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Stable and transient multicluster oscillation death in nonlocally coupled networks
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In a network of nonlocally coupled Stuart-Landau oscillators with symmetry-breaking coupling, we study
numerically, and explain analytically, a family of inhomogeneous steady states (oscillation death). They exhibit
multicluster patterns, depending on the cluster distribution prescribed by the initial conditions. Besides stable
oscillation death, we also find a regime of long transients asymptotically approaching synchronized oscillations.
To explain these phenomena analytically in dependence on the coupling range and the coupling strength, we first
use a mean-field approximation, which works well for large coupling ranges but fails for coupling ranges, which
are small compared to the cluster size. Going beyond standard mean-field theory, we predict the boundaries of the
different stability regimes as well as the transient times analytically in excellent agreement with numerical results.

DOI: 10.1103/PhysRevE.92.052915 PACS number(s): 05.45.Xt, 89.75.−k

I. INTRODUCTION

Coupled nonlinear systems exhibit a plethora of different
collective behavior such as partial or cluster synchroniza-
tion [1–6], spatiotemporal patterns under delayed feedback
control [7–9], and chimera states, which consist of spatially
coexisting domains of synchronized and unsynchronized
dynamics [10–12]. Recently, special attention has been paid
to the different types of oscillation quenching, amplitude
death, and oscillation death [13–16]. Amplitude death and
oscillation death differ in the mechanisms by which they are
induced: In coupled oscillator networks, the coupling between
oscillators can stabilize an already existing homogeneous
steady state, which is unstable in the absence of coupling. This
phenomenon is called amplitude death. In contrast, oscillation
death requires the breaking of the system’s symmetry: Here
inhomogeneous steady states are newly created as well as
stabilized through a symmetry-breaking coupling between
the oscillators. A combination of these two phenomena of
spontaneous symmetry-breaking, chimera states and oscil-
lation death, has recently been found in a paradigmatic
model of nonlocally coupled supercritical Hopf normal forms
(Stuart-Landau oscillators) [17,18]. The resulting patterns of
coexisting coherent and incoherent inhomogeneous steady
states occur in the form of clusters of different size, and have
been named chimera death. Similar chimera death patterns
have recently also been observed with global (all-to-all)
coupling [19,20].

Oscillation death has been observed experimentally in
many different systems, such as chemical reactors [21],
chemical oscillators [22], chemical droplets [23], electronic
circuits [24], or thermokinetic oscillators [25]. There exist
various biological applications, e.g., neural networks [26],
genetic oscillators [27], calcium oscillators [28], or stem cell
differentiation [29], where it has been proposed as a basic
mechanism for morphogenesis and cellular differentiation.
Consequently, there has also been theoretical interest in
oscillation death and it has been shown to exist for special time-
delayed [30] and repulsive [31,32] types of coupling as well
as coupling through conjugate or dissimilar variables [33–35].
However, research has mostly focused on small numbers of
coupled oscillators in networks with local or global coupling.

The influence of nonlocal coupling on the onset of oscil-
lation death and on the emergence of multicluster patterns in
larger networks has not been investigated systematically, so far.
It is possible to use the coupling range P as a control parameter,
e.g., in a bidirectionally coupled ring of N nodes. Thus, one
can interpolate between the well-studied limit cases of local
(nearest-neighbor, P = 1) and global (all-to-all, P = �N/2�)
coupling.

In our present study, we analyze the transition from
completely synchronized oscillations to multicluster inhomo-
geneous steady-state patterns (oscillation death) in networks of
nonlocally coupled oscillators with symmetry-breaking cou-
pling. We choose initial conditions which favor the emergence
of spatially coherent clusters, in contrast to Ref. [17], where
hybrid patterns with coexisting domains of spatially coherent
and spatially incoherent steady states (chimera death) were
analyzed. We investigate the effects of several factors on the
occurrence of different oscillation death states both numer-
ically and analytically. First, we use nonlocal coupling and
thus cover the whole range between the limit cases of local and
global coupling. Second, we also vary the initial conditions,
specified by cluster distributions, to find different coexisting
spatial patterns for oscillation death. Furthermore, we also
vary the coupling strength and combine all three variations.
Beside the regions of stability, we also find parameter regimes
where the oscillation death state is transient but persists for
a long time. Due to the coherent nature of the oscillation
death patterns, we are able to predict analytically and with
high precision the boundaries between different stability
regimes.

This paper is organized as follows: In Sec. II we introduce
our model of nonlocally coupled oscillators and briefly
summarize previous work on two coupled oscillators [30].
Our approach is numerical in the first step, and we observe
two different types of oscillation death: transient as well as
asymptotically stable. In Sec. III we present our numerical
findings. In the next step, we explain our findings analytically,
such as boundaries in the parameter space for the occurrence
of the different patterns of oscillation death. In Sec. IV, we
use a mean-field ansatz to obtain a first approximation of
the stability boundaries. In Sec. V we go beyond the mean-
field approximation to describe the boundaries analytically in
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excellent agreement with the numerical results. In Sec. VI
we calculate the transient times of transient oscillation death
analytically, thereby gaining insight into the mechanism. In
Sec. VII we draw some conclusions.

II. MODEL

In the present study, we investigate a network of coupled
Stuart-Landau oscillators. The equation of the single Stuart-
Landau oscillator, which is a truncated generic expansion of a
system near supercritical Hopf bifurcation in center manifold
coordinates, is given by

ż = f (z) ≡ (λ + iω − |z|2)z. (1)

Here z = reiφ = x + iy ∈ C denotes the phase space, and
λ ∈ R can be viewed as a bifurcation parameter. A Hopf
bifurcation occurs at λ = 0. For λ > 0, a stable periodic orbit
with radius r0 = √

λ appears, which oscillates with angular
velocity ω ∈ R. This periodic orbit z(t) = r0e

iωt is harmonic
and rotationally symmetric. In mathematical terms, we say that
the single Stuart-Landau oscillator is S1-equivariant, i.e., z(t)
solves ż = f (z) if and only if eiθ z(t) solves ż = f (z), for any
fixed phase angle θ ∈ [0,2π ] = S1. Indeed, f commutes with
the S1 action of θ on CN : f (eiθ z) = eiθf (z) for all θ and z.

We arrange N Stuart-Landau oscillators zj , j =
1,2, . . . ,N , with N even, as a ring and couple them as follows:

żj = f (zj ) + σ

2P

j+P∑
k=j−P

(Re zk − Re zj ), (2)

where all indices are modulo N . The coupling strength is
described by the real parameter σ > 0. Each oscillator zj is
coupled to the oscillators zj−1, . . . ,zj−P as well as to the
oscillators zj+1, . . . ,zj+P , i.e., to its P nearest neighbors in
each direction of the ring, respectively. The coupling range
is given by P , where P corresponds to the number of
coupling neighbors in each direction on a ring. The coupling
is normalized by the number of existing links, which is 2P .

In this publication, we focus on the case of nonlocal
coupling. Note, however, that our results also hold true for the
case of local coupling, which is given by P = 1, and in the limit
of large N for global coupling, which is given approximately
by P = N/2. Strictly speaking, the limit of global coupling
exists only for odd N and P = (N − 1)/2, since for even N

the antipodal link would appear twice.
Here we consider coupling only in the real part xj of the

variable zj , which breaks the S1 equivariance of the single
Stuart-Landau oscillator: Re(eiθ zj ) = eiθRe(zj ) is only true
for θ = 0 or θ = π . Symmetry-breaking of S1 equivariance is
a necessary condition for the existence of isolated nontrivial
steady states with zj �= 0 and thus for oscillation death.

Note, however, that the rotationally symmetric periodic
orbit of the single Stuart-Landau oscillator is preserved by
the coupling. It exists for all coupling strengths σ and can be
seen if all oscillators are in synchrony.

In the present study, we restrict our parameters to the
interesting case 0 < λ < ω. The following results, which will
be needed later, have been derived in Ref. [30] for a system of

only two coupled Stuart-Landau oscillators:

ż1 = f (z1) + ε(Re z2 − Re z1),
(3)

ż2 = f (z2) + ε(Re z1 − Re z2),

with a coupling parameter ε > 0. In the in-phase subspace
z1 ≡ z2, this system simplifies to ż = f (z), i.e., to a single
Stuart-Landau oscillator. In the antiphase subspace z1 ≡ −z2,
this system simplifies to ż = f (z) − 2ε Re z. The system
Eq. (3) exhibits a stable synchronous periodic orbit for all
coupling parameters ε. There also exists a trivial homogeneous
steady state z1 ≡ z2 ≡ 0. Linearization at zero reveals that this
state is always unstable. Supercritical pitchfork bifurcation
occurs at

εP = 1

2

(
λ + ω2

λ

)
. (4)

At this pitchfork bifurcation, two inhomogeneous steady-state
solutions (x̃1,2,ỹ1,2),

x̃1,2 = ±
√

λ − ε +
√

ε2 − ω2 − ỹ2, (5)

ỹ1,2 = ∓
√

(λε − ω2 + λ
√

ε2 − ω2)/(2ε), (6)

emanate for ε > εP . They correspond to antiphase states z̃1 =
−z̃2. The radius r̃ of the inhomogeneous steady state is given
explicitly by

r̃2 = λ − ε +
√

ε2 − ω2. (7)

Linearizing at those steady states, we find the eigenvalues
η. There exists a pair of complex conjugate eigenvalues in
direction of the in-phase subspace,

μ1,2 = λ − 2r̃2 ± i
√

ω2 − r̃4, (8)

and there exist two real and distinct eigenvalues in direction
of the antiphase subspace,

μ3,4 = −λ + ε − 2
√

ε2 − ω2 ± (λ − ε). (9)

In particular we encounter secondary Hopf bifurcations at

εHB = 1

4

(
λ + 4

ω2

λ

)
, (10)

where the inhomogeneous steady states are stabilized, thus
marking the onset of oscillation death. The secondary eigenval-
ues μ1,2 remain complex conjugate eigenvalues, with relatively
small real part. In contrast, μ3,4 give two distinct real and
negative eigenvalues. See Fig. 1 for a visualization of the
eigenvalues and inhomogeneous steady states.

III. NUMERICAL SIMULATIONS

As a first step in the analysis of the system, we solve
Eqs. (2) numerically. We vary the coupling range P from
0 (no coupling) to N/2 (global coupling) in steps of 1. The
intermediate range 0 < P < N/2 is called nonlocal coupling
and our main interest lies here. Additionally, we also increase
the coupling strength σ from σ = 1 to 30 with step size 1. The
simulations are run no longer than time t = 4000. The other
parameters are fixed to N = 100, λ = 1, and ω = 2. As initial

052915-2



STABLE AND TRANSIENT MULTICLUSTER OSCILLATION . . . PHYSICAL REVIEW E 92, 052915 (2015)

FIG. 1. (Color online) Top: Real part of the complex conjugate
eigenvalues μ1,2 (green dashed) and of the real eigenvalues μ3 and μ4

(gray solid) as a function of the coupling strength ε for two coupled
oscillators. Bottom: Imaginary variable ỹ of the inhomogeneous
steady states versus ε. Parameters: λ = 1, ω = 2. There is a pitchfork
bifurcation (PB) at ε = 2.5, indicated by a diamond, and secondary
Hopf bifurcations (HB) at ε = 4.25, indicated by circles.

conditions, we use antiphase clusters of size n: In a first step,
all oscillators z1, . . . ,zn of the first cluster are set to the values
(xj ,yj ) = (−1,+1), which we call the upper branch since yj

is close to the upper steady state ỹ (cf. bottom panel of Fig. 1).
In contrast, the oscillators zn+1, . . . ,z2n are set to values on
the lower branch with (xj ,yj ) = −(−1,+1) = (+1,−1). Then
oscillators z2n+1, . . . ,z3n are again on the upper branch and so
forth. In a second step, a random number, drawn form an
underlying Gaussian distribution with zero mean and variance
0.1, is added to the y value of each oscillator. We have also
performed simulations with different initial conditions, such
as (xj ,yj ) = (0.2,−1) or (xj ,yj ) = (−√

0.5,+√
0.5). We have

not found any noticeable difference in the asymptotic behavior
for those initial conditions. The simulations are performed for
cluster sizes n = 50, n = 25, n = 10, n = 5, n = 2, and n = 1.

The asymptotic results are depicted in Fig. 2 in the (P ,
σ ) plane for different initial conditions [Figs. 2(a)–2(e)],
exhibiting high multistability. As discussed above, the initial
conditions are regular antiphase clusters of different size with
superimposed random additions. For those initial conditions
amplitude chimera states cannot be observed, in contrast to
Refs. [17,18], where other initial conditions were used and
also transients were recorded. We observe a large region of
synchronous oscillations for each coupling range P . We also
find regions of stable oscillation death, color-coded by yellow
(light), orange (medium), and red (dark), depending on the
cluster size. By m-cluster oscillation death (m-OD), we denote
a steady state such that there exist m clusters on the upper
branch as well as m clusters on the lower branch. These
clusters do not necessarily have the same size. We observe
a large region of oscillation death where the clustering takes
the same form as given by the initial conditions. This region

FIG. 2. (Color online) Numerical simulation of the asymptotic
behavior of the system Eq. (2), in dependence on the coupling
range P (horizontal axis) and the coupling strength σ (vertical axis).
The green (gray) region marks synchronized oscillations, the colors
yellow (light) to red (dark) mark the various m-cluster oscillation
death (m-OD) states. White patches correspond to more complex
patterns. The insets show the asymptotic OD state corresponding to
P = 35 and σ = 20 (marked by white squares). Initial conditions:
(a) n = 50, (b) n = 25, (c) n = 10, (d) n = 5, (e) n = 2 [cluster
size n = N/(2m)]. Analytical approximations: white diamonds,
mean-field approximation σP,n; light-blue circles, beyond mean-field
approximation σ ∗

P,n. Parameters: N = 100, λ = 1, ω = 2.

can in general be found for large coupling strength σ and large
coupling range P/N . It is the boundary of this specific region
that we investigate analytically below. Furthermore, we also
find regions where there are asymptotically three times as many
clusters as in the initial conditions (e.g., 3-OD in Fig. 2(a),
6-OD in Fig. 2(b), and 15-OD in Fig. 2(c)), and regions where
we find five times as many (e.g., 5-OD in Fig. 2(a), 10-OD
in Fig. 2(b)). These regions are marked by darker color. A
scenario leading from 1-OD to 3-OD is shown in Fig. 3. In
Fig. 3(b) the 1-OD state is unstable, and the two oscillators
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FIG. 3. (Color online) Transition from 1-OD to 3-OD. (a) P =
26. (b) P = 25. (c) P = 24. Parameters: N = 100, λ = 1, ω =
2, σ = 25, n = 50. The simulations were run up to time t = 500.

in the middle of the cluster switch to the opposite branch. In
Fig. 3(c) two more oscillators switch to the opposite branch.

We observe that, within one cluster, not all oscillators
assume the same values for radius and phase: We call this effect
cluster deformation (Fig. 4). The deformation is particularly
pronounced for small coupling range [Fig. 4(a)], and is
approximately linear, either decreasing or increasing, seen
from the corner oscillators of the cluster. In the middle of the
cluster, we observe a plateau, where the oscillators have the
same radius and phase. We will describe this phenomenon
in more detail in Sec. V, where it will be used to find a
better approximation of the behavior of system Eq. (2) beyond
mean-field theory.

Additionally, in the region where the asymptotic behavior
is given by a synchronized oscillation (SYNC), we find
transient oscillation death. Figure 5 depicts the time series
of yj , j = 1, . . . ,100, in the transient regime. It shows a
transition from the initial state to transient 3-OD. For a
long time, the inhomogeneous steady states seem stable but,
eventually, a second transition to synchronous oscillations
occurs. Following these observations, we have also recorded
the transient times T ; see Fig. 6. We generally observe an
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FIG. 4. (Color online) Cluster deformation effects of oscillation
death for a coupling strength σ = 15 and different values of the
coupling range P/N . Snapshots for the variables yj . (a) P = 10,
(b) P = 20, (c) P = 25. Other parameters: N = 100, λ = 1, ω = 2,
n = 25, m = 2.

FIG. 5. (Color online) Time series yj of transient oscillation
death: the first transition is from the initial condition to an unstable
inhomogeneous stationary state that shows a second transition to
synchronous oscillations, i.e., transient oscillation death. Parameters:
N = 100, λ = 1, ω = 2, σ = 6, P = 30.

increase of T if the coupling strength σ is increased. The
transient time will be investigated in more detail in Sec. VI.

IV. MEAN-FIELD APPROXIMATION

It is the purpose of this section to introduce a simplified
model, which is able to explain the above numerical obser-
vations. In this simplified model, we assume that we have
clusters of size n, where the single components of the cluster
are supercritical Stuart-Landau oscillators Eq. (1). Since we
restrict the considerations to cluster distributions with uniform
cluster size n, we obtain the condition N = 0 mod 2n. For
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FIG. 6. (Color online) Transient time T in the plane of the
coupling range P/N and the coupling strength σ with 1-OD
(n = 50) initial distribution. The color code (grayscale) shows the
transient time T ; the light-gray region denotes stable oscillation death.
Parameters: N = 100, λ = 1, ω = 2. As initial conditions we used the
explicit values given by Eqs. (5) and (6), but substituted the coupling
strength σ instead of ε. Here, no additional random numbers were
added to the initial conditions.
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FIG. 7. (Color online) Scheme of nonlocal coupling. For the
oscillator j and P = 4 we have four relevant links to the left (solid red)
as well as four irrelevant links to the right (dashed green). Irrelevant
links do not contribute to the coupling term.

N = 100, e.g., this is the case for n = 50, 25, 10, 5, 2, and 1.
We assume P -nearest-neighbor coupling; see Eq. (2).

As a simplifying mean-field assumption, and deviating
from the numerics, we assume in this section, and only in
this section, that all oscillators on the upper branch have
the same radius and phase. We also assume that they are
antisymmetric (antiphase) with respect to the oscillators on the
lower branch, implying that those also all have the same radius
and phase. Therefore, the coupling term vanishes within the
clusters. It is between the clusters that the coupling term gives
nonzero contributions (coupling of the real parts, inducing the
inhomogeneous steady states, cf. Sec. II).

Our goal is to replace the model of N coupled oscillators by
a simplified model of two Stuart-Landau oscillators, which are
coupled via their real parts with an effective coupling strength
κP,nσ :

ż1 = f (z1) + κP,nσ (Re z2 − Re z1),
(11)

ż2 = f (z2) + κP,nσ (Re z1 − Re z2).

Since the dynamics of this system can be described analyti-
cally, cf. Sec. II, we can draw conclusions about the onset of
oscillation death, provided that we know the effective coupling
strength κP,nσ . Our task hence is to find the scaling factor κP,n,
depending on both the coupling range P and the cluster size
n, as indicated by the numerical simulations.

As a first reduction step, note that it is sufficient to consider
only the links emanating from one cluster instead of those of
the complete network. Indeed the network structure implies
that the coupling structure is the same for every cluster.
This reduces the number of oscillators for which we have
to calculate the effective coupling from N to n.

In the following, we number the oscillators within one
cluster with indices j = 0, . . . ,n − 1, where n is the size of the
cluster. The oscillator with index j is coupled to 2P neighbors:
P to the left, and P to the right. We count “relevant” links
(+1), which are those between oscillators of different clusters.
In contrast, “irrelevant” links, which are the links between
oscillators of the same cluster, are not counted (0); see Fig. 7.

As a first step, consider a coupling range P < 2n. For
the oscillator j we now count P links to the left. Of these,
a maximum of P − j is relevant, since the first j links to
the left are between oscillators of the same cluster. If P − j

is negative, then all left links are irrelevant. The number of
relevant left links is therefore bounded from below by zero.
The upper bound of the number of relevant links to the left is n,
corresponding to the full cluster being relevant. In conclusion,

the number of relevant links to the left of oscillator number j

is given by

max{min{n,P − j},0}. (12)

Now also consider coupling ranges P > 2n, more precisely,
consider P ∈ {2nk + 1, . . . ,2n(k + 1)}, k ∈ N0. Here k = 0
corresponds to P � 2n. Note that in this case the respective
lower bound of relevant links to the left is given by kn (i.e.,
k full clusters), while the upper bound is given by (k + 1) n

(i.e., (k + 1) full clusters). Consequently, for the oscillator j ,
we find that the number of relevant links to the left is given by

max{min{(k + 1) n,P − j − kn},kn}. (13)

By reflection, the number of relevant links to the left of
oscillator j is the same as the number of relevant links to
the right of oscillator n − j − 1.

In the next step, in order to reduce from n oscillators to
two oscillators, we calculate the mean relevant coupling of the
whole cluster, and therefore consider each cluster as lumped
into only one effective oscillator. We sum up the respective
value of each oscillator within the cluster and divide by the
number of neighbors P as well as by the number of oscillators
n to obtain a first approximation for the average coupling κP,n:

κP,n = 1

Pn

n−1∑
j=0

max{min{(k + 1) n,P − j − kn},kn}. (14)

This can be inserted into the threshold condition for stable
oscillation death obtained in Sec. II, εHB = 1

4 (λ + 4ω2/λ). In
total, for P ∈ {2kn + 1, . . . ,2(k + 1)n}, k ∈ N0, we find the
threshold

σP,n =
1
4 (λ + 4ω2/λ)Pn∑n−1

j=0 max{min{(k + 1)n,P − j − kn},kn} (15)

for the onset of oscillation death.
Note that the size of the system, i.e., the total number of

oscillators N , does not appear in the threshold.
We can compare this analytic mean-field result with the

numerical simulations: For a coupling range P that is of
the same order of magnitude as the cluster size n, or larger,
the analytic and the numeric thresholds agree very well. For
a coupling range P that is small compared to the cluster size,
we note that the analytic results give smaller thresholds than
the simulations; see white diamonds in Fig. 2. This suggests
that the simplified mean-field model must be improved for this
parameter regime.

V. BEYOND MEAN-FIELD THEORY

As mentioned above, the assumption that all oscillators
within a cluster have the same radius and phase is not true in
general and deviates from the numerical results. Therefore, we
aim for a correction term to the mean-field theory used above,
depending on the coupling range P and the cluster size n.

In our reduced model, we replace the mean-field coupling
κP,nσ by the corrected mean coupling (κP,n − κ∗

P,n)σ , and it
is the aim of this section to estimate the correction term κ∗

P,n.
In Fig. 4 we observed a deformation of the cluster

shape (branch splitting) for small P . The deformation is
approximately linear, where the x and the y variable of
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the two corner oscillators of the cluster stay (approxi-
mately) the same. The values of the neighboring oscilla-
tors, proceeding inwards, either decrease or increase. Seen
from the left, there are min{P mod n,(P + 1) mod n,n −
(P + 1) mod n,n − P mod n} oscillators, which show a linear
decrease or increase with respect to their left neighbor. To first
order, it follows that there exists a plateau, where the oscillators
have the same radius and phase. On the right we encounter an
analogous linear increase or decrease, respectively. The cluster
is reflection symmetric in the sense that the phenomenon is the
same if we approach from the left or the right.

This behavior is due to the fact that not all oscillators “feel”
the same coupling: The corner oscillators feel more or less
oscillators from the other clusters than those in the middle,
depending on the precise values of P and n.

An exception are the values P ∈ {nk, nk − 1 : k ∈ N},
where the mean coupling coincides exactly with the coupling
that every single oscillator feels; thus no branch splitting
effects occur [Fig. 4(c)]. In particular, we can conclude that,
for those P , no correction term is necessary.

Following the description above, the effect of the cluster
deformation on the mean coupling is proportional to
min{P mod n,(P + 1) mod n,n−(P + 1) mod n,n−P modn}
as well as proportional to the cluster size n. Overall, the
significance of the correction term decreases as P increases,
since the more oscillators are coupled, the closer we are to
the mean-field approximation. A simple intuitive ansatz is
to assume a global 1/P dependence of the correction term.
Thus, to compensate the cluster deformation term, we need a
prefactor P −2 to achieve the desired global 1/P dependence.

We suggest the following term:

κ∗
P,n = cnP −2 min{P mod n,(P + 1) mod n,

n − (P + 1) mod n,n − P mod n}. (16)

Here, we denote the proportionality constant by c. We have
found it to be the same for all our examples, c ≈ 0.047. We
therefore assume that this constant is independent of n and P .
Furthermore, we also claim that it is independent of N , since
the single oscillators are not influenced by the circumference of
the ring. However, there might be an additional dependence on
λ and ω, which is not the subject of our present investigation.

As a consequence, we also obtain a corrected formula for
the oscillation death threshold, which we denote by σ ∗

P,n,

σ ∗
P,n = λ + 4ω2/λ

4(κP,n − κ∗
P,n)

. (17)

Note that Eq. (17) gives either a larger threshold or the same
threshold as before. The difference of the simplified and the
improved formula is most noticeable if P is small compared
to the cluster size n; compare Fig. 2. The improved formula
gives excellent agreement with the numerical threshold for
stable oscillation death.

VI. TRANSIENT BEHAVIOR

The aim of this section is to describe the transient times
analytically. Transient oscillation death (see, e.g., the time
series depicted in Fig. 5) occurs for coupling strengths
σ between the emergence of the unstable inhomogeneous

steady state branches (via a pitchfork bifurcation, cf. Sec. II
and Ref. [30]) and the stabilizing Hopf bifurcation. The
manifestation of the long transient times is due to different
orders of magnitude of the real parts of the eigenvalues

Re μ1,2 = −λ + 2κ̄P,nσ − 2
√

κ̄2
P,nσ

2 − ω2, (18)

Re μ3 = μ3 = −2
√

κ̄2
P,nσ

2 − ω2. (19)

Here we have used the abbreviation κ̄P,n = κP,n − κ∗
P,n. The

absolute value of μ3 increases with increasing coupling; see
also Fig. 1 for the system of two coupled oscillators. Note
that the real part of the complex conjugate eigenvalues μ1,2 is
positive and smaller than 1 and in fact slowly goes to 0 as σ

approaches the stabilizing Hopf bifurcation (see Fig. 1), where
Re μ1 is depicted in green (dashed) and crosses the real axis
at the Hopf bifurcation point.

The (slow) unstable eigenvalue μ1 is compensated by the
(fast) stable eigenvalue μ3. The transient time T ∼ 1/Re μ1 is
shorter if the real part of μ1 increases. If Re μ1 goes to zero
(which it does at the Hopf bifurcation point), the transient time
goes to infinity. In contrast, the transient time increases with
the absolute value of the stable eigenvalue.

We considered an additive Gaussian randomization of
initial data, with fixed variance. Numerical experiments then
indicated that the observed mean transient time is proportional
to the ratio of the real parts of the eigenvalues, more precisely,
the larger the ratio, the longer the transient time. The stochastic
dependence of T on the initial conditions, i.e., the position
and variance of the distribution of the oscillators will not be
pursued in this publication. We include this by a factor β > 0,
which so far we have determined numerically, by fitting one or
more values of σ . Here β depends only on the initial conditions
and is independent of P, n,N , and σ .

We conclude that the dependence on P and σ of the
expectation value 〈T 〉 of the transient time T can be described
by

〈T 〉 = β |Re μ3|/Re μ1 (20)

= β
2
√

κ̄2
P,nσ

2 − ω2

−λ + 2κ̄P,nσ − 2
√

κ̄2
P,nσ

2 − ω2
. (21)

Note that, due to the sensitive dependance on the initial
conditions, we only give an estimate for the expectation
value of the transient time T . Figure 8 shows the numerically
calculated transient times versus σ for different variances of
the initial distribution. The solid curves represent Eq. (21) with
fit parameters β.

VII. CONCLUSION

We have investigated a network of nonlocally coupled
Stuart-Landau oscillators under a coupling that breaks S1

symmetry. Following numerical simulations with clustered
initial conditions, we have found a family of oscillation death
states (inhomogeneous steady states) that can be distinguished
by their cluster size. Clustering always emerges in pairs of
in-phase and antiphase clusters. Two different cases occur:
Either the pattern of the initial cluster configuration coincides
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FIG. 8. (Color online) Transient time T vs. coupling strength σ

for different variances of the initial distribution for 1-OD. Initial
conditions (xj ,yj ) = (−0.2,+0.7) on the upper branch and (xj ,yj ) =
(+0.2,−0.7) on the lower branch, with random fluctuations of
different variance added. Green (lighter) dots: Numerical values
using a variance of 10−8. The dashed green line gives the analytical
values calculated in Eq. (21) with fit parameter β = 1.22. Magenta
(darker) dots: Numerical values using a variance of 10−4. The solid
red line gives the analytical values calculated in Eq. (21) with
β = 0.382. Parameters: N = 100, λ = 1, ω = 2, κ̄P,n = 0.48898,
P = 48, n = 50, m = 1.

with the asymptotic cluster distributions, or additional clusters
appear in the middle of the original clusters. The shape
of the clusters depends on the coupling range P , i.e., the
number of nearest neighbors that are coupled. If P is either
an integer multiple of the cluster size or an integer multiple
minus one, then all oscillators within the cluster exhibit the
same radius and phase. In all other cases a linear cluster
deformation (branch splitting) occurs. We have developed an
approximate analytical description by a reduced model of two
mean-field coupled Stuart-Landau oscillators. In particular,
we have analytically calculated the onset of stable oscillation
death with prescribed clustering. Our theory goes beyond
standard mean-field theory, which only gives a rough estimate.
Specifically, we have extended the mean-field coupling by
an approximation for the spatial deviation from the mean.

As a consequence, we are able to predict the boundaries of
the different stability regimes of m-cluster oscillation death
analytically with high precision.

In addition to the asymptotically stable oscillation death
states, we also find a region where oscillation death is transient:
It persists for a long time but then disappears in favor of
synchronized oscillations. The transient behavior occurs due
to the interaction of a slow unstable eigenvalue and a fast
stable eigenvalue of the inhomogeneous steady state. We have
analytically calculated a scenario leading from the transient
behavior to the asymptotically stable oscillation death with
the coupling strength serving as a bifurcation parameter. Near
the stabilizing Hopf bifurcation, the calculated transient time
goes to infinity, which is in accordance with the numerical
simulations.

Note that in this paper we have confined attention to
spatially coherent clusters of inhomogeneous steady states. As
shown in Refs. [17,18], there also exist hybrid states consisting
of coexisting domains of spatially coherent and incoherent
oscillation death, called chimera death, for certain initial
conditions. This is an indication of the high multistability
of the system. The regimes of existence of 1-cluster, 3-
cluster, 5-cluster, etc., chimera death in the (σ , P ) parameter
plane is similar to Fig. 2. In addition, for small P there
exist transient amplitude chimeras of coexisting domains of
spatially coherent (synchronized) and incoherent oscillations.

Stuart-Landau oscillators as normal form of systems near
Hopf bifurcation can serve as a model system for many
applications. The set-up for both the mean-field theory and
its correction does not depend on the specific form of Stuart-
Landau oscillators. Similar symmetric cluster states, maybe
even including more branches, can be expected in any network
with a clearly defined symmetry, in which case the methods
presented in this paper can be employed.
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