
PHYSICAL REVIEW E 92, 053004 (2015)

Impact of the Peterlin approximation on polymer dynamics in turbulent flows
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We study the impact of the Peterlin approximation on the statistics of the end-to-end separation of polymers
in a turbulent flow. The finitely extensible nonlinear elastic (FENE) model and the FENE model with the
Peterlin approximation (FENE-P) are numerically integrated along a large number of Lagrangian trajectories
resulting from a direct numerical simulation of three-dimensional homogeneous isotropic turbulence. Although
the FENE-P model yields results in qualitative agreement with those of the FENE model, quantitative differences
emerge. The steady-state probability of large extensions is overestimated by the FENE-P model. The alignment
of polymers with the eigenvectors of the rate-of-strain tensor and with the direction of vorticity is weaker when
the Peterlin approximation is used. At large Weissenberg numbers, the correlation times of both the extension
and of the orientation of polymers are underestimated by the FENE-P model.
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I. INTRODUCTION

The addition of elastic polymers to a Newtonian solvent
introduces a history dependence in the response of the fluid to
a deformation and hence modifies the rheological properties of
the solvent [1]. In turbulent flows, the non-Newtonian nature
of polymer solutions manifests itself through a considerable
reduction of the turbulent drag compared to that of the sol-
vent alone [2–6]. What renders this phenomenon even more
remarkable is that an appreciable drag reduction can already
be observed at very small polymer concentrations (of the order
of a few parts per million). Turbulent drag reduction was
discovered by Toms [7] more than 60 years ago and is now
routinely used to reduce energy losses in crude-oil pipelines
[8]. A full understanding of turbulent drag reduction remains
nonetheless a difficult challenge, because in the turbulent flow
of a polymer solution the dynamics of a large number of
polymers is coupled with strongly nonlinear transfers of kinetic
energy.

The study of turbulent flows of polymer solutions is
essentially based on two approaches: the molecular approach
and the continuum one. In the molecular (or Brownian
dynamics) approach, a polymer is modeled as a sequence of
N beads connected by elastic springs. The deformation of the
bead-spring chain is then followed along the trajectory of its
center of mass. In homogeneous and isotropic turbulence,
Watanabe and Gotoh [9] have shown that N = 2 beads
are in fact sufficient to describe the stationary statistics of
both the extension and the orientation of polymers, i.e., the
deformation of a polymeric chain is dominated by its slowest
oscillation mode. An analogous conclusion has been reached
by Terrapon et al. [10] in a study of polymer dynamics
in a turbulent channel flow. The model consisting of only
N = 2 beads is known as the finitely extensible nonlinear
elastic (FENE) dumbbell model [1]. The molecular approach is
suitable for studying the deformation of passively transported
polymers [9–21]. Molecular dynamics has also been employed

in combination with standard Eulerian techniques to simulate
viscoelastic flows (see the CONNFFESSIT [22,23] and BCF
[24] approaches). Peters and Schumacher [25] and Watanabe
and Gotoh [26,27] have recently performed two-way coupling
simulations of turbulent drag reduction in which the polymer
feedback is given by the forces exerted on the fluid by a large
number of individual dumbbells.

In practical applications, numerical simulations of turbulent
flows of polymer solutions commonly use the continuum
approach. The conformation of polymers is then described
by means of a space- and time-dependent tensor field, which
represents the average inertia tensor of polymers at a given
time and position in the fluid. Such a tensor is termed the poly-
mer conformation tensor. An evolution equation for the
conformation tensor may be derived in principle from the
FENE dumbbell model. Such an equation, however, involves
the average over thermal fluctuations of a nonlinear function
of the polymer end-to-end vector; a closure approximation
is therefore required. Peterlin [28] proposed a mean-field
closure according to which the average of the elastic force
over thermal fluctuations is replaced by the value of the force
at the mean-squared polymer extension. The resulting model
was subsequently dubbed the FENE-P model [29]. Within
the FENE-P model, the backreaction of polymers on the flow
is described by a stress tensor field, which depends on the
polymer conformation tensor. This continuum model is thus
suitable for simulating turbulent flows of polymer solutions;
it indeed amounts to simultaneously solving the evolution
equation for the polymer conformation tensor and the Navier-
Stokes equation with an additional elastic-stress term. The
FENE-P model is widely employed in numerical simulations
of turbulent drag reduction and has been successfully applied
to channel flows [30–33], shear flows [34,35], and two-
and three-dimensional homogeneous and isotropic turbulence
[36–39]. Nevertheless, although it qualitatively reproduces the
main features of turbulent drag reduction, the FENE-P model
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generally does not yield results in quantitative agreement with
experimental data (e.g., Ref. [33]). It is therefore essential to
assess the validity of the assumptions upon which the model
is based.

For laminar flows, the Peterlin approximation has been
examined in detail (see Refs. [40,41] and references therein).
In particular, the FENE-P model is a good approximation of the
FENE model in steady flows, whereas appreciable differences
appear in time-dependent flows. This observation suggests
that in turbulent flows, important differences between the two
models should be expected. Several studies have subsequently
investigated the validity of the Peterlin approximation in
turbulent flows by comparing one-way coupling simulations
of the FENE and FENE-P models [10,12,13,15,19]. These
studies have clearly shown potential differences between the
FENE and FENE-P models together with high sensitivity
on the statistical ensemble and dependency on the degree
of homogeneity of the underlying velocity fluctuations. We
undertake a systematic analysis of the Peterlin approximation
in three-dimensional homogeneous and isotropic turbulence
by means of one-way coupling Lagrangian simulations of
the FENE and FENE-P models. The size of our statistical
ensemble (128 × 103 fluid trajectories and 2 × 103 realizations
of thermal noise per trajectory) allows us to fully characterize
the statistics of polymer extension and orientation and to
investigate certain properties of the polymer conformation
tensor that, to the best of our knowledge, had not been studied
before. When the flow is turbulent, two independent effects
are at the origin of the discrepancies between the FENE
and FENE-P models: one is directly related to the closure
approximation for the elastic force, while the other is of a
statistical nature and is a consequence of deriving the statistics
of the end-to-end vector from that of the conformation tensor.
By isolating these two effects, we compare the steady-state
statistics and the temporal correlation of the extension and of
the orientation of polymers in the FENE and FENE-P models.

The rest of the paper is organized as follows. In Sec. II we
briefly review the FENE and FENE-P models. The Lagrangian
simulations are described in Sec. III. The results of the
simulations are presented in Sec. IV. Finally, conclusions are
drawn in Sec. V.

II. FENE AND FENE-P MODELS

In the FENE model, a polymer is described as two beads
connected by an elastic spring, i.e., as an elastic dumbbell [1].
If the fluid is at rest, the polymer is in a coiled configuration
because of entropic forces, and its equilibrium extension is
determined by the intensity of thermal fluctuations. If the
polymer is introduced in a moving fluid and the velocity field
changes over the size of the polymer, then the polymer can
stretch and deform. The dynamics of the polymer thus results
from the interplay between the stretching action of the velocity
gradient and the elastic force, which tends to take the polymer
back to its equilibrium configuration.

The maximum extension of the dumbbell is assumed to be
smaller than the Kolmogorov scale, so that the velocity field
changes linearly in space at the scale of the dumbbell. The drag
force on the beads is given by the Stokes law. Moreover, inertial
effects and hydrodynamical interactions between the beads are

disregarded. Polymer-polymer hydrodynamical interactions
are also disregarded under the assumption that the polymer
concentration is very low. Thus, the separation vector between
the beads, R(t), satisfies the following stochastic ordinary
differential equation (the FENE equation) [1,42]:

d R
dt

= σ (t)R − φ(R2)

2τp

R +
√

R2
0

τp

ξ (t), (1)

where R = |R|, σij (t) = ∂jui(t) is the velocity gradient at the
position of the center of mass of the dumbbell, ξ (t) is three-
dimensional white noise, R0 is the polymer root-mean-square
equilibrium extension, and τp is the polymer relaxation time
[τp is the time scale that describes the exponential relaxation
of 〈R2(t)〉 to its equilibrium value in the absence of flow].
The three terms on the right-hand side of Eq. (1) represent the
stretching by the velocity gradient, the restoring elastic force,
and thermal noise, respectively. The function φ determines the
elastic force, and, in the FENE model, it has the following
form:

φ(ζ ) = 1

1 − ζ/L2
, (2)

where L is the maximum extension of the polymer. The elastic
force diverges as R approaches L, hence extensions greater
than L are forbidden. Note that R(t) is a random vector
and that, when u is turbulent, two independent sources of
randomness influence its evolution: thermal noise and the
velocity gradient itself.

The polymer conformation tensor is defined as Cij ≡
〈RiRj 〉ξ , where 〈·〉ξ denotes an average over thermal fluc-
tuations. To derive the evolution equation for C, we apply the
Itô formula to RiRj and use Eq. (1):

d

dt
(RiRj ) = dRi

dt
Rj + Ri

dRj

dt
+ R2

0

τp

δij

= σik(t)RkRj + σjk(t)RkRi − 1

τp

φ(R2)RiRj

+ R2
0

τp

δij +
√

R2
0

τp

[Rjξi(t) + Riξj (t)]. (3)

Whereas there is no Itô-Stratonovich ambiguity for Eq. (1),
Eq. (3) should be understood in the Itô sense. We now average
Eq. (3) with respect to the realizations of ξ (t) and make use of
the following property of the Itô integral: 〈Riξj (t)〉ξ = 0. We
thus obtain

d

dt
〈RiRj 〉ξ = σik(t)〈RkRj 〉ξ + σjk(t)〈RkRi〉ξ

− 1

τp

[〈φ(R2)RiRj 〉ξ − R2
0δij

]
. (4)

Equation (4) is not closed with respect to C because of the term

Aij ≡ 〈φ(R2)RiRj 〉ξ . (5)

To obtain a closed equation, Peterlin [28] proposed the
following approximation:

Aij ≈ φ(〈R2〉ξ )〈RiRj 〉ξ = φ(tr C)Cij . (6)
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In the following, we shall denote

T ≡ φ(tr C)C. (7)

The resulting evolution equation for the polymer conformation
tensor (the FENE-P equation) is

dCP

dt
= σ (t) CP + CP σ t(t) − 1

τp

[
φ(tr CP)CP − R2

0I
]
, (8)

where I is the identity matrix and CP denotes the polymer
conformation tensor calculated according to the Peterlin
approximation. If the flow is turbulent, both C and CP have
a random behavior. Equation (8) describes the evolution of
the conformation tensor of a polymer along the Lagrangian
trajectory of its center of mass. Numerical simulations of drag
reduction use the Eulerian counterpart of Eq. (8), which is
obtained by replacing dCP/dt with ∂tCP + u · ∇CP and σ (t)
with the Eulerian velocity gradient. In principle, the evolution
equation for the conformation tensor should be coupled with
the Navier-Stokes equations through an additional stress term
proportional to φ( tr CP)CP [1]. Here, however, we focus on
the impact of the Peterlin approximation upon the statistics
of polymer deformation and consider passive polymers only
(one-way coupling). In the rest of the paper, we thus study the
relation between Eq. (8) and Eq. (1) when σ (t) is given by
the incompressible Navier-Stokes equations in the turbulent
regime. We expect the Peterlin approximation to be inaccurate
when the velocity gradient is much larger than the polymer
relaxation time, because in this case the distribution of polymer
extensions is broad [43] and hence the factor φ(R2) exhibits
large fluctuations.

We end this section with some considerations that will be
useful to guide our study:

(i) R(t) cannot be calculated from the solution of the FENE-
P equation [Eq. (8)]. By contrast, C(t) can be constructed from
the solution of the FENE equation [Eq. (1)] by averaging the
dyadic Ri(t)Rj (t) over the realizations of the noise ξ (t). The
tensor C(t) can then be compared with CP(t).

(ii) Because of the Peterlin approximation [Eq. (6)], the
FENE and FENE-P equations yield a different evolution for the
conformation tensor. This holds for both laminar and turbulent
flows.

(iii) If the flow is turbulent, the statistics of R(t) differs from
that of C(t), even if C(t) is calculated from Eq. (1) (and hence
no closure approximation is required). Consider, for example,
the random variables R(t) and ρ(t) ≡ √〈R2(t)〉ξ = √

tr C(t).
In general, the probability density function (PDF) of R(t) is
different from that of ρ(t), as can be seen from 〈〈Rα〉ξ 〉σ �=
〈〈R2〉

α
2
ξ 〉σ (α �= 2), where 〈·〉σ denotes an average over the

statistics of the turbulent velocity gradient.
In conclusion, the FENE and FENE-P models differ for two

reasons, namely the Peterlin approximation and the statistical
effect due to the fact that the statistics of R(t) cannot be
deduced from that of C(t). Hence, in the turbulent regime,
the proper way to examine the Peterlin approximation is to
first construct C(t) from the FENE equation and then compare
its statistics with that of the solution of the FENE-P equation. If
the statistics of R(t) is directly compared with that of CP(t), the
error due to the Peterlin approximation is combined with the
statistical effect discussed at point (iii) above. This fact seems

to have been overlooked in some of the previous studies. We
also remark that for the above reasons, our study differs from
that presented in Ref. [15]. In that latter study, the statistics of
R was indeed compared with that of the end-to-end separation
vector of the FENE-P dumbbell model.

III. LAGRANGIAN SIMULATIONS

The dynamics of polymers is studied by using a database
of Lagrangian trajectories that was previously generated to
examine the dynamics of both tracers and inertial particles in
turbulent flows [44,45]. The turbulent velocity field is obtained
by direct numerical simulation of the three-dimensional
incompressible Navier-Stokes equations:

∂t u + u · ∇u = −∇p + ν∇2u + f , ∇ · u = 0, (9)

where p is the pressure field and ν = 2 × 10−3 is the kinematic
viscosity. The forcing f is such that the spectral content of
the first low-wave-number shells remains constant in time.
The domain is a three-dimensional periodic box of linear size
2π . Equation (9) are solved by means of a fully dealiased
pseudospectral algorithm with second-order Adams-Bashforth
time stepping. The number of grid points is 5123, while the
integration time step is dt = 4 × 10−4. In this simulation,
the Kolmogorov time is τη = 4.7 × 10−2 and the Taylor-
microscale Reynolds number is Rλ = 185 (for more details
on the numerical simulation, see Refs. [44,45]). We expect our
results not to depend significantly on the value of Rλ except for
some residual effects induced by intermittency in the statistics
of the velocity gradients [46].

As mentioned in Sec. II, the inertia of polymers is
negligible. Furthermore, their thermal diffusivity is very small
compared to the turbulent diffusivity. Hence the center of mass
of a polymer moves like a tracer and its position xc(t) satisfies
the following equation:

dxc

dt
= u(xc(t),t). (10)

Equation (10) is once again solved by using a second-order
Adams-Bashforth scheme; a trilinear interpolation algorithm
is used to determine the value of the velocity field at
the position of the polymer [44,45]. After the statistically
stationary state is reached for both the fluid motion and
the translational dynamics of polymers, the positions of the
center of mass of 128 × 103 polymers are recorded every
�t = 10dt = 4 × 10−3 ≈ τη/10. The total integration time
after steady state is T = 13.2, which corresponds to six eddy
turnover times approximately.

The velocity gradient σ (t) is recorded every �t along the
trajectory of the center of mass of each polymer and is inserted
into Eqs. (1) and (8) in order to determine the dynamics of the
separation vector and of the conformation tensor. Equation (1)
is solved by using the semi-implicit predictor-corrector method
introduced by Öttinger [42]; the integration time step is equal
to �t for all values of the parameters. The initial condition for
Eq. (1) is such that Ri(0) = R0/

√
3, i = 1,2,3. Equation (8)

for CP is integrated by means of the semi-implicit algorithm
proposed in Ref. [10], which ensures that tr CP ≤ L2.

The Weissenberg number is defined as Wi ≡ τp/τη and
is the ratio of the time scales associated with the elastic
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FIG. 1. (Color online) Contour plot of Pσ (trA, tr T ) for Wi = 1 (top left panel), Wi = 7 (top right panel), and Wi = 20 (bottom left panel).
The bottom right panel shows the averages of trA (black squares) and tr T (blue circles) as a function of the Weissenberg number.

force and with the velocity gradient. In our simulations, Wi
varies between 10−2 and 102. (An alternative definition of the
Weissenberg number uses the maximum Lyapunov exponent
of the flow, λ, to estimate the reciprocal of the stretching
time associated with the velocity gradient. In our simulations,
λ ≈ 0.14τ−1

η [47]. Thus, the Weissenberg number based on
the Lyapunov exponent is Wiλ = λτp ≈ 0.14Wi.) The squares
of the equilibrium and maximum extensions of the polymer
are R2

0 = 1 and L2 = 3 × 103, as in Refs. [9,19]. The number
of realizations of thermal noise per Lagrangian trajectory is
2 × 103.

Finally, the statistics of polymer deformation is collected
over the Lagrangian trajectories, over the realizations of
thermal noise, and over time [only for times greater than the
time required for R(t) to reach the statistically steady state].

We note that the statistics of the separation vector R in
isotropic turbulence has been studied thoroughly by Watanabe
and Gotoh [9]. The results on the statistics of R given below
agree with those presented in Ref. [9]. Here, we compare the
statistics of C with that of CP in order to determine the effect
of the Peterlin closure on the dynamics of polymers.

IV. RESULTS

In this section, we examine the statistics of polymer
extension and orientation in the FENE and FENE-P models.
Before presenting the results, it is useful to define some
notations. If the statistics of a random variable depends both
on thermal noise and on the velocity gradient (such as, for
instance, in the case of R), its PDF is denoted as Pξ,σ . If
the statistics of a random variable (e.g., tr C) only depends
on the velocity gradient, then its PDF is denoted as Pσ . The
autocorrelation function of a scalar random variable X(t) is
denoted as FX(t) and the correlation time of X(t) is TX =∫ ∞

0 FX(t)dt . The autocorrelation function of a statistically
isotropic unit random vector X(t) is defined as

FX (t) = 2〈|X(t + t0) · X(t0)|〉 − 1 (11)

and the associated correlation time is TX = ∫ ∞
0 FX (t)dt . We

denote by êi (i = 1,2,3) the unit eigenvectors of the rate-
of-strain tensor S ≡ (∇u + ∇uT)/2; the eigenvectors êi are
ordered by descending eigenvalue, i.e., ê1 is associated with
the largest eigenvalue of S and ê3 with the smallest one. The
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FIG. 2. (Color online) Autocorrelation function of trA (black squares) and tr T (blue circles) for (a) Wi = 1, (b) Wi = 7, and (c) Wi = 20.
Panel (d) shows the correlation times TtrA (black squares) and Ttr T (blue circles) rescaled by τη as a function of Wi.

direction of vorticity is ω̂. Finally, we denote by ẑ1 and ẑP
1 the

first unit eigenvector of C and CP, respectively.

A. The Peterlin approximation

As mentioned in Sec. II, the Peterlin approximation consists
in replacingAwith T in the evolution equation for the polymer
conformation tensor [A and T have been defined in Eqs. (5)
and (7)]. The eigenvectors of A and T are the same, but
their eigenvalues may differ. Indeed, Jensen’s inequality yields
trA ≥ tr T . A first indication of the effect of the Peterlin
approximation is thus given by the joint PDF Pσ (trA, tr T )
(see Fig. 1). For small polymer extensions or for small values of
Wi, trA and tr T are approximately the same, i.e., the Peterlin
approximation holds very well. This fact can be explained
by noting that, for small Wi, polymers are weakly stretched
and hence 1 − R2/L2 ≈ 1. By contrast, for large extensions
or for large values of Wi, the deviations of tr T from trA
are appreciable, i.e., the Peterlin approximation is inaccurate.
As mentioned earlier, these deviations are due to the broad
distribution of polymer extensions in a turbulent flow at large
Wi (see Sec. IV B for more details). Nevertheless, 〈tr T 〉σ and
〈trA〉σ do not differ appreciably (see the bottom-right panel
in Fig. 1). This fact demonstrates that the study of average
values may not suffice to investigate the validity of the Peterlin
approximation and that the fluctuations of the restoring term

should also be analyzed, as they may influence the statistics of
polymer deformation in a nontrivial way.

In addition, the qualitative behavior of the temporal auto-
correlations of trA and tr T are similar [Figs. 2(a)–2(c)], but
for large Wi the correlation time of trA is shorter than that of
tr T [Fig. 2(d)]. The peak in the graph of the correlation time
versus Wi can be attributed to the critical slowing down of
polymer stretching near the coil-stretch transition [17,48,49]
(see also Sec. IV B).

B. Statistics of polymer extension

The statistical properties of the separation R are well
understood; we briefly review the theory of the coil-stretch
transition, which will be useful to interpret the numerical
simulations. For small values of Wi, most of the polymers
are in the coiled state, i.e., their extension is close to the
equilibrium one. Accordingly, the PDF of R has a pronounced
peak at R0. As Wi increases, polymers unravel and become
more and more extended. The transition from the coiled to
the stretched state occurs when the Lyapunov exponent of the
flow exceeds 1/2τp, i.e., at Wiλ = 1/2 [43]. [Note that some
authors define the Weissenberg number in terms of the time
scale associated with the exponential relaxation of

√
〈R2(t)〉

instead of 〈R2(t)〉 and hence obtain a critical Weissenberg
number equal to unity.] At intermediate extensions, the PDF
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FIG. 3. (Color online) PDF of R/L (black squares), ρ/L (blue circles), and ρP/L (red triangles) for (a) Wi = 2, (b) Wi = 7, and (c)
Wi = 20. Panel (d) shows 〈R〉ξ,σ /L (black squares), 〈ρ〉σ /L (blue circles), and 〈ρP〉σ /L (red triangles) as a function of the Weissenberg
number.

of R has a power-law behavior, i.e., Pξ,σ (R) ∼ R−1−α for
R0 
 R 
 L [43]. This property of Pξ,σ (R) indicates that
polymers with very different extensions coexist in the fluid;
whether the coiled or the stretched state dominates depends on
the value of Wi. The exponent α is positive in the coiled state
and decreases as a function of Wi [9,20,43,50]. As long as
α > 0, the FENE dumbbell model reaches a steady state even
as L tends to infinity (the L → ∞ limit of the FENE model is
known as the Hookean model [1]). However, when α vanishes,
a steady-state PDF of the extension no longer exists if L → ∞.
This behavior is interpreted as the coil-stretch transition [43].
Finally, if Wi increases beyond the value of the coil-stretch
transition, α becomes negative and the maximum of Pξ,σ (R)
moves from close to R0 to close to L [9,50]. The statistics of
R shown in Figs. 3 and 4 for different values of Wi agrees very
well with the theory. We now compare the FENE and FENE-P
models and use the above theoretical predictions to interpret
the numerical results.

We noted in Sec. II that the comparison between the FENE
and the FENE-P models ought to be done in terms of the
conformation tensors C and CP (rather than in terms of R

and CP). Let us denote ρ(t) = √
tr C(t) and ρP(t) =

√
tr CP(t).

To examine the influence of the Peterlin approximation on

the statistics of polymer extension, we calculate ρ from the
solution of Eq. (1) and ρP from Eq. (8). We then compare
Pσ (ρ/L) and Pσ (ρP/L) in the steady state for different values
of Wi. The plots shown in Figs. 3 and 4 correspond to the
coiled state (Wi = 2), the coil-stretch transition (Wi = 7), and
the stretched state (Wi = 20).

For small values of Wi, Pσ (ρ/L) and Pσ (ρP/L) do not differ
significantly. The reason for this behavior is that for small Wi,
the extension of most polymers is near R0; hence 1 − R2/L ≈
1 and the Peterlin approximation holds very well [Fig. 3(a)].
For intermediate and large values of Wi, the differences
between Pσ (ρ/L) and Pσ (ρP/L) are, in contrast, considerable.
This fact is due to the power-law behavior of the PDF of R

for intermediate extensions. At large Wi, the statistics of R

is indeed characterized by a broad distribution of extensions
around the mean value, and the Peterlin approximation is
poor. In particular, we note that in the FENE-P model, large
extensions are more probable than in the FENE model to the
detriment of small and intermediate extensions [Figs. 3(b) and
3(c)]. This phenomenon is easily explained by noting that in
the FENE model, the elastic force keeps R2 smaller than L2,
whereas in the FENE-P model it only ensures that ρ2 < L2.
Hence the restoring term in Eq. (8) is weaker than that in
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Eq. (1) and allows larger extensions. The FENE-P model,
therefore, overestimates the average extension of polymers for
large values of Wi [Fig. 3(d)]. An analogous behavior has been
observed in turbulent channel flows [10,15].

We also note that whereas for large Wi the PDFs of
R and ρ are approximately the same [Fig. 3(c)], they are
significantly different for intermediate or small Wi [Figs. 3(a)

and 3(b)]. This fact can be explained as follows. In the former
case, the stretching action of the velocity gradient is very
strong compared to the effect of thermal fluctuations, and in
most realizations R ≈ √

tr C. In the latter case, the effect of
thermal fluctuations cannot be disregarded and the differences
in the statistics of R and ρ (see Sec. II) become evident.
Furthermore, Pξ,σ (R/L) and Pσ (ρ/L) mainly differ for small
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FIG. 6. (Color online) PDF of alignment with (a) ê1, (b) ê2, (c) ê3, and (d) ω̂ for Wi = 20.

and intermediate extensions, because the large extensions are
obtained in those realizations in which the velocity gradient
is very intense and thermal noise can be neglected. The above
results demonstrate that comparing the statistics of R directly
with that of CP may lead to wrong conclusions; indeed, at small
Wi, Pξ,σ (R/L) and Pσ (ρP/L) are clearly different, whereas
Pσ (ρ/L) and Pσ (ρP/L) are close.

The autocorrelation function of the extension is approx-
imately exponential both in the FENE and in the FENE-P
models. However, FρP (t) is a good approximation of Fρ(t)
only for small Wi [Fig. 5(a)]. In addition, the FENE-P model
captures the critical slowing down of polymers near the coil-
stretch transition [17,48,49], but for large Wi it underestimates
the correlation time of the extension [Fig. 5(d)]. Once again,
we note that, for small Wi, a direct comparison between FR(t)
and FρP (t) would lead to wrong conclusions about the effect
of the Peterlin closure on the temporal statistics of polymer
extension.

C. Statistics of polymer orientation

In a coupled simulation of turbulent drag reduction, the
feedback of polymers on the flow is of a tensorial nature;
therefore, it depends not only on the extension of polymers but
also on their orientation.

In the FENE and FENE-P models, the first eigenvector
of C and of CP (denoted as ẑ1 and ẑP

1, respectively) gives the
direction of the polymer, provided Wi is sufficiently large. The
effect of the Peterlin approximation on polymer orientation can
then be studied by comparing the statistics of ẑP

1 with that of ẑ1.
Figure 6 shows that ẑ1 exhibits a moderate alignment

with ê2 and a strong alignment with ω̂. This behavior can
be explained as follows. We have already noted that, for
intermediate or large values of Wi, thermal fluctuations have
a negligible effect on the dynamics of polymers. We therefore
expect that the statistics of ẑ1 coincides with that of R̂ = R/R,
as is confirmed by the results shown in Fig. 6. If thermal
fluctuations are negligible, the evolution of the extension R

decouples from that of the orientation R̂, which behaves like
the orientation vector of a rigid rod and is the solution of
the Jeffery equation [51] [see also Fig. 7(b) in Ref. [19]].
Therefore, for large values of Wi, the orientation statistics of
ẑ1 can be deduced from the dynamics of rigid rods. Pumir
and Wilkinson [52] have shown that in isotropic turbulence
there is a moderate alignment between rigid rods and ê2,
whereas the alignment of rods with the direction of vorticity
is very strong. This phenomenon explains the alignment
properties of ẑ1 (Fig. 6). Figure 6 also compares the statistics
of ẑ1 and ẑP

1. The FENE-P model qualitatively reproduces
the orientation statistics of the first eigenvector of the
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ẑ
1
/τ

η
,

T
ẑ
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conformation tensor but underestimates the level of alignment
(Fig. 6).

The autocorrelation function of ẑ1 decays exponentially
[Figs. 7(a)–7(c)], which for large Wi is once again in agreement
with the results for the autocorrelation of the orientation of a
rod [52]. The correlation time of ẑ1 increases for small values
of Wi and saturates at large Wi [Fig. 7(d)]. The saturation is due
to the fact that at large Wi the statistics of R̂ and ẑ1 are the same
and the evolutions of R and R̂ decouple [51], which implies
that the statistics of R̂ agrees with the orientation statistics of
a rod and therefore becomes independent of Wi. The results
of the FENE-P model are in agreement with these properties
of the FENE model at small Wi, but quantitative discrepancies
appear at large Wi [Figs. 7(a) to 7(c)]. In particular, the
FENE-P model underestimates the correlation time of polymer
orientation [Fig. 7(d)].

V. CONCLUSIONS

Numerical simulations of turbulent flows of polymer
solutions use the FENE-P model, which is based on the elastic
dumbbell model but requires a closure approximation for the
elastic term. We have examined the effect of the Peterlin
closure on the steady-state statistics of the extension and

the orientation of polymers. The FENE-P model captures
the qualitative properties of the statistics, but for large Wi it
underestimates the steady-state probability of small extensions
and overestimates the probability of large extensions. As
a consequence, the Peterlin approximation yields a greater
average extension as well as a greater probability that polymers
break under the action of a turbulent flow [53]. To quantify this
effect, one would need to couple the dynamics of polymers
with a fragmentation model connected to the accumulated (or
instantaneous) stress along each trajectory and to estimate the
relative breaking rate [54]. Since large polymer extensions
are more likely in the FENE-P model than in the FENE
model, we also expect that the Peterlin approximation yields
a stronger feedback of polymers on the flow in two-way
coupling simulations of homogeneous isotropic turbulence
with polymer additives. A similar argument, however, does
not carry over to inhomogeneous flows such as channel flows.
In this case, indeed, drag reduction is caused by the strong
stretching of polymers in the near-wall region rather than by
the dynamics in the bulk of the channel, where the flow is
homogeneous and isotropic, and a lower degree of stretching
is observed [2,10,12–14,21].

As regards the temporal statistics of the end-to-end sep-
aration vector, both the correlation times of the extension
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and the orientation of polymers are underestimated by the
FENE-P model. The FENE-P model also underestimates
the level of alignment of polymers with the eigenvectors of the
rate-of-strain tensor and with the direction of vorticity.

It would be interesting to check to what extent these
properties of the FENE-P model influence the dynamics of a
polymer solution by comparing two-way coupling simulations
of the FENE-P model in which the stress tensor is either
calculated according to the Peterlin closure or from molecular
dynamics.

In this paper, we examined the Peterlin approximation, as
this is the main assumption in the construction of a continuum
model of polymer solutions. However, it is worth recalling that
the FENE-P model is based on the dumbbell model and hence
on a very simplified coarse-grained description of a polymer
macromolecule. Other approximations may thus impact the
performance of the FENE-P model and its comparison with
experiments. For instance, even for simple laminar flows,
the dumbbell model reproduces the experimental observations
only if the maximum extension and the effective bead radius
are used as free parameters to fit the experimental data
[55,56]. The FENE model also disregards hydrodynamical
interactions between the beads of a single dumbbell. However,
these hydrodynamical interactions only affect the statistics
of small extensions and are negligible at large extensions,
where discrepancies between the FENE and FENE-P model

become appreciable. Thus, for sufficiently large Wi, we expect
the errors due to the absence of bead-bead hydrodynamical
interactions to be subleading with respect to those due to the
Peterlin closure. Finally, the FENE dumbbell model, which
consists of a single oscillation mode, fails to accurately capture
the deformation of a polymer after a sudden variation of the
strain (see, e.g., Ref. [57]). To fix this limitation of the FENE
model, Ghosh et al. [58] have derived a dumbbell model in
which the maximum extension is adapted to the amplitude of
the strain. This model was recently generalized by Gupta [59]
to a bead-spring chain model that also describes the internal
motions of a polymer molecule.
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