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Localized modes in nonlinear binary kagome ribbons
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The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure
controlled light propagation through photonic lattice media. Particularity of the linear system characterized by
the dispersionless flat band in the spectrum is the opening of new minigaps due to the “binarism.” Together with
the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the
staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike
solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex
rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the
nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the
system “binarism” various localized modes can be generated and guided through the system, owing to the opening
of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to
the high-speed optical communications and high-power lasers.
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I. INTRODUCTION

Photonic lattices are well-known optical systems for
manipulation and control of light propagation. They are
constructed of weakly coupled waveguide arrays providing
periodic modulation of refractive index in one, two or three
dimensions [1]. Characteristics such as periodicity and discrete
translational symmetry define appropriate band-gap energy
spectra, which dictate the light propagation [2]. Different geo-
metrical configurations of photonic crystals allow the existence
of a plethora of various linear and nonlinear phenomena such as
Anderson localization [3], controlled generation of interesting
interference patterns using photonic Fibonacci structures [4],
rogue waves (see [5] and references therein), and PT-symmetry
breaking of solitons formed in waveguide necklaces [6], to
mention a few. It is known that the introduction of additional
periodicity in the uniform lattice pattern opens new gaps
within bands of energy spectrum [7]. Newly created stop bands
represent energy regions interesting for research because of the
possibility of formation of new types of soliton solutions [8,9].

Particular interest nowadays is on flat-band lattices. The
mentioned “flat band” is a dispersionless energy band com-
posed of entirely degenerate states, so that any superposition
of these states is nondiffracting. Such patterns can be found
in condensed matter contexts [10–12], in the context of
localization in the presence of magnetic fields or spin-orbit
coupling [13], disorder [14,15], and the fractional quantum
Hall effect [16,17], as well as in the photonic topological
insulators [18,19]. Promising possibilities for application
of flat-band optical systems emerge from high flat-band
degeneracy and high density of states suitable for enhancing
light-matter interaction [20]. In general, linear modes of any
periodic structure are completely extended. However, flat-band
systems allow the formation of very localized eigenmodes
which can be viewed as a destructive linear combination of
extended linear wave functions.

Recently studied examples of flat-band systems include
quasi-one-dimensional (quasi-1D) diamond ladder [14], two-

dimensional (2D) Lieb [21–23], and 2D kagome lattices
[24–27]. Particularity of the latter systems are, besides linear
localized ring modes, one-peak solutions which bifurcate
from flat band at zero power threshold in the presence of
nonlinearity [27] and propagate without diffraction through
the system. Moreover, for the nonlinear kagome 2D lattices,
detailed studies in the continuum and discrete limits showed
the existence of dynamically stable configurations such as
the in-phase hexapole, single-charge six-site vortex on the
honeycomb cell, as well as the four-site in-phase-out-of-phase
quadrupole and the second-gap in-phase quadrupole on the
hourglass cell [26]. In general, the unstable localized solutions
of all mentioned types in the discrete case decompose into
breathing configurations with fewer populated sites and some
phase correlations.

In [27] significant conclusions are derived with respect to
moving localized modes, which can be created by a small
transverse kick (phase gradient) of an unstable one-peak mode.
It is shown that for small kicks, a transiently moving mode
appears which is trapped close to the initial position as a
symmetry-broken ground state. For stronger kicks, the moving
mode propagates over longer distances before being trapped
by the lattice.

Our study is based on the kagome geometry [28], which
is easily realizable owing to fast-developing fabrication
techniques based on nondiffracting beams [24] and photon
lithography [29]. This geometry can also be realized in
the context of optical lattices for trapping of ultracold
atoms [30,31] or metallic ones for obtaining a flat plasmonic
band [32]. We here focus our attention on the discrete nonlinear
kagome quasi-1D ribbons, which are dimensionally reduced
2D kagome lattices. Motivated by the paper [33], we start
with uniform kagome ribbons and investigate the influence
of the “binarism” on the formation and dynamical properties
of localized eigenmodes bifurcating from the flat band and
second band. These “binary” structures are different from
previously studied ones, like binary chains composed of
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FIG. 1. (Color online) Structure of (a) binary kagome strip and (b) binary kagome ladder. Each characteristic cell comprises (a) 10 sites;
(b) six sites, mutually coupled either by V1 (dashed line) or by V2 (thick line) coupling strength.

dimers as discussed in [34]. Particularity of our systems is the
coexistence of discreteness, nonlinearity, and “binarism.” Our
analysis covers two types of kagome ribbons, i.e., the kagome
strip ([33–35]) and the kagome ladder (or three-spin ladder as
it is called in [36]), which differ in geometrical pattern. Such
structures can be fabricated by dint of the direct femtosecond
laser inscription [37–39]. In the case of uniform ribbons, the
first type is characterized by the unit cell containing five
sites [40], while the other one (kagome ladder) comprises
cells made of three sites. We prove that both geometrical
patterns support flat band in spectra of 1D binary ribbons
and analyze the influence of “binarism” on the properties of
these spectra and consequently, on the light localization and
its behavior.

The paper starts with defining the mathematical model of
the binary nonlinear kagome ribbons based on the discrete
Schrödinger equations with cubic nonlinearity in Sec. II. The
structure of the corresponding linear spectra is considered in
detail. In Sec. III we present and discuss numerical results
obtained for two forms of the nonlinear discrete binary kagome
ribbons. In addition to the ring structures of the staggered type,
which are found to lose stability in the strongly nonlinear
binary kagome ribbons, here we found conditions under
which it is possible to obtain different types of dynamically
stable vortex-ring solutions, the unstaggered ringlike solutions,
hourglass solutions inside the semi-infinite gap, and minigap
solitons inside the gaps opened due to lattice binarism. Vortex
ring solutions, identified in different settings, studied here in
the context of orbital momentum carriers, are also suitable for
spatial-division multiplexing, actively studied in high-speed
optical communications for increasing bandwidth [41–46].
Finally, Sec. IV concludes the paper. The main finding is that
by proper initial ribbon excitation and selection of geometric
parameters, the light propagation can be controlled. Through-
out the paper, we compare our results for binary kagome rib-
bons with the results for uniform ribbons [33] and 2D kagome
lattices [25–27] in order to stress what binarism adds to these
systems.

II. THE MODEL

The possibility of linear kagome lattices to guide localized
modes is indicated by the existence of the dispersionless
flat band in the corresponding eigenvalue spectrum. Control
of light propagation is here investigated by introducing the
nonlinearity and additional periodicity into the 1D variant
of the kagome lattice, i.e., binarism. Two kagome ribbon
configurations are considered. The schematic representation
of the binary kagome strip with its characteristic cell is shown
in Fig. 1(a). Thick solid lines denote V2 linear coupling
strength between neighboring sites, while dashed ones stand
for coupling strength V1. This system consists of n = N/10
cells, each cell containing 10 sites. Here, N is the total
number of sites (waveguides), and the cells are indexed by
p, 1 � p � n. The second setup, kagome ladder, is depicted
in Fig. 1(b). Due to its different geometry, the system consists
of n = N/6 cells, each cell containing six sites.

Proposing dimensional reduction (from 2D to 1D) in the
frame of the coupled-mode theory (CMT), the evolution of the
field amplitude in a nonlinear binary kagome strip and ladder
may be described by the following set of differential-difference
nonlinear Schrödinger equations (DNSE):

i
du
dz

= Ṽ u + γ (diag(u†)diag(u))u, (1)

where u(z) are the 10n or 6n component column vectors
with amplitudes of the single guiding modes centered on the
individual waveguides in the kagome strip or ladder:

u(z) = [a1 b1 c1 d1 e1 f1 g1 h1 i1 j1.....an

× bn cn dn en fn gn hn in jn]T (z),

u(z) = [a1 b1 c1 d1 e1 f1.....an bn cn dn en fn]T (z), (2)

respectively. The propagation direction is z and the quadratic
matrix Ṽ (10n × 10n-dimensional for the kagome strip, or
6n × 6n-dimensional for the kagome ladder) includes cou-
pling coefficients which define the linear nearest neighbor
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interactions between components of u (see Fig. 1 and the
appendix), while γ = −1 (γ = 1) represents an effective
nonlinear defocusing (focusing) cubic parameter. The systems
possess two conserved quantities: total power of the localized
solution (norm),

P = u†u, (3)

and the Hamiltonian,

H = u†Ṽ u + (γ /2)trace((diag(u†)diag(u))2).

The dispersion relations for the kagome strip and
ladder can be obtained from the linearized version
(i.e., γ = 0) of the system of Eq. (1), presuming
solutions in the form: [ap bp cp dp ep fp gp hp ip jp] =
[AB C D E F GH I J ]e−iβzeikp (kagome strip), and
[ap bp cp dp ep fp] = [AB C D E F ]e−iβzeikp (kagome lad-
der), where k stands for the transverse Bloch wave vector of
the binary lattice and β is the propagation constant of the
observed mode.

In the case of a uniform kagome strip (V1 = V2 = V ) the
characteristic cell can be reduced to five sites (a = c,b =
d,e = f,g = i,h = j ), giving the following set of dispersion
relations [33,40]:

β1 = V − V
√

3 + 2 cos(k/2),

β2 = V + V
√

3 + 2 cos(k/2),

β3 = −2V, (4)

β4 = V
√

2(1 + cos(k/2)),

β5 = −V
√

2(1 + cos(k/2)).

On the other hand, the dispersion relation of the uniform
kagome ladder, which is characterized by a cell with three sites
(a = b,c = d,e = f ), contains three branches [40]:

β1 = 2V (1 + cos(k/2)),

β2 = 2V cos(k/2), (5)

β3 = −2V.

Dispersion relations of the uniform kagome strip and ladder
are depicted in Figs. 2(a) and 2(b). Both are characterized
by the flat band at β = −2 (V = 1 in this figure), which is
the lowest band in the corresponding spectra. In the case of
the kagome strip, the flat band touches the second band at
its extremum at the center of the Brillouin zone, causing the
degeneration of these states. On the other hand, degeneration
of the second band in the kagome ladder happens due to
confluence of the flat and second band at the edges of the
Brillouin zone. The more complex spectrum in the case of
the kagome strip than in the kagome ladder is due to the
larger number of sites in the corresponding fundamental block.
Thus, the energy spectra of the linear uniform (V1 = V2)
n-cell kagome strip and ladder is formed of 5n or 3n energy
states [40]. There are no gaps inside the spectrum of the
uniform kagome ribbons, except semi-infinite ones (vertical
lines in Fig. 3).

By decreasing the ratio V1/V2, i.e., introducing the bina-
rism, the gaps in the kagome ribbon spectra start to open
and grow. As a consequence, the spectrum divides into

FIG. 2. (Color online) Band structures of 1D (a) uniform kagome
strip, (b) uniform kagome ladder, (c) binary kagome strip, and (d)
binary kagome ladder. In the case of binary configurations, the values
of coupling parameters are set to V1 = 0.5 and V2 = 1.

additional bands, Fig. 3, where newly created minigaps can
be distinguished for both systems. The number of minigaps
depends on the ratio V1/V2 and it is larger for the case
of the kagome strip. With decrease of V1, bands start to
ramble and minigaps become wider. The eigenvalue analysis

FIG. 3. (Color online) Influence of V1 coupling parameter on
band structures of 1D binary kagome strip (a) and binary kagome
ladder (b). Second coupling parameter V2 is fixed to one. Dashed
vertical lines mark the case of uniform lattice for which only
semi-infinite gaps exist.
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showed that a minigap opens between the flat and the second
band for every ratio V1/V2 < 1 in both configurations. In the
limit of “independent” cells (V1 = 0) the spectrum is totally
degenerated and consists of five (three) separate lines. On the
other hand, with increase of V1/V2 > 1 the flat band mixes
with the second band.

A significant finding is that the flat band exists for the
whole range of V1/V2. Due to the additional periodicity, the
original flat band found in the uniform ribbon splits into two
bands, represented by blue (darkest gray) lines in Figs. 2(c)
and 2(d). The lower branch remains flat, while the upper one
is dispersive. The first minigap opens above the flat band.
Moreover, the higher bands split as well, causing the formation
of additional minigaps. The shape of these bands and the size of
minigaps are functions of the ratio V1/V2 [Figs. 3(a) and 3(b)].

Both linear uniform kagome ribbons can guide closed six-
(four-) node staggered ringlike localized modes, as well as
any linear combination of them. These are eigenmodes of
the system which can be easily shown analytically by simple
substitution of the corresponding amplitudes of modes in the
linear version of the stationary form of model Eq. (1). They
are characterized by alternation of the sign of the real part
of the amplitude in successive sites. The hourglass localized
solutions, which can be found to exist in nonlinear kagome
ribbons inside the semi-infinite gap, in the linear limit can
be represented as a linear combination of two neighboring
staggered rings.

Due to the splitting of the flat band, half of the original
number of flat-band states found in the uniform ribbon stay in
the flat band of the binary lattice at β = −2 [lower blue lines
in Figs. 2(c) and 2(d)]. These modes are here referred to as
“strong” rings, since they are localized on strongly coupled
sites coupled by V2. The other half of solutions corresponds to
the upper blue (darkest gray) band which is branched out from
the flat band and these modes are formed on “weak” rings of
the ribbon, i.e., on rings coupled by V1.

Additionally, the flat band of the binary lattice is more
isolated from the other bands in the spectrum so the ring
localized solutions are more robust on the imperfections in
the system than in the case of uniform ribbon, which has been
confirmed through our simulations. Linear modes belonging
to other bands are found to be completely extended [47,48].

III. NONLINEAR LOCALIZED MODES IN KAGOME
RIBBONS

The main purpose of our study is to consider the possibility
of creating dynamically stable nonlinear localized modes in
binary kagome ribbons. Such modes can be viewed as active
energy (and momentum) carriers through the system, which
are interesting in the context of optoelectronics, photonic
communications, etc. The question of how solitons in the
uniform 2D kagome lattice with defocusing nonlinearity may
bifurcate from flat-band linear modes to the lower semi-infinite
gap is addressed in [27]. On the other hand, the behavior of
solitons generated in the upper semi-infinite gap in uniform
kagome ribbons with focusing nonlinearity was discussed
in [33]. Our interests are related to the dynamics of nonlinear
solutions which may be found around the flat band. Therefore,
we consider in detail dynamically stable localized modes in

ribbons with a defocusing type of nonlinearity (γ = −1) in
semi-inifinite and the first minigap, as well as those generated
in ribbons with focusing nonlinearity (γ = 1) in the first
minigap.

The numerical procedure used in our research to find
stationary solutions of model Eq. (1) is based on the modified
Powell minimization method [49]. As initial guesses to find
numerically exact nonlinear solutions, we set appropriate
types (shapes) of the specific sought-after solutions. Hourglass
and staggered-ring solutions may be obtained from exact
solutions in the linear limit, and other solutions from exact
solutions in the limit of zero coupling. The convergence
tolerance in the performed numerics was set as 10−8. The
stability of the obtained localized solutions is checked by
performing the linear stability analysis (LSA) [49] and direct
numerical simulation of the mode propagation in the presence
of small fluctuations. The last are numerically modelled via the
sixth-order Runge-Kutta numerical procedure [50] by adding
small random amplitude perturbations to the initial stationary
solutions. The conservation of the total power is checked in
each calculation step. Additional checking of the compact
mode propagation is performed by calculating the effective
localization volume measured via the participation number
R [15]:

R = P 2

u†uu†u
. (6)

The results presented in this paper are collected presuming
V2 = 1, while the value of V1 was varied in the range from 0
to 1. The nonlinearity is directly related with the power P of
each solution. The total number of lattice cells used in most of
the simulations is n = 20.

A. Localized solutions in semi-infinite gap

For both kagome configurations (kagome strip and lad-
der with defocusing nonlinearity), we found three types of
nonlinear ringlike modes to exist inside the semi-infinite gap
depending on the value of topological charge S, and an
hourglass solution [33]. The parameter S is defined as the
total change of the phase along a closed curve surrounding the
center of the ring, divided by 2π . The ringlike solutions, i.e.,
solutions with significant amplitude at six (kagome strip) or
four sites (kagome ladder) inside one cell can be classified
as unstaggered rings (adjacent sites in-phase) with S = 0,
staggered rings with S = M/2 (which exist in the linear case,
too), and vortex rings with S �= 0,M/2 (M = 6 and M = 4,
for kagome strip and ladder, respectively). Moreover, in the
binary case (V1/V2 �= 1) each nonlinear ringlike solution can
be realized in a “weak” or “strong” variant depending on the
intersite coupling strength formed between sites coupled by
V1 (“weak”) or between sites coupled by V2 (“strong”).

The calculations have shown that the “weak” staggered-ring
branch appears in the first minigap and can be found to exist
in the lower semi-infinite gap, too, in the case of defocusing
nonlinearity. However, all these solutions are unstable and thus
will not be considered in the following. So, the prefix “strong”
in “strong” staggered rings will be omitted.

The staggered nonlinear ring solution’s branch originates
from the flat band. The LSA and direct numerical simulations
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FIG. 4. (Color online) Stability diagrams (P vs V1/V2) of (strong) staggered rings and hourglass solutions in (a) kagome strip and (b)
kagome ladder. In the greenish (dark gray) region only stable staggered rings exist, in the yellowish (light gray) region are the stable ring
and unstable hourglass solutions, while in the white region the unstable ring and stable hourglass solutions are found. Amplitudes’ profiles
of certain modes (kagome strip, strong staggered ring β = −3,P = 6; hourglass, β = −3,P = 2.61; kagome ladder, strong staggered ring
β = −3,P = 4; hourglass, β = −3,P = 2.56) are shown on right panels and correspond to the case of uniform ribbons.

imply a narrow range of β (or P ) in the semi-infinite gap
for which stable propagation of solutions from this branch
occurs. It should be noted that the binarism increases the
stability range of staggered modes (see Fig. 4). Examples of
the real part of amplitude profiles of staggered ring solutions
are illustrated in corresponding panels right from the stability
diagrams. The stability region for the kagome strip and
ladder is represented by greenish (dark gray) and yellowish
(light gray) colors. The observed properties of the staggered
rings are in accordance with results published in [26,27]
for the 2D kagome lattice where nonlinear modes bifurcate
from the flat band without excitation threshold (P = 0).
Actually, the ring type of fundamental modes is “a nonlinear
continuation” of the flat-band six- or four-peak ring modes
with exactly the same properties, only with a frequency
shift related to the power as P = 6(β + 2)/γ (strip) and
P = 4(β + 2)/γ (ladder), respectively. Therefore, we can
conclude that in the presence of defocusing nonlinearity the
existence region of staggered rings extends to the semi-infinite
gap, while the dynamical stability is observed only for rings
in the narrow area close to the flat band. These modes are
characterized by small normalized power (however, as gamma
is generally very small, real power can be actually quite high).
In the white colored part of the existence region in Fig. 4, such
solutions are exponentially unstable.

Concerning the hourglass solutions in uniform ribbons, in
the linear limit these modes consist of two neighboring rings

with one common site (single-peak solution in [27]). In the
presence of defocusing nonlinearity their existence region is
moved to the semi-infinite gap. Moreover, the nonlinearity
offers the possibility of creating hourglass modes in binary
ribbons by properly adjusting the shape of the initial light
beam excitation in the parameter regions corresponding to
the semi-infinite gaps, as shown in Figs. 4(a) and 4(b).
Except for the case of uniform lattice, there is always a
certain power threshold necessary for their formation [upper
bound of the greenish (dark gray) region in Fig. 4]. The
yellowish (light gray) region in the stability diagram depicts
the parameter area in which hourglass modes are unstable.
In white regions hourglass solutions are stable. Furthermore,
binarism is responsible for asymmetry of the newly formed
hourglass modes.

In addition, the stability exchange between the staggered
ring and hourglass modes is observed in a region of small
modes’ power as depicted in Fig. 4 [border line between the
yellowish (light gray) and white region]. Similarly to the 2D
kagome lattice [27], in the kagome strip there is generally
a very narrow region where both modes are unstable and
thus the borders between the yellowish (light gray) and white
areas are not perfectly sharp. In this area the calculations have
shown that the destabilization of the staggered ring branch is
accompanied by birth of the stable two-peak solution branch.
This mode reminds one of the intermediate solution in the
2D kagome case [27]. The existence curve and the profile
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FIG. 5. (Color online) Uniform kagome strip configuration. (a)
P vs β curves for staggered ring (red line with squares), two-peak
solution (blue line with circles), and hourglass (black line with
triangles) solutions; (b) amplitude profile of tp solution; (c) �H vs P

curve (solid red for Hhg − Hsr and dashed blue line for Htp − Hsr ),
solid red vertical line represents the border from which the staggered
rings become unstable, and black dashed line the border from which
the hourglass solutions become stable; (d) the largest real eigenvalues
vs P for staggered ring (red line with squares), two-peak solution
(blue line with circles), and hourglass (black line with triangles)
solutions.

of the two-peak solution is illustrated in Figs. 5(a) and 5(b),
respectively. This mode is bonded at the “edge” of the ring
formed of sites coupled via V2 (Fig. 1). Besides the two-peak
solution branch, we plotted existing curves of staggered
ring and hourglass solutions found in the uniform kagome
strip [Fig. 5(a)]. In the region of small powers hourglass,
two-peak, and staggered ring solutions carry approximately
the same power for the fixed propagation constant β. For
modes in this area we calculated the difference of the cor-
responding Hamiltonians �H (P ) = Hhg(P ) − Hsr (P ) and
�H (P ) = Htp(P ) − Hsr (P ), which is illustrated in Fig. 5(c).
Here, hg, sr, and tp stand for hourglass, staggered ring, and
two-peak solutions, respectively. The staggered ring solution
corresponds to the ground state bifurcating from the linear
band when P = 0. The area bounded with vertical solid red
and dashed black lines corresponds to the region where both
staggered ring and hourglass solutions are characterized by the
exponential instability in the LSA, as shown in Fig. 5(d). When
staggered ring solutions lose their stability (P = 1.008), the
existence of stable two-peak solutions is found. At point P =
1.14 the bistability region, where both two-peak and hourglass
solutions are stable, opens. The value of the input power
determines the branch “chosen” by the system in the bistability
region. For example, in the uniform lattice the smaller energy
is associated with the hourglass after P ≈ 1.55. The two-peak
branch exists for high powers, too, losing stability at P ≈ 2.4.
Notice that the two-peak solution branch, which is born from
the staggered ring branch and is characterized by the narrow
stability window, has been found in all binary kagome strip
lattices, i.e., for all ratios V1/V2.

(b)

3

0
-1

(a)

0

3

-0.73unstaggered ring

unstaggered ring

FIG. 6. (Color online) Stability diagrams (P vs V1/V2) of strong
unstaggered ring solutions in (a) kagome strip and (b) kagome
ladder. Greenish (dark gray), yellowish (light gray), and white regions
correspond to the region where unstaggered rings do not exist, appear
as unstable solutions, and are stable propagating modes, respectively.
Amplitudes’ profiles of certain modes (kagome strip, β = −10,P =
72.45; kagome ladder, β = −10,P = 53.2) are shown on right panels
and correspond to the case of uniform ribbons.

Besides staggered rings, two variants of the unstaggered
ring solutions, “weak” and “strong,” are found to exist in
the semi-infinite gap, too. The existence branch of “strong”
unstaggered rings, with power monotonously increasing with
|β|, appears inside the semi-infinite gap with a certain
threshold power value, which is indirectly represented via
the stability diagrams in Fig. 6 [in greenish (dark gray) area
“strong” unstaggered rings do not exist]. The yellowish (light
gray) region represents a parameter area near the appearance
boundary in which “strong” unstaggered rings are oscillatorily
unstable. As in the 2D kagome systems [26], stable unstag-
gered ring solutions were also found to exist in the kagome
strip and ladder (white area in Fig. 6). Amplitude profiles
of unstaggered ring modes are shown within corresponding
panels on the right side of the figure. Results showed that the
stability region of these solutions increases with the decrease
of ratio V1/V2. Therefore, the introduced binarism increases
the stability regime of unstaggered ring modes. Qualitatively
the same trend has been observed for the “weak” variant, too,
except that the power thresholds necessary for formation and
their stable propagation are lower than in the case of “strong”
modes.

The third type of stable localized ring modes found to
exist in the semi-infinite gap are vortex solutions. Again,
there is a threshold power for bounding vortex in the kagome
cell independently where they are created, i.e., between sites
coupled with V1 (weak coupling) or with V2 (strong coupling).
In other words, both “weak” and “strong” vortices would
be created if certain minimum power is injected in the
kagome cell. The borderline between the yellowish (light gray)
and white regions in Fig. 7 represents the power threshold
necessary for generation of a stable “strong” vortex. In general,
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0 2ππ

FIG. 7. (Color online) Stability diagram (P vs V1/V2) of vortex
ring solutions with S = 1 bonded between sites with V2 (“strong”
variant), which are found to exist in the kagome strip. The yellowish
(light gray) area represents the power region that corresponds to
unstable vortex modes, while the white one depicts the parameter
space of stable propagation. The greenish (dark gray) colored area
illustrates the region where no vortex modes exist. Phase profile of
certain vortex mode (β = −9.91,P = 65.6,S = 1) is shown on the
right panel and corresponds to the case of the uniform kagome strip.

the power threshold necessary for the creation of “weak”
vortices is lower compared to their “strong counterparts.”

In kagome strips, the localized ring-shaped vortex patterns,
which in the binary case V1/V2 < 1 can be realized in
“weak” and “strong” variants, are stable for a certain range
of parameters if they carry angular momentum S = 1 and 5
(white area in Fig. 7, “strong” variant). They are characterized
by the finite existence threshold and oscillatory instability for
small powers. In other words, regions of stable propagation
correspond to high-power solutions, which is in accordance
with direct simulations. Furthermore, the stability region
is wider for smaller V1/V2. With the increase of V1, the
power necessary for light localization increases, implying
that additional periodicity lowers the excitation threshold for
vortices. In the case of kagome ladders, vortex solutions occur
for odd topological charges (S = 1,3). Unlike kagome strip
vortex solutions, these structures are found to be unstable in
the whole corresponding existence region.

Particular behavior of phase and amplitude of dynami-
cally stable ring-vortex structures arises from circular flow
of energy around a pivot point [41–46]. This property is
closely connected with the ability of such structures to carry
unchanged the orbital angular momentum and energy to long
distances, which can be interesting for technological applica-
tions as spatial-division multiplexing (communication lines)
and directional transfer of huge energy through the system
(high-power lasers). Kagome strips, as settings which support
stable vortex propagation in the presence of nonlinearity, can
open interesting ways to manipulate light propagation.

Although not specifically emphasized, the saturation ten-
dency of the participation ratio given by Eq. (5) for increasing
z is additionally used through the whole paper in order to check
the stability of all localized modes’ types. Calculations imply
that in the case of dynamically stable ring-type solutions, this
parameter almost perfectly saturates to a finite value (6 in the
case of kagome strip and 4 in the case of ladder configuration).

Finally, we studied the possibility to create moving local-
ized modes in kagome strips and ladders with defocusing
nonlinearity. Mathematically, this is done by taking a given
stationary solution as the initial condition and multiplying it
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FIG. 8. (Color online) Mobility of the hg mode in the uniform
kagome strip configuration. (a) Horizontal center-of-mass evolution
of an unstable low-power hg solution (P = 1.02) in the presence of a
phase gradient α = 0.009, and (b) intensity profiles taken at different
positions in the z direction during the modes’ propagation. The
corresponding positions are marked in (a) with numbers in brackets.

with a phase gradient factor exp(−iαp′), where α denotes
the strength of the transverse kick and p′ numbers the unit
cells of the uniform chain (with notation of the binary
chain in Fig. 1, p′ = 2p − 1 or 2p, respectively). Imposing
initial phase gradients in other ways (e.g., allowing phase
variations also within unit cells) are found to give qualitatively
similar results. Moving modes along a “1D ribbon” direction
have been observed in the 2D kagome lattices [27]. These
moving modes’ shape alternates between “staggered ring” and
“hourglass” shape via “intermediate” solution [cf. Figs. 4(a),
4(c), and 4(e) in [27]]. Following this approach, we search
for moving modes in the area of stability exchange of the
staggered rings and hourglass solutions for a uniform strip,
where the two-peak mode was born as a stable solution when
the staggered ring branch destabilizes. From the existence
curves of the respective modes [Fig. 5(a)] it is possible to notice
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that this area corresponds to a narrow region in the semi-infinite
gap near the flat band. In this region hourglass, two-peak, and
staggered ring solutions carry approximately the same power
for the fixed propagation constant β. Considering the moving
modes, the results showed that, when applying phase kicks to
the stationary solutions, the only possibility here is creation
of breathing complexes whose central part (center of mass as
defined in [27]) oscillatory changes position. In other words,
some kind of mobility along the chain consisting in motion of
the center of mass between two neighboring ribbon cells: The
initial cell and the one next to it [see Figs. 8(a) and 8(b)] was
observed. For larger phase kicks, this is more pronounced, e.g.,
with phase gradient α = 0.8, a ring mode with P = 1.1 could
be moved one unit cell before getting trapped, but radiating
more than in the case with small kick. In general, the mobility
in the kagome ribbon is considerably worse than in the 2D case.
So, it seems that the dimensional reduction, which in some
sense decreases the number of the degrees of freedom in the
kagome system, prevents free motion of the localized modes
across the ribbons. Figuratively speaking, the decoupling of
one ribbon from the rest of the 2D kagome lattice prevents
mobility of localized modes across the isolated ribbon. It
can be related to the impossibility of radiating (exchanging)
energy with the rest of the lattice. The energy transport in
the transverse direction with respect to the isolated ribbon is
stopped.

For the binary cases, the motion along the chain will be
additionally hindered by the fact that neighboring ring modes
are alternately strongly and weakly coupled. Since these have
quite different properties, no simple path to translate between
them exists.

In conclusion, stable propagating nonlinear modes of
different power in the semi-infinite gap can be exited by proper
arrangement of the lattice parameters, input light beam shape
and its strength. Dynamically stable modes with small power
possess the staggered ring (strong variant) or hourglasslike
shapes and can be observed in both types of the kagome
ribbons. For high power, dynamically stable modes of the

vortex type can be created in the kagome strips. Unstaggered
ring structures (both “weak” and “strong” variants) are also
found to be stable in a wide parameter range of the semi-infinite
gap. Only the staggered rings formed between the sites with
higher coupling constants in binary ribbons bifurcate from the
flat band without threshold.

B. Solutions in minigap

As already stated, binary lattices are characterized by
additional small gaps within the band structure (see Fig. 2).
Therefore, our analysis includes investigation of nonlinear
localized modes that may occur in minigaps, focusing on the
first minigap since it is one of the widest gaps and offers
the possibility of generating localized solutions that bifurcate
from the flat band, if the system exhibits the focusing type of
nonlinearity.

The numerical calculations show that the type and prop-
erties of the minigap modes depend on the character of
nonlinearity. In the focusing nonlinearity case, the branch of
staggered ring modes extends from the flat band to the first
minigap area. Such rings are shown to be stable in almost
the whole region of minigap, which becomes wider for the
smaller ratio V1/V2. The corresponding existence curves fill
the whole region of the minigap, e.g., for V1/V2 = 0.25, β ∈
(−2,−1.25) (strip) and β ∈ (−2,−0.5) (ladder); V1/V2 = 0.5,
β ∈ (−2,−1.5) (strip) and β ∈ (−2,−1) (ladder); V1/V2 =
0.75, β ∈ (−2,−1.75) (strip) and β ∈ (−2,−1.5) (ladder), as
can be seen from Fig. 3.

In the presence of defocusing nonlinearity, solitons bi-
furcate from linear modes of the second band. The main
characteristic of solutions that bifurcate from this band is their
tendency to trap within sites coupled by the smaller coupling
coefficient, i.e., V1. Part of these modes correspond to the weak
staggered rings, which are shown to be unstable in the whole
region of minigap.

However, in both kagome configurations, we found several
types of exotic localized solutions that preserve their shape
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FIG. 9. (Color online) Amplitude profiles of different types of minigap solutions in the binary kagome strip (a)–(c) and binary kagome
ladder (d)–(f) ribbon. Red (thick) dashed lines represent boundaries of primitive cells of binary systems. Black solid and dashed (thin) lines
stand for different strengths of coupling V2 and V1, respectively. In all cases, parameters in simulations are set to V1 = 0.25 and β = −1.9.
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during the propagation for the lattices with strong binarism
V1/V2 = 0.25. The maximum of energy of these modes is
again concentrated on sites coupled by V1. Examples of
profiles of different types of such solutions are depicted in
Fig. 9. Their robustness during the propagation is due to
the width of the minigap which provides less influence of
neighboring bands, unlike the case originating in ribbons
with V1 = 0.5, 0.75. Another feature of minigap solitons is
a tendency of their field energy to always localize on the outer
site of the ribbon. In both systems, solitons carrying less power
are unstable and tend to delocalize.

IV. CONCLUSION

To conclude, we have theoretically analyzed existence,
stability, and dynamical properties of various localized modes
in nonlinear binary kagome ribbons. We showed that the first
band always stays flat, despite the presence of additional
periodicity involved by “binarism.” Three types of localized
ring solutions are found in the semi-infinite gap of ribbons
possessing defocusing nonlinearity: unstaggered ring solitons,
staggered ring solitons, and ring vortices. All of them can be
localized on the part of the basic binary kagome cell formed
of sites coupled stronger between themselves or weaker than
with the rest of the sites in the cell. Therefore, we considered
“strong” and “weak” variants of nonlinear localized ring
modes. The obtained results confirmed the existence of stable
unstaggered ring modes in the semi-infinite gap. This is the
case for both “strong” and “weak” unstaggered rings and we
showed that the binarism increases their stability regime. On
the other hand, staggered ring solutions (strong and weak)
have proven to be unstable except in a narrow region of
the semi-infinite gap near the flat band. At the boundary
of this area, the branch of the hourglass localized solution
becomes stable. This is recognized as the stability exchange
between these two localized solutions. The hourglasslike
modes (linear combination of two staggered rings) manifest
stable propagation through both considered kagome systems.
The main finding is that binarism supports the creation of
dynamically stable ring and hourglass modes. Moreover,
increasing the “binarism” by lowering the ratio V1/V2 favors
the robustness of the localized modes. Besides mentioned ring
modes, in the semi-infinite gap we found vortex ring solutions
with S �= 0,M/2. In addition, the freely moving localized
modes across the kagome ribbons have not been found for
any ratio V1/V2.

Particularity of the binary kagome ribbons is the opening
of the small gaps in the spectrum. Their width increases with
lowering the ratio V1/V2. We have shown that the nonlinear
light localization is possible in these minigaps, too. In the
presence of defocusing nonlinearity, the minigap modes are
trapped in regions of kagome ribbon cells characterized by
smaller coupling parameter V1. Their maxima of envelopes
are always located on the outer sides of the ribbon, which
is not the case for solutions from the semi-infinite gap.
The difference in kagome-type geometry influences only the
difference in amplitude profiles of certain modes (i.e., number
of the solution’s peaks), and the stability of vortex solutions.
Otherwise, their properties are in general similar. In the
kagome ribbon with focusing nonlinearity, only the staggered

ring type of minigap solutions can be dynamically stable.
Thus, an important conclusion is that binary modulation of
the kagome ribbons allows for existence of stable, compact
nonlinear modes bifurcating from the linear flat band also for
focusing nonlinearity.

Finally, we conclude that control of the light propagation
in the kagomelike ribbons is possible by properly arranging
the lattice parameters, input light beam shape and strength,
which are controllable parameters in experiment. Our findings
can be used as a preparatory step for theoretical modelling of
new kagomelike structures with particular mode dynamics and
experimental investigation on the possibility of realizing and
controlling their properties practically at will.
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APPENDIX

The coupling matrix from Eq. (1) can be represented in the
following form:

Ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

MD MT
S 0 · · · 0 MS

MS MD MT
S · · · 0 0

0 MS MD · · · 0 0
...

. . .
...

0 0 · · · MS MD MT
S

MT
S 0 · · · 0 MS MD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where in the case of the kagome strip ribbon, the corresponding
blocks can be written as

MD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 V1 0 0 V1 0 0 0 0 0
V1 0 V2 0 V2 0 0 0 0 0
0 V2 0 V1 0 V2 0 0 0 0
0 0 V1 0 0 V1 0 0 0 0
V1 V2 0 0 0 0 V1 V2 0 0
0 0 V2 V1 0 0 0 0 V2 V1

0 0 0 0 V1 0 0 V1 0 0
0 0 0 0 V2 0 V1 0 V2 0
0 0 0 0 0 V2 0 V2 0 V1

0 0 0 0 0 V1 0 0 V1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and MS is a sparse 10 × 10 matrix, with nonzero elements
MS(1,4) = MS(7,10) = V1.

Similarly, the nearest-neighbor coupling in the ladder con-
figuration can be represented via a matrix with the following
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block matrices:

MD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 V1 V1 0 0 0
V1 0 V2 V2 0 0
V1 V2 0 0 V1 V2

0 V2 0 0 0 V2

0 0 V1 0 0 V1

0 0 V2 V2 V1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and MS is now a sparse 6 × 6 matrix, with nonzero elements MS(1,2) = MS(1,4) = MS(5,4) = MS(5,6) = V1.
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Öhberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett.
114, 245504 (2015).

[24] M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98,
061111 (2011).

[25] R. A. Vicencio and C. Mejı́a-Cortés, J. Opt. 16, 015706 (2014).
[26] K. J. H. Law, A. Saxena, P. G. Kevrekidis, and A. R. Bishop,

Phys. Rev. A 79, 053818 (2009).
[27] R. A. Vicencio and M. Johansson, Phys. Rev. A 87, 061803(R)

(2013).
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