone [15,16].

In the following we investigate questions of thrust, velocity,
and power for swimming or flying in a fluid of any viscosity,
including the limit of low viscosity, for the same mechanical
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model as before. We assume for simplicity that the spheres
experience Stokes friction. In addition we incorporate hydro-
dynamic interactions via virtual mass effects, as found from
potential flow theory. We use Hamilton’s equations of motion
with added damping terms. In the limit of high viscosity, where
resistive forces dominate, the earlier results are recovered.
The model provides valuable insight also in the limit of low
viscosity, where reactive forces dominate. In that regime the
motion is dominated by virtual mass effects. Bernoulli forces
and modified linear friction should be taken into account
in a more realistic model. Nonetheless, the principle of the
calculation, which exploits elimination of the fluid degrees of
freedom, remains valid.

The flow is assumed to be laminar at all times. It is now
realized that the boundary layer of swimming fish is laminar
even at high Reynolds number [9]. Virtual mass effects were
discussed earlier by Lighthill [17]. The numerical modeling of
animal swimming and flight was reviewed by Deng et al. [18].

As an example a system of three equal spheres moving
along a common axis is studied. For this simple system the
mean swimming speed and mean power to second order in the
amplitude of stroke can be evaluated analytically. The solution
to a corresponding eigenvalue problem provides the optimal
stroke to this order, as we found elsewhere in the resistive
regime [15].

In our model the mean thrust, i.e., the frictional force
exerted on the fluid averaged over a period in periodic
swimming, vanishes identically. We find that the velocity of the
geometric center of the assembly is driven by a different force,
which we call the impetus. It has both a reactive and a resistive
component. The impetus determines the center velocity with
retardation. The mean impetus does not vanish.

It is known for small amplitude swimming in the resistive
regime that the mean power is directly proportional to the mean
velocity. We find for our example that the relation between
mean power and mean velocity is nearly linear also for large
amplitude swimming. Presumably the near linearity holds also
for other systems in the whole regime of viscosity. If true,
this would resolve the so-called Gray paradox [9], which is
based on the mistaken notion that the power is quadratic in the
velocity, as in Stokes friction.
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II. EQUATIONS OF MOTION

We consider a set of N rigid spheres of radii a1, . . . ,aN

and masses mp1, . . . ,mpN , centered at positions R =
(R1, . . . ,RN ), and immersed in an incompressible viscous
fluid of shear viscosity η and mass density ρ. The fluid is
of infinite extent in all directions. The flow velocity v(r,t)
and pressure p(r,t) of the fluid are assumed to satisfy the
Navier-Stokes equations

ρ

[
∂v

∂t
+ v · ∇v

]
= η∇2v − ∇p, ∇ · v = 0. (2.1)

The flow velocity v is assumed to satisfy the no-slip boundary
condition on the surface of the spheres. The fluid is set in
motion by time-dependent motions of the spheres. At each
time t the velocity field v(r,t) tends to zero at infinity, and the
pressure p(r,t) tends to the constant ambient pressure p0.

As the spheres move in the fluid they experience a
frictional force. In addition there may be applied forces
E(t) = (E1(t), . . . ,EN (t)) and direct interaction forces which
depend on the relative positions {Rj − Rk} of sphere centers.
We shall assume that the sum of applied forces vanishes, so
that

N∑
j=1

Ej (t) = 0. (2.2)

The sum of direct interaction forces vanishes owing to
Newton’s third law. We assume that the frictional forces are
linear in the sphere velocities, as given by low Reynolds
number hydrodynamics on the slow time scale [19]. The
spheres are freely rotating so that there are no frictional
torques.

The forces exerted by pressure gradients resist instanta-
neous acceleration and give rise to virtual mass effects [20].
For a single sphere j immersed in infinite fluid the virtual mass
would be 1

2mfj , where mfj = 4πρa3
j /3 is the mass of fluid

displaced by the sphere. The virtual mass effect for a collection
of N spheres is embodied in a (3N × 3N )-dimensional
mass matrix m. This can be derived from potential flow
theory by considering the irrotational flow pattern generated
instantaneously by a set of sudden impulses S = (S1, . . . ,SN )
from a state of rest. The total corresponding kinetic energy is

K = 1
2 U · m · U, (2.3)

where U = (U1, . . . ,UN ) is the set of sphere velocities. The
kinetic energy is a sum of two contributions, Kp + Kf , with

Kp = 1

2

N∑
j=1

mpjU
2
j , Kf = 1

2
ρ

∫
Vf

(∇φ)2 d r, (2.4)

where the integration is over the part of space occupied by
fluid and φ(r) is the velocity potential corresponding to the
set of instantaneous velocities U. The potential φ(r) is linear
in the sphere velocities U = (U1, . . . ,UN ), so that the kinetic
energy Kf is a quadratic form in U. The contribution Kf to
the total kinetic energy defines the virtual mass. This depends
parametrically on the positions R, leading to corresponding
hydrodynamic interactions.

Besides the mass matrix m it will be useful to define also
the mobility matrix μ, the friction matrix ζ , and the inverse

mass matrix w,

μ = ζ−1, w = m−1. (2.5)

The four matrices are symmetric and depend on the relative
positions of the sphere centers. The sphere momenta, including
the virtual mass contribution, are given by

p = m · U, U = w · p. (2.6)

Correspondingly we postulate the equations of motion

dR
dt

= U,
dp
dt

= −∂K
∂R

− ζ · U − ∂Vint

∂R
+ E, (2.7)

where K is given by K = 1
2 p · w · p and Vint is the potential

of direct interaction forces. The partial derivative ∂/∂R is
taken at constant momenta p. It is clear that the equations of
motion (2.7) have only limited validity. The frictional forces
are assumed to be linear in the sphere velocities, and Basset
memory forces are neglected. Nonetheless it is of interest to
explore the consequences of the equations as they stand.

We note that it follows from Eq. (2.7) that total dressed
sphere momentum P = �jpj is not conserved but changes
due to friction with the fluid. If an impulse S is imparted
at time t = 0 to the spheres in a state of rest due to applied
forces E = Sδ(t), then part of the momentum is transferred
instantaneously to the fluid, reducing the sphere velocities
to U(0+) = w · S, as can be seen by integration over an
infinitesimal time interval about t = 0 and use of Eq. (2.6).
The remaining momentum of the spheres is transferred to the
fluid in the course of time by friction. The total momentum of
spheres and fluid is conserved at all times.

III. IMPETUS, CENTER VELOCITY, AND
RATE OF DISSIPATION

We are looking for a solution of the equations of motion
where the center of the assembly moves on average with
uniform translational velocity and the individual spheres
perform periodic motions about the moving center. The
velocity U(t) of the geometric center is defined by

Uα = 1

N
U · uα, α = (x,y,z), (3.1)

where the symbol ux denotes a 3N -dimensional vector with 1
on the x positions, 0 on the y,z positions, and cyclic. The 3N -
dimensional displacement vector d(t) = (δ1(t), . . . ,δN (t)) is
defined by

Rj (t) = Rj0 +
∫ t

0
U(t ′) dt ′ + δj (t), j = 1, . . . ,N, (3.2)

with the property

d(t) · uα = 0, α = (x,y,z), (3.3)

and with {Rj0} a set of equilibrium positions for which the
direct interaction forces vanish. Correspondingly the velocity
vector is decomposed as

U = Uβuβ + ḋ. (3.4)
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Summation over repeated greek indices is implied. By substi-
tution into Eqs. (2.6) and (2.7) we find

d

dt
[m · (Uβuβ+ḋ)] + ∂K

∂R
+ζ · (Uβuβ + ḋ) + ∂Vint

∂R
= E(t).

(3.5)
Multiplying from the left with the vector uα we obtain

d

dt
(MαβUβ) + d

dt
(uα · m · ḋ) + ZαβUβ + uα · ζ · ḋ = 0,

(3.6)
with mass tensor M and friction tensor Z defined by

Mαβ = uα · m · uβ, Zαβ = uα · ζ · uβ. (3.7)

We have used the fact that m depends only on relative
coordinates, so that uα · ∂K/∂R = 0. Also we have used
Newton’s third law and Eq. (2.2). We note that in Eq. (3.6)
the center velocity Uβ occurs only in the two places explicitly
shown.

We rewrite Eq. (3.6) as

d

dt
(M · U) + Z · U = I, (3.8)

with time-dependent impetus I(t) given by

Iα(t) = − d

dt
(uα · m · ḋ) − uα · ζ · ḋ. (3.9)

The mean impetus, averaged over a period τ ,

Iα = 1

τ

∫ τ

0
Iα(t) dt = −uα · ζ · ḋ, (3.10)

does not vanish, even though the total mean force exerted by
the fluid on the assembly does vanish. The drag exerted on the
assembly by the fluid is

Dα = −uα · ζ · U = −ZαβUβ − uα · ζ · ḋ. (3.11)

The thrust T is equal and opposite to the drag, T = −D. There
are frictional forces on the spheres, but on time average the
total drag vanishes, D = 0, T = 0, as follows from Eqs. (2.2),
(2.7), and Newton’s third law for the interaction forces. We
use the fact that the integral of uα · dp/dt over a period
vanishes by periodicity, as well as the property uα · ∂K/∂R =
0, mentioned below Eq. (3.7). From D = 0 it follows that the
mean impetus can also be expressed as

Iα = ZαβUβ. (3.12)

We may regard Eq. (3.8) as a balance between central and
internal motion. The equation must be solved for the center
velocity U(t) for given impetus I(t), which can be calculated
from the displacement vector d(t). In the resistive limit the
total drag vanishes at any time [21] and the reactive forces
vanish, so that then Uα = MαβIβ = −Mαβuβ · ζ · ḋ.

The displacement vector d(t) may be calculated from
displacements in relative space by using a transformation to
center and relative coordinates. The geometric center of the
assembly is given by

R = 1

N

N∑
j=1

Rj = 1

N
eαuα · R (3.13)

with Cartesian unit vectors eα . We define relative coordinates
{rj } with j = 1, . . . ,N − 1 as

r1 = R2 − R1, r2 = R3 − R2, . . . ,
(3.14)

rN−1 = RN − RN−1,

and denote the corresponding (3N − 3)-vector
r = (r1, . . . ,rN−1). The 3N -vector (R,r) is related to
the vector R by a transformation matrix T according to

(R,r) = T · R (3.15)

with explicit form given by Eqs. (3.13) and (3.14). The
displacement vector d is derived from the displacement ξ in
relative space as

d = T−1 · (0,ξ ). (3.16)

Therefore the impetus is determined by displacements in
relative space.

The time-dependent rate of dissipation can be expressed in
the same matrix formalism. The rate of dissipation is given by

D = U · ζ · U. (3.17)

Once the center velocity U(t) has been calculated for known
displacements we can also calculate the time-dependent rate
of dissipation D(t) by use of Eq. (3.4). However, we derive an
alternative expression which will be useful in the following.
We can solve for the product ζ · U from the equation of motion

d

dt
(m · U) + ζ · U = F, (3.18)

where F is the vector of mechanical forces acting on the
spheres,

F = −∂K
∂R

− ∂Vint

∂R
+ E, (3.19)

which has the property uα · F = 0. Using this property we find
for the rate of dissipation

D = U · F − U · d

dt
(m · U) = ḋ · F − U · d

dt
(m · U).

(3.20)
Using here Eq. (3.18) again we can rewrite this as

D = ḋ · ζ · ḋ + Uαḋ · fα − Uαuα · d

dt
(m · U), (3.21)

with friction vector fα = ζ · uα . This generalizes an expression
derived earlier in the resistive limit [16].

IV. SMALL AMPLITUDE SWIMMING

For vanishing displacements Eq. (3.8) has the solution
U = 0. By formal series expansion in powers of the displace-
ment vector d we obtain a corresponding expansion of the
center velocity,

U = U (1) + U (2) + U (3) + . . . . (4.1)

The first order velocity U (1) satisfies the equation

M0
αβ

dU
(1)
β

dt
+ Z0

αβU
(1)
β = −uα · m0 · d̈ − uα · ζ 0 · ḋ, (4.2)
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where the superscript 0 indicates that the quantity is calculated
for the configuration R0. In particular for oscillating displace-
ment, in complex notation

d(t) = Re [dωe−iωt ], (4.3)

we find correspondingly

U (1)
αω = [−iωM0 + Z0]−1

αβ uβ · (ω2m0 + iωζ 0) · dω. (4.4)

In this situation the first order velocity oscillates in time and
vanishes on time average.

Multiplying Eq. (3.8) by the mobility tensor M = Z−1

and expanding to second order we obtain a more complicated
equation for the second order velocity U (2). It suffices to derive
an expression for the time average over a period τ = 2π/ω,

U (2) = 1

τ

∫ τ

0
U (2)(t) dt. (4.5)

Using periodicity and the first order equation Eq. (4.2) we
obtain the expression

U
(2)
α = −M0

αβuβ · ζ (1) · ḋ + M
(1)
αβ Z0

βγ U
(1)
γ . (4.6)

Alternatively the expression can be derived directly from
Eq. (3.12) by use of Z(1) = −Z0 M (1) Z0. Here we can use

ζ (1) = d · ∇ζ
∣∣
0, M (1) = d · ∇M

∣∣
0, (4.7)

where ∇ indicates the gradient operator in configuration space,
and the notation |0 indicates that the value of the gradient is
taken at R0. The time average in the first term in Eq. (4.6) can
be expressed as

uβ · ζ (1) · ḋ = 1

2
Re [−iωd∗

ω · Dβ |0 · dω], (4.8)

with derivative friction matrix

Dβ = ∇fβ, fβ = ζ · uβ, (4.9)

as introduced earlier [16].
In the second term in Eq. (4.6) we use the identity

Zαγ Mγβ = δαβ (4.10)

to show that

∇Mαβ = −Mαγ gγ

δ Mδβ (4.11)

with gradient vectors

gβ
γ = ∇Zβγ = Dβ · uγ . (4.12)

The first order velocity U (1)
γ is eliminated by use of Eq. (4.4).

Then the second order mean swimming velocity can be
expressed as

U
(2)
α = 1

2
Re[ iω d∗

ω · Vα(ω)|0 · dω], (4.13)

with frequency-dependent matrix Vα(ω) given by

Vα(ω) = MαβD̆β(ω), (4.14)

with reduced derivative friction matrix

D̆β(ω) = Dβ − gβ
γ Yγ δ(ω)fδ(ω), (4.15)

with admittance tensor

Y (ω) = [−iωM + Z]−1, (4.16)

and impedance vector

fδ(ω) = (−iωm + ζ ) · uδ. (4.17)

The matrix D̆β(ω) has the property

D̆β(ω) · uα = 0. (4.18)

ζ depends only on relative coordinates uα · ∇ζ = 0, hence

uα · Dβ = 0, uα · gβ
γ = 0. (4.19)

As a consequence

uα · Vβ(ω) = 0, Vα(ω) · uβ = 0. (4.20)

These properties generalize those derived earlier at zero
frequency [16].

To second order in the displacements the last term in
Eq. (3.21) can be written as

Uαuα · d

dt
(m · U) ≈1

2

d

dt

(
U (1)

α uα · m0 · U
(1)
β uβ

)
+ U (1)

α uα · m0 · d̈. (4.21)

In the average over a period the first term on the right does not
contribute. Hence for periodic motion the mean second order
rate of dissipation can be expressed as

D(2) = 1

τ

∫ τ

0

[
ḋ · ζ 0 · ḋ + U (1)

α ḋ · f0α − U (1)
α uα · m0 · d̈

]
dt.

(4.22)
Substituting Eq. (4.4) we find

D(2) = 1

2
ω2 Re [d∗

ω · P(ω) · dω], (4.23)

with the complex matrix

P(ω) = ζ 0 − Y 0
αβ(ω)f0α(ω)f0β(ω). (4.24)

The matrix is symmetric and has the properties

uα · P(ω) = 0, P(ω) · uα = 0. (4.25)

The properties Eq. (4.20) and (4.25) allow us to reduce the
dimension of the matrix description by 3 by introducing center
and relative coordinates.

V. VELOCITY MATRICES AND POWER MATRIX

The transformation given by Eqs. (3.13) and (3.14) can be
used to reduce the calculation of the second order swimming
velocity and rate of dissipation to one in relative space. The
matrices Vα(ω) and P(ω) are transformed to

Vα
T (ω) = T · Vα(ω) · T−1, PT (ω) = T · P(ω) · T−1. (5.1)

The first three rows of T consist of uα/N and the first three
columns of T−1 consist of uα . It follows from the properties
Eq. (4.20) and (4.25) that the first three rows and columns of
the transformed matrices Vα

T (ω) and PT (ω) vanish identically.
Hence in this representation we can drop the center coordinates
and truncate the matrices by erasing the first three rows
and columns. We denote the truncated (3N − 3) × (3N − 3)
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matrices as V̂α
T (ω) and P̂T (ω) and define displacements ξω in

relative space by

(0,ξω) = T · dω. (5.2)

With this notation the mean second order swimming velocity
and rate of dissipation are given by

U
(2)
α = 1

2 Re ξ ∗
ω · CT · V̂α

T (ω) · ξω,

(5.3)
D(2) = 1

2 ω2 Re ξ ∗
ω · CT · P̂T (ω) · ξω,

with the matrix

CT = [T̃−1 · T−1] .̂ (5.4)

This (3N − 3) × (3N − 3)-dimensional matrix consists of
numerical coefficients and is obtained from the corresponding
3N × 3N matrix by truncation, as indicated by the final hat
symbol.

We rewrite the expressions in Eq. (5.3) in a more convenient
form with vectors and matrices consisting of dimensionless
numbers. We introduce the complex dimensionless vector

ξ c = 1

b
ξω, (5.5)

where b is a typical length scale, and define

Bα = b
[(

CT · V̂α
T (ω)

∣∣
0

)s′ + i
(
CT · V̂α

T (ω)
∣∣
0

)a′′]
,

A = 1

bη
[(CT · P̂T (ω)|0)s′ + i(CT · P̂T (ω)|0)a′′], (5.6)

where the superscript s indicates the symmetric part, the
superscript a the antisymmetric part, the single prime the real
part, and the double prime the imaginary part. With the scalar
product

(ξ c|ηc) =
N−1∑
j=1

ξ c∗
j · ηc

j (5.7)

the mean swimming velocity and mean rate of dissipation can
then be expressed as

U
(2)
α = 1

2ωb(ξ c|Bα|ξ c), D(2) = 1
2ηω2b3(ξ c|A|ξ c). (5.8)

The matrices Bα and A are hermitian. We call Bα the velocity
matrix and A the power matrix.

We ask for the stroke with maximum swimming velocity
in a class of strokes with equal rate of dissipation for fixed
values of the geometric parameters, fixed frequency ω, and
given values of viscosity η and mass density ρ. Maximizing

the quadratic form ωb2U
(2)
α − λαD(2) with Lagrange multiplier

λα we obtain the generalized eigenvalue problem

Bαξ c = λαAξ c. (5.9)

The eigenvalues {λα} are real. The maximum efficiency

ET = ωb2|U (2)
α |/D(2)| for motion in direction α is given by

the maximum eigenvalue as

Eα
Tmax = λα

max. (5.10)

The set {Ex
Tmax,E

y

Tmax,E
z
Tmax} depends on the choice of

Cartesian coordinate system. Further optimization may be

possible by a rotation of axes. In particular cases a natural
choice of axes will suggest itself.

VI. POWER AND DISSIPATION

We view the swimmer or flyer as a dynamical system in
periodic motion, driven by actuating forces E(t) satisfying
uα · E = 0 and E(t + τ ) = E(t). In an expansion in powers of
the actuating forces the first order displacements are given by
Eq. (4.3). To second order the mean swimming velocity and
mean rate of dissipation are given by Eq. (5.8). In this section
we relate the mean power supplied by the actuating forces to
the mean rate of dissipation.

The instantaneous power supplied by the actuating forces
is given by

P (t) = E(t) · U(t). (6.1)

From Eq. (2.7)

d

dt
(K + Vint) = −U · ζ · U + E · U. (6.2)

Hence we find for periodic motion

U · ζ · U = E · U. (6.3)

This shows that on time average over a period the power is
fully dissipated by friction.

Since the mean thrust vanishes the usual definition of energy
wastage [2] makes no sense here. Instead we define the energy
wastage E(t) as the difference

E = P − U · I. (6.4)

In the theory of fish swimming and bird flight the energy
wastage has been associated with energy being lost to
the vortical wake [9]. We define the corresponding Froude
efficiency as

ηF = U · I
P

. (6.5)

This concept may be useful for the comparison of different
strokes.

VII. HYDRODYNAMIC INTERACTIONS

In order to perform explicit calculations we must specify the
form of the hydrodynamic interactions appearing in the friction
matrix and the mass matrix. In practice one uses approximate
expressions which are presumed to be reasonably accurate in
the range of distances considered.

The friction matrix can be calculated from an approxima-
tion to the mobility matrix based on Oseen’s pair interaction
[19]. In this approximation the pair mobility tensor for the pair
(j,k) is given by

μjk = 1

6πηaj

1δjk + 1

8πη

[
1

|Rj − Rk|

+ (Rj − Rk)(Rj − Rk))

|Rj − Rk|3
]

(1 − δjk). (7.1)

The mobility matrix μ is composed of pair tensors, and the
friction matrix ζ is its inverse.
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The calculation of the mass matrix m is based on potential
flow theory. A dipole approximation to the mass matrix can
be evaluated on the basis of an expression for the force on a
sphere in a uniform flow in potential flow theory, as given by
Landau and Lifshitz [22] and by Batchelor [23].

In potential flow theory the flow velocity is expressed as
v = −∇φ with a scalar potential φ, which satisfies Laplace’s
equation ∇2φ = 0 by incompressibility. A sphere of radius a,
centered at the origin and moving with velocity U in a fluid at
rest, generates a potential

φU (r) = 1

2
a3 r

r3
· U, r > a, (7.2)

corresponding to the dipole moment

qU = 1
2 a3U . (7.3)

If the sphere is placed in a uniform flow v0 this is modified to
[24]

q = 1
2 a3(U − v0). (7.4)

For a collection of N spheres in a fluid at rest at infinity
the velocities and dipole moments are related in dipole
approximation as

U j = 2

a3
j

qj +
∑
k �=j

Fjk · qk, j = 1, . . . ,N, (7.5)

with dipole interaction tensor

Fjk = F(Rj − Rk), F(r) = −1 + 3r̂ r̂
r3

, (7.6)

where r̂ = r/r . We abbreviate Eq. (7.5) as

U = A−1 · q, q = A · U. (7.7)

The velocity of sphere j after a sudden impulse Sj from a
state of rest is given by [22,23](

mpj + 1

2
mfj

)
U j =Sj + 3

2
mfj

∑
k �=j

Fjk · qk,

j = 1, . . . ,N. (7.8)

Substituting from Eq. (7.7) and solving for the velocities we
find by use of Eq. (7.5) and mfj = 4πρa3

j /3

U = w · S (7.9)

with matrix

w = [mp − mf + 4πρA]−1, (7.10)

where the matrices mp and mf are diagonal with elements
mpj 1 and mfj 1. The approximate effective mass matrix is

m = mp − mf + 4πρA. (7.11)

If the spheres are neutrally buoyant one has simply

m = 4πρA, w = 1

4πρ
A−1. (7.12)

In our application we shall consider this case.

VIII. THREE-SPHERE SWIMMER OR FLYER

The simplest application of the theory is to a three-sphere
swimmer or flyer with the three spheres aligned on the x axis,
as studied by Golestanian and Ajdari [25] in the resistive limit.
The spheres move along the x axis, and the y and z coordinates
can be ignored [26]. There are only two relative coordinates
r1 = x2 − x1 and r2 = x3 − x2, and the relevant parts of the
matrices Bx and A are two dimensional. The relevant parts are
denoted as Bxx and Ax . In the bilinear theory we consider a
point r0 in r space with coordinates (d1,d2), corresponding to
the configuration R0 of the rest system. As an example we
consider the case of equal-sized spheres with a1 = a2 = a3 =
a, equal masses m1 = m2 = m3 = m = 4πρa3/3, and equal
distances between centers d1 = d2 = d.

For this case analytic expressions for the matrices Bxx and
Ax can be derived, but are too complicated to be presented. In
the high viscosity limit the expressions reduce to those derived
previously [15]. The matrices, defined with b = a in Eq. (5.6),
depend only on the ratio d/a and the dimensionless viscosity
[27]

η∗ = η

ωa2ρ
. (8.1)

The two eigenvalues λ± = ±λ+, as well as the corresponding
eigenvectors ξ± = (1,ξ±) with ξ− = ξ ∗

+, also depend only on
these two variables. The dependence on the viscosity η∗ is
surprisingly slight over the whole range of η∗ values. The
absolute value |ξ+| is close to unity over the whole range. In
Fig. 1 we show the variation of λ+ and |ξ+| with η∗ for d = 5a.
The argument of ξ+ increases slightly from 0.6278 π at η∗ = 0
to 0.6285 π at η∗ = 106.

In the bilinear theory the optimal orbit (r1(t),r2(t)) in
relative space is given by r(t) = r0 + ξ 0(t) with r0 = (d,d)
and

ξ 0(t) = εa Re [ξ+ exp(−iωt)], (8.2)

with amplitude factor ε. The corresponding displacement
vector in configuration space is given by

d0(t) = T−1 ·
(

0
ξ 0(t)

)
, T =

⎛
⎝ 1

3
1
3

1
3−1 1 0

0 −1 1

⎞
⎠. (8.3)

In Fig. 2 we show a snapshot of the spheres and their velocities
in the instantaneous rest frame at t = 0 for ε = 3, d = 5a, and

2 1 0 1 2
log10η

0
0.02
0.04
0.06
0.08
0.1

ξ
1,
10
0
λ

FIG. 1. Plot of the eigenvalue λ+ and the absolute value |ξ+| for
the corresponding eigenvector ξ+ = (1,ξ+) of the three-sphere model
with d = 5a as functions of the dimensionless viscosity η∗.
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FIG. 2. Snapshot of the spheres and their velocities in the rest
frame at t = 0 for the motion given by Eq. (8.2) with ε = 3, d = 5a,
and η∗ = 0.01.

η∗ = 0.01. In Fig. 1 of Ref. [15] we showed the elliptical orbit
in relative space for d = 5a and ε = 0.1 in the limit of high
viscosity. In Fig. 3 we compare this with the corresponding
orbit in the limit of zero viscosity, corresponding to small η∗.
The two plots are indistinguishable on the scale of the figure.

From the periodic displacement d0(t) we can calculate
the instantaneous swimming velocity U (t) as a series of
harmonics from Eq. (3.8). The zeroth harmonic yields the mean
swimming velocity U . From U (t) and d0(t) we can calculate
the time-dependent rate of dissipation D(t), and hence the
mean D, by use of Eq. (3.17).

In Fig. 4 we show the reduced mean swimming velocity
U/(ε2ωa) as a function of ε for d = 5a and η∗ = 0.01. In
Fig. 5 we show the reduced mean power P/(ε2ηω2a3) vs
the reduced mean swimming velocity U/(ε2ωa) in the range
0 < ε < 3. In Fig. 6 we show the efficiency ET = ηωa2U/P

as a function of ε. The efficiency increases monotonically with
the amplitude factor. In Fig. 7 we show the time dependence
of the impetus I(t) and the center velocity U (t) as functions
of time during a period for ε = 3. We also plot separately the
resistive contribution to the impetus. At this value of η∗ this is
much smaller than the reactive part. It is noteworthy that the
variations in time of the center velocity are much smaller than
those of the impetus. The center velocity follows the impetus
with an aftereffect. In Fig. 8 we show the absolute value of
the Fourier coefficients fn of the velocity U (t), normalized
to f0 = 1, for ε = 3. This shows that only a small number of
harmonics contribute appreciably.

4.8 4.9 5 5.1 5.2
r1 a

4.8

4.9

5

5.1

5.2

r2 a

FIG. 3. Plot of the elliptical orbit in the r1r2 plane corresponding
to Eq. (8.2) with ε = 0.1, d = 5a, and η∗ = 0.01 (solid curve). We
also plot the elliptical orbit for the high viscosity limit (dashed curve).
The two curves cannot be distinguished on the scale of the figure.

0 0.5 1 1.5 2 2.5 3
1.2

1.3

1.4

1.5

1.6

10
0U

∋

∋

2 ω
a

FIG. 4. Plot of the reduced mean swimming velocity U/(ε2ωa)
for d = 5a and η∗ = 0.01 as a function of the amplitude ε as
calculated from Eq. (3.8) for displacements given by Eq. (8.3).

The equality of mean power and mean rate of dissipation
given by Eq. (6.3) can be checked numerically. The Froude
efficiency ηF , defined in Eq. (6.5), for these three values of ε

is 0.0004, 0.0020, 0.0057, respectively.
It is of interest to compare the above results with values ob-

tained from the numerical solution of the equations of motion
Eq. (2.7) with hydrodynamic interactions given by Eqs. (7.1)
and (7.12) and with prescribed oscillating actuating forces. In
order to stabilize the system we consider microswimmers with
internal harmonic interactions [28]. In matrix form the forces
may be expressed as

F = H · (R − R0) + E, (8.4)

with a real symmetric matrix H with the property H · uα = 0.
The actuating forces {Ej (t)} can be chosen to correspond
to the eigenvector with maximum eigenvalue in the problem
Eq. (5.9). The first term in Eq. (8.4) represents a harmonic
approximation to the direct interactions. We use harmonic
interactions given by the 3 × 3 matrix

H = k

⎛
⎝−1 1 0

1 −2 1
0 1 −1

⎞
⎠ (8.5)

with elastic constant k. This corresponds to nearest neighbor
interactions of equal strength k between the three spheres. The

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
U ωa

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ηω

2 a
3

FIG. 5. Parametric plot of the reduced mean swimming power
P/(ε2ηω2a3) vs the reduced mean swimming velocity U/(ε2ωa) for
d = 5a, η∗ = 0.01, and 0 < ε � 3.

053011-7



B. U. FELDERHOF PHYSICAL REVIEW E 92, 053011 (2015)

0 0.5 1 1.5 2 2.5 3∋

9

9.5

10

10.5

11

11.5
10
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T

FIG. 6. As in Fig. 4 for the efficiency ET = ηωa2U/D.

stiffness of the assembly is characterized by the dimensionless
number σ defined by

σ = k

πηaω
. (8.6)

We use the first order equations of motion,

dR(1)

dt
= U(1), m0 · dU(1)

dt
= −ζ 0 · U(1) + H · R(1) + E0,

(8.7)
to calculate the actuating forces E0(t) corresponding to the
optimal linear motion given by Eqs. (8.3) and (4.4). These
have the property uα · E0 = 0, so that the sum of actuating
forces vanishes. We choose initial conditions corresponding to
the rest configuration,

x1(0) = 0, x2(0) = d, x3(0) = 2d,

U1(0) = 0, U2(0) = 0, U3(0) = 0. (8.8)

The kinetic energy term in Eq. (2.7) makes the direct
numerical solution of the equations of motion time consuming.
Instead we use an iterative procedure, neglecting the kinetic
energy term in first approximation. Then the equations can
be solved by a fast procedure. From the solution the kinetic
forces, defined as −∂K/∂R, can be calculated as a function
of time. In the next step we include the kinetic forces and
repeat the procedure. The kinetic forces are small compared

0 1 2 3 4 5 6
ωt

1.5

1

0.5

0

0.5

1

1.5

2

η a
,1
0U

ω
a

FIG. 7. Plot of the impetus I(t) (solid curve), the resistive
contribution to the impetus (short dashes), and of the center velocity
U (t) (long dashes) as functions of time during a period for the
three-sphere swimmer for d = 5a, η∗ = 0.01, and amplitude factor
ε = 3.

0 2 4 6 8 10
n

0

0.02

0.04

0.06

0.08

0.1

0.12

fn

FIG. 8. Plot of the absolute values of the Fourier coefficients fn

of harmonics of frequency nω, normalized to f0 = 1, of the center
velocity U (t) of the three-sphere swimmer for d = 5a and η∗ = 0.01
with amplitude factor ε = 3.

to the actuating forces and the solution converges after a few
iterations.

In Fig. 9 we show the numerical solution of the equations of
motion Eqs. (2.6) and (2.7) with forces given by Eq. (8.4) for
d = 5a, viscosity η∗ = 0.01, stiffness σ = 10, and amplitude
factor ε = 1.5 for the first 50 periods. In Fig. 10 we show
the mean value of the kinetic energy for successive periods.
The orbit for the last period hardly differs from the ellipse
given by Eq. (8.3), as shown in Fig. 11. The mean swimming
velocity and the mean rate of dissipation can be calculated
as time averages over the last period. The efficiency is ET =
94 × 10−5, equal to the value calculated from the periodic
orbit by use of Eq. (3.8) for displacements d0(t) with ε = 1.5,
shown in Fig. 6.

IX. DISCUSSION

In general the performance of a swimmer or flyer can be
measured in terms of the dimensionless efficiency ET , defined
as the ratio

ET = ηωa2U

P
, (9.1)

0 50 100 150 200 250 300
ωt

0

5

10

15

20

x 1
a,
x 2
a,
x 3
a

FIG. 9. Plot of the positions of the three spheres found by
numerical integration of the equations of motion Eq. (2.7) for d = 5a,
η∗ = 0.01, σ = 10, ε = 1.5 for 50 periods of time.
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10
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20

K

FIG. 10. Plot of the mean value of the kinetic energy for
successive periods k = 1, . . . ,50 corresponding to Fig. 9.

where a is a conveniently chosen length scale, U is the mean
speed, and P is the mean power, averaged over a period
τ = 2π/ω. We note that the lower bound of the efficiency
ET vanishes, since for a periodic motion in relative phase
space which is time reversible the mean swimming velocity
vanishes. A striking result of the present analysis is that for
the simple three-sphere model, for which analytic calculations
can be performed, the maximum efficiency ETmax is nearly
independent of the dimensionless viscosity η∗ = η/(ωa2ρ),
as shown in Fig. 1; see Eq. (5.10). As a consequence the mean
speed is nearly inversely proportional to the shear viscosity η

for a given power. We expect that this is a general feature of
the mechanical system defined by equations of motion of the
type Eq. (2.7) with hydrodynamic interactions as detailed in
Sec. VII. This explains the great advantage that birds in air
have over fish in water.

A second result of the analysis is that the mean power is
equal to the mean rate of dissipation, as shown in Sec. VI.
There is no additional energy loss related to the rate of change
of the virtual mass.

3 4 5 6 7
r1 a

3

4

5

6

7

r 2
a

FIG. 11. Plot of the orbit during the last period of Fig. 9 (solid
curve) compared with the elliptical orbit given by Eq. (8.2) (dashed
curve).

The mean speed and mean power can be evaluated for more
sophisticated model swimmers or flyers by similar analysis.
Elsewhere we studied longer chains with both longitudinal and
transverse excitation in the resistive limit [26]. That analysis
can be extended to the full range of viscosity, based on the
equations of motion Eqs. (2.6) and (2.7).

For assumed periodic displacements the velocity of the
assembly can be derived from the equation of motion Eq. (3.8)
by decomposition in harmonics, as demonstrated in the three-
sphere model. The mean power is found as a collateral of
the calculation. The full range of viscosity is covered, so that
the analysis provides an interesting link between the flying of
birds, the swimming of fish, and the swimming of bacteria.
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