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Hydrodynamic stability of three-dimensional homogeneous flow topologies
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This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies.
The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence,
divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional
flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline
topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-
stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third
derivative, pressure overcomes inertial effects to stabilize the flow.
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The stability of three-dimensional flows under the joint
effects of strain and rotation is of intrinsic importance in
diverse fields. In air transport, trailing vortices pose grave
hazards to aircraft [1]. Similarly, elliptic streamline flows pose
a long-standing challenge in turbulence modeling [2]. The
existence of stable vortices in strongly turbulent planetary
atmospheres, such as the Great Red Spot on Jupiter, is
a challenging problem in astrophysics [3,4]. In this vein,
the most elementary flows exhibiting innate instabilities are
homogeneous flows subjected to spatially uniform deforma-
tion. In literature, stability analyses of homogeneous flows
employ two distinct approaches: hydrodynamic stability and
rapid distortion theory (RDT). The geometric approach to
hydrodynamic stability was pioneered by Arnold [5] and
further developed by Friedlander and coworkers [6–8]. Using
this technique, Friedlander and Vishik [6] have proved that all
planar homogeneous flows with hyperbolic stagnation points
are unstable. Their system of equations, circumscribing the
growth rate of the Green’s function evolution operator, are
exactly equivalent to the Kelvin-Moffat system [9] used in
RDT-based investigations. As observed in Cambon [10], RDT
examines both the transients and the asymptotic states of the
flow. Cambon [10] employed this approach to analyze the
elliptic flow instability. Subsequently, the stability of planar
flows with uniform gradients has been extensively examined
by Cambon and coworkers [11–13] and other investigators
[14–16]. At the interface of the geometric hydrodynamic
stability and the RDT-based approaches are investigations
such as those of Craik and Criminale [17], Waleffe [18], and
Bayly [19].

While homogeneous flows are, in principle, amenable to
a unified treatment, only flows undergoing two-dimensional
(planar) deformations have hitherto been examined in detail
in literature. In spite of the fact that three-dimensional flows
include important cases such as flows with swirl and axisym-
metric expansion and contraction, the stability, dynamics, and
evolution of these flows have not been analyzed as extensively.
The primary objective of this article is to investigate the linear
stability of specific three-dimensional flows. To this end, we
aim to isolate and explicate the role of the inertial and pressure
effects on flow stability.
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A significant amount of work has also been conducted on
the topological characterization of velocity gradient evolution
in turbulent flows [20–22]. This line of analysis focuses on the
nonlinear interactions of the fluctuating velocity field, in the
absence of any influence of the mean flow. The focus of our
investigation is on the effect of spatially uniform mean flows on
the linear dynamics of perturbation evolution. Homogeneous
background flows are characterized in terms of the velocity
gradients

Aij = ∂Ui

∂xj

, Sij = Aij + Aji

2
, Wij = Aij − Aji

2
, (1)

where Aij , Sij , and Wij are the velocity gradient, strain
rate, and rotation rate tensors. A general three-dimensional
background velocity gradient field can be represented as

Aij =
⎡
⎣

σ1 ω3 ω2

−ω3 σ2 ω1

−ω2 −ω1 −σ1 − σ2

⎤
⎦. (2)

This background velocity gradient field is maintained spatially
and temporally uniform with the application of appropriate
body forces [23]. For an incompressible flow, the first (P ),
second (Q), and third (R) invariants of the velocity gradient
tensor are
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)
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For incompressible flows, P , representing the additive inverse
of the dilatation is zero. In compressible flows, a nonzero
value of P signifies the degree of compression and expansion
in the mean flow. The second and the third invariants provide
information regarding the mean flow topology. If the mean
velocity gradient is normalized by its norm, aij = Aij√

AmnAmn
, the

corresponding invariants of the normalized tensor, (p, q, r),
can be bounded as p ∈ [−√

3,
√

3], q ∈ [−1
2 , 1], and r ∈

[ −1
3
√

3
, 1

3
√

3
]. The streamline topology of the background flow

can be categorized on the basis of Q and R as shown in
Fig. 1. The R = 0 line corresponds to planar background flows:
Q > 0 represents elliptic streamline flows; Q < 0 represents
hyperbolic streamline flows; and Q = R = 0 represents a
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FIG. 1. Classification of flow regimes with respect to Q and R.

planar purely sheared flow. The curves S1 and S2, representing
solutions of 27R2 + 4Q3 = 0, separate zones of real and
complex roots for the local flow topology. For R �= 0, we
follow Chong et al. [24] to categorize the topologies. Ex-
pansion (R > 0,Q < S2) and Contraction (R < 0,Q < S1)
flows are topologically homeomorphic to their axisymmetric
counterparts. Thus, the benchmark cases of axisymmetric
contraction and axisymmetric expansion flows would lie on
the lines marked S1 and S2 in the figure. The Cyclonic
(R > 0,Q > S2) and the anticyclonic (R < 0,Q > S1) flows
reflect the directionality of swirl [25]. The interested reader is
referred to Ref. [26], wherein a comparison of such idealized
streamlines and their realization in nature is shown.

Prior studies on planar background flows have demon-
strated that linear stability is a topological property and, thus,
is strongly dependent on the structure of the streamlines of
the background flow [13–16]. Therefore, to study the stability
of a specific background flow topology, it may be adequate
to examine a small set of representative velocity gradients. In
this investigation, we restrict the analysis to the case wherein
the vorticity axis vector coincides with the three-axis of the
coordinate system. The one and two axes are taken to coincide
along the strain rate eigendirections on the plane of rotation.
Thus, the mean gradient reduces to

Aij =
⎡
⎣

σ1 ω 0
−ω σ2 0
0 0 −σ1 − σ2

⎤
⎦. (3)

This subset of the general three-dimensional case enables
systematic classification and analysis. Additionally, this subset
still contains benchmark flows such as those with expansion,
contraction, and swirl.

The rapid distortion equations in dimensional form, for the
velocity perturbation (�u′) subjected to a given mean velocity

field, are given by [9]
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Here, the D̄

D̄t
operator represents the total derivative following

a mean streamline. These equations are examined in Fourier
space, via the projection: u′

i(x,t) = ∑
ui(κ,t)eiκ ·x, p(x,t) =∑

p̂(t)(κ,t)eiκ ·x. The evolution equations in Fourier space are

duj

dt
= ukAlk(2ej el − δjl),

del

dt
= emAmi(eiel − δil), (5)

subject to the orthogonality condition, uiei = 0. Here, �u and
�e represent the Fourier amplitude and the unit wave-number
vectors (�e = �κ

|κ| ). The Fourier amplitude evolution is governed
by

duαu∗
α

dt
= −(uku

∗
α + u∗

kuα)Aαk + 2Alkeleα(uku
∗
α + u∗

kuα),

(6)

where the Greek indices are independent of the summation
convention and ∗ represents the complex conjugate. The
amplitude evolution is dictated by two distinct processes.
First is the inertial production mechanism, Pαα = −(uku

∗
α +

u∗
kuα)Aαk . The pressure redistribution mechanism, παα =

2Alkeleα(uku
∗
α + u∗

kuα), modifies the velocity amplitude to
preserve uiei = 0 and is contingent upon the wave-vector
alignment.

To isolate and analyze the role of the mechanisms in the
evolution of the flow, we utilize the technique of Burgulence
[9]. Herein, the evolution of a “pressure-released” Burgers
system is contrasted against the Euler system to isolate the
effects of inertia and pressure. For planar background flows,
the dependence of the inertial and pressure effects, along with
stability, upon the flow topology is summarized in Table I.

For each representative background flow considered, we an-
alyze the kinetic energy evolution of over 12 000 perturbation
modes, distributed uniformly on a unit sphere in wave-vector
space, as an ensemble, as well as individual modes in isolation.
A fourth-order Runge-Kutta scheme was used for temporal
integration of all equations. For additional details of the
solution procedure, the interested reader is referred to Mishra
[27,28]. The stability of the flow is inferred from the kinetic
energy evolution of the ensemble and the underlying dynamics
are explained in terms of the wave-vector evolution. The
analysis is carried out for disparate ensembles and for different
flow topologies spanning the parameter space. Utilizing the
homeomorphic nature of flow topologies within a regime
and the observed similitude in their evolution, we present
specific representative cases. Hereon, the analysis considers
the dynamics in the flow topologies, individually.

TABLE I. Inertial effects, pressure effects, and flow stability for
planar homogeneous flow topologies.

Flow Inertial Effects Pressure Effect Overall Stability

Hyperbolic Destabilizing Stabilizing Unstable
Pure shear Destabilizing Mildly stabilizing Unstable
Elliptic Neutral Destabilizing Unstable
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FIG. 2. Expansion flows: Unit wave-number vector evolution
from a set of initial conditions marked by dark circles. Left: The
e1-e2 plane projection. Right: Unit wave-vector sphere with equatorial
plane representing the 1−2 plane.

Expansion flows. In Fig. 1, a typical expansion flow is given
by point A, (R,Q) = (0.087, − 0.99). In such flows, the one-
and two-axes have negative production of perturbation energy
while the three-axis has positive production. The inertial
effects engender a state of exponential instability with the
energy resident in the u3 component. However, as seen in
Fig. 2, almost all wave vectors in the flow are attracted to
the three-axis. Thus, the inertial effects produce energy for
the u3 component and the wave vectors are aligning with the
three-axis (e3 → 1). To maintain uiei = 0, pressure effects
transfer perturbation kinetic energy from the u3 component to
the u1 and u2 components. This energy redistribution arrests
the positive production along the three-axis and the transferred
energy is consumed by negative production. This leads to a
state of asymptotic stability, as exhibited in Fig. 3.

Cyclonic flows. In Fig. 1, a representative cyclonic flow case
is given by point C, (R,Q) = (0.87, 0.5). In a cyclonic flow,

FIG. 3. Perturbation kinetic energy evolution of RDT (lines) and
corresponding Burgers (marked with circles) systems, for background
flows wherein R > 0. τ represents time, normalized with the
magnitude of the background velocity gradient, the natural logarithm
is plotted.

FIG. 4. Cyclonic flows: Unit wave-number vector evolution. (See
Fig. 2 for legend.)

the inertial effects lead to a state of exponential instability.
The one- and two-axes have a negative production and the
three-axis has a positive production. Thus, perturbation kinetic
energy is resident in the u3 component. Considering the phase
space of the unit wave-number vector, all the wave vectors are
attracted to the limit cycle at e3 = 1, along helical trajectories
(Fig. 4). Consequently, the inertial effects produce energy for
the u3 component and the wave vectors are aligning with
the three-axis (e3 → 1). Here, the pressure effects transfer
perturbation kinetic energy from the u3 component to the
u1 and u2 components. This energy redistribution arrests
the positive production along the three-axis. The transferred
energy is consumed by negative production along the one- and
the two-axes. This leads to a state of asymptotic stability, as
seen in Fig. 3.

In summary, for flows with a positive third invariant (R > 0)
we have

(1) Production: P11, P22 � 0; P33 > 0
(2) Redistribution: From u3u

∗
3 to u1u

∗
1, u2u

∗
2.

In expansion and cyclonic flows, the pressure-released
case is unstable due to the mechanism of vortex stretching
along the axis of rotation. However, the perturbation energy
redistribution due to pressure, along with the ensuing negative
production, obviates the vortex stretching mechanism leading
to a state of flow stability.

Anticyclonic flows. In Fig. 1, an instance of such flows
is given by point F , (R,Q) = (−0.87, 0.5). In such flows,
the inertial effects engender a state of exponential instability
with the perturbation kinetic energy resident in the u1 and u2

components. However, all the modal alignments are attracted
to the limit cycle in the 1–2 plane, as observed in Fig. 5. To
maintain continuity, pressure effects manifest different inter-
component energy redistribution for modes with large e3, as
opposed to modes with small e3. (i) When e3 is large, pressure
transfers energy from the fluctuations in the 1−2 plane to that
along the three-axis. This transfer occurs during the migration
of the unit wave-vector trajectories to the limit cycle. If the
pressure effects are able to completely drain the fluctuations
in the 1−2 plane before this state is reached, the mode is
stable. Once the unit wave-number vector is close to the 1–2
plane (small e3), pressure dynamically redistributes energy
among the u1 and the u2 components in accordance with
e1-e2 evolution to preserve the incompressibility condition.
Depending upon the mode, the pressure redistribution may or
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FIG. 5. Anticyclonic flows: Unit wave-number vector evolution.
(See Fig. 2 for legend.)

may not completely offset inertial effects. As can be seen in
Fig. 6, overall pressure has a mildly stabilizing effect. After
an initial period of pressure stabilization, the inertial effects
prevail and flow is exponentially unstable.

Contraction flows. In Fig. 1, a representative case of con-
traction flows is given by the point D, (R,Q) = (−0.087, −
0.99). Here, the inertial effects lead to a state of exponential
instability with the perturbation kinetic energy produced in the
fluctuations along the 1−2 plane. All modal alignments evolve
to stationary states in the e1-e2 plane, as exhibited in Fig. 7. At
early times, when e3 is large, pressure transfers energy from the
fluctuations in the 1−2 plane to those along three-axis. At later
times (small e3), when both the velocity and wave vectors are
confined to the neighborhood of the 1−2 plane, production
is reduced due to the energy redistribution due to pressure.
Due to the nature of this energy redistribution, all modes are
not stabilized by pressure effects. Beyond this transient, the
inertial effects prevail and flow remains unstable (Fig. 6).

In summary, for flows with a positive third invariant (R > 0)
we have

(1) Production: P11, P22 � 0; P33 < 0
(2) Redistribution: From u1u

∗
1, u2u

∗
2 to u3u

∗
3.

FIG. 6. Perturbation kinetic energy evolution of RDT (lines) and
corresponding Burgers (marked with circles) systems, for background
flows wherein R < 0. The natural logarithm is plotted.

FIG. 7. Contraction flows: Unit wave-number vector evolution.
(See Fig. 2 for legend.)

In contraction and anticyclonic flows, the pressure-released
flow is unstable due to the mechanism of vortex stretching. The
perturbation energy redistribution due to pressure counteracts
this mechanism for some modes only and moderates the rate of
instability growth. However, the flow instability and the vortex
stretching mechanism persist.

Planar flows (with R = 0) form the bifurcation boundary
in Q-R parameter space, between stable and unstable three-
dimensional flows. Planar hyperbolic flows present a natural
transition between the behavior observed in three-dimensional
expansion and contraction flows. However, for planar elliptic
flows, in contrast to all the other flow topologies, the inertial
effects engender a state of neutral stability while the pressure
effects actually initiate and sustain the flow instability. As can
be observed from Tables I and II, the action of the inertial and
pressure effects in this regime are markedly different from all
other flows. Additionally, characteristic phenomena like that of
parametric resonance underlying the elliptic flow instability,
are found to be completely absent in the three-dimensional
rotation-dominated flows analyzed. In this vein, the case of
elliptic flows may represent a singular limit. The results of this
study address the underlying linear physics. To gauge their
applicability to nonlinear fluid dynamics, the interested reader
is referred to Mishra and Girimaji [29], Lee et al. [30]

In conclusion, we demonstrate that the inertial effects, the
action of pressure, and the overall stability in certain three-
dimensional homogeneous flows is dependent upon the third
invariant of the velocity gradient. Herein, flows where the flow
topology has a positive value of the third invariant (R > 0)
are stable, while flows where R < 0 are unstable. For such

TABLE II. Inertial effects, pressure effects, and flow stability of
nonplanar homogeneous flow topologies

Flow Inertial Effects Pressure Effect Overall Stability

Expansion Destabilizing Stabilizing Stable
(R > 0)
Cyclonic Destabilizing Stabilizing Stable
(R > 0)
Anticyclonic Destabilizing Mildly stabilizing Unstable
(R < 0)
Contraction Destabilizing Mildly stabilizing Unstable
(R < 0)
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three-dimensional flows, the inertial effects are destabilizing
and lead to a state of exponential instability. The effect of
pressure has a stabilizing influence on such three-dimensional

topologies. In flow topologies with R > 0, pressure effects are
able to dominate and lead to flow stability. For flows with R <

0, the inertial effects dominate and the flow remains unstable.
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